Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction
The solid-state transformer is the enabling technology for the future of electric power systems. The increasing relevance of this equipment demands higher standards for efficiency and losses reduction. The dual active bridge (DAB) topology is the most usual DC-DC converter used in the solid-state tr...
Ausführliche Beschreibung
Autor*in: |
Adriano Nardoto [verfasserIn] Arthur Amorim [verfasserIn] Nelson Santana [verfasserIn] Emilio Bueno [verfasserIn] Lucas Encarnação [verfasserIn] Walbermark Santos [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 15(2022), 18, p 6628 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:18, p 6628 |
Links: |
---|
DOI / URN: |
10.3390/en15186628 |
---|
Katalog-ID: |
DOAJ023278870 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ023278870 | ||
003 | DE-627 | ||
005 | 20240414204751.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en15186628 |2 doi | |
035 | |a (DE-627)DOAJ023278870 | ||
035 | |a (DE-599)DOAJfbc92e85cfbd4e5d98586f52f6a305c1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Adriano Nardoto |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The solid-state transformer is the enabling technology for the future of electric power systems. The increasing relevance of this equipment demands higher standards for efficiency and losses reduction. The dual active bridge (DAB) topology is the most usual DC-DC converter used in the solid-state transformer, and is responsible for part of its switching losses. The traditional phase-shift modulation used on DAB converters presents significant switching losses during the operation with reduced loads. The alternative Triangular and Trapezoidal Modulations have been proposed in recent literature; however, there are limitations on the maximum power these techniques can deal with. This paper presents an adaptive model predictive control to select among these three techniques, according to the converter model, the one that minimizes the switching losses and allows the current demanded by the load. Moreover, an alternative cost function is proposed, including the output voltage and current. Through real-time simulation, using a 1000 V/600 V 12 kW DAB converter, it is shown that the proposed control is able to reduce the losses on the converter. Furthermore, the proposed control presents fast and accurate response, and precise transition between the modulation techniques. | ||
650 | 4 | |a dual active bridge converter | |
650 | 4 | |a model predictive control | |
650 | 4 | |a power electronics | |
650 | 4 | |a switching losses | |
650 | 4 | |a adaptive control | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Arthur Amorim |e verfasserin |4 aut | |
700 | 0 | |a Nelson Santana |e verfasserin |4 aut | |
700 | 0 | |a Emilio Bueno |e verfasserin |4 aut | |
700 | 0 | |a Lucas Encarnação |e verfasserin |4 aut | |
700 | 0 | |a Walbermark Santos |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 15(2022), 18, p 6628 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:18, p 6628 |
856 | 4 | 0 | |u https://doi.org/10.3390/en15186628 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fbc92e85cfbd4e5d98586f52f6a305c1 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/15/18/6628 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 18, p 6628 |
author_variant |
a n an a a aa n s ns e b eb l e le w s ws |
---|---|
matchkey_str |
article:19961073:2022----::dpieoepeitvcnrlodbovresic |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/en15186628 doi (DE-627)DOAJ023278870 (DE-599)DOAJfbc92e85cfbd4e5d98586f52f6a305c1 DE-627 ger DE-627 rakwb eng Adriano Nardoto verfasserin aut Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solid-state transformer is the enabling technology for the future of electric power systems. The increasing relevance of this equipment demands higher standards for efficiency and losses reduction. The dual active bridge (DAB) topology is the most usual DC-DC converter used in the solid-state transformer, and is responsible for part of its switching losses. The traditional phase-shift modulation used on DAB converters presents significant switching losses during the operation with reduced loads. The alternative Triangular and Trapezoidal Modulations have been proposed in recent literature; however, there are limitations on the maximum power these techniques can deal with. This paper presents an adaptive model predictive control to select among these three techniques, according to the converter model, the one that minimizes the switching losses and allows the current demanded by the load. Moreover, an alternative cost function is proposed, including the output voltage and current. Through real-time simulation, using a 1000 V/600 V 12 kW DAB converter, it is shown that the proposed control is able to reduce the losses on the converter. Furthermore, the proposed control presents fast and accurate response, and precise transition between the modulation techniques. dual active bridge converter model predictive control power electronics switching losses adaptive control Technology T Arthur Amorim verfasserin aut Nelson Santana verfasserin aut Emilio Bueno verfasserin aut Lucas Encarnação verfasserin aut Walbermark Santos verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6628 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6628 https://doi.org/10.3390/en15186628 kostenfrei https://doaj.org/article/fbc92e85cfbd4e5d98586f52f6a305c1 kostenfrei https://www.mdpi.com/1996-1073/15/18/6628 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6628 |
spelling |
10.3390/en15186628 doi (DE-627)DOAJ023278870 (DE-599)DOAJfbc92e85cfbd4e5d98586f52f6a305c1 DE-627 ger DE-627 rakwb eng Adriano Nardoto verfasserin aut Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solid-state transformer is the enabling technology for the future of electric power systems. The increasing relevance of this equipment demands higher standards for efficiency and losses reduction. The dual active bridge (DAB) topology is the most usual DC-DC converter used in the solid-state transformer, and is responsible for part of its switching losses. The traditional phase-shift modulation used on DAB converters presents significant switching losses during the operation with reduced loads. The alternative Triangular and Trapezoidal Modulations have been proposed in recent literature; however, there are limitations on the maximum power these techniques can deal with. This paper presents an adaptive model predictive control to select among these three techniques, according to the converter model, the one that minimizes the switching losses and allows the current demanded by the load. Moreover, an alternative cost function is proposed, including the output voltage and current. Through real-time simulation, using a 1000 V/600 V 12 kW DAB converter, it is shown that the proposed control is able to reduce the losses on the converter. Furthermore, the proposed control presents fast and accurate response, and precise transition between the modulation techniques. dual active bridge converter model predictive control power electronics switching losses adaptive control Technology T Arthur Amorim verfasserin aut Nelson Santana verfasserin aut Emilio Bueno verfasserin aut Lucas Encarnação verfasserin aut Walbermark Santos verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6628 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6628 https://doi.org/10.3390/en15186628 kostenfrei https://doaj.org/article/fbc92e85cfbd4e5d98586f52f6a305c1 kostenfrei https://www.mdpi.com/1996-1073/15/18/6628 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6628 |
allfields_unstemmed |
10.3390/en15186628 doi (DE-627)DOAJ023278870 (DE-599)DOAJfbc92e85cfbd4e5d98586f52f6a305c1 DE-627 ger DE-627 rakwb eng Adriano Nardoto verfasserin aut Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solid-state transformer is the enabling technology for the future of electric power systems. The increasing relevance of this equipment demands higher standards for efficiency and losses reduction. The dual active bridge (DAB) topology is the most usual DC-DC converter used in the solid-state transformer, and is responsible for part of its switching losses. The traditional phase-shift modulation used on DAB converters presents significant switching losses during the operation with reduced loads. The alternative Triangular and Trapezoidal Modulations have been proposed in recent literature; however, there are limitations on the maximum power these techniques can deal with. This paper presents an adaptive model predictive control to select among these three techniques, according to the converter model, the one that minimizes the switching losses and allows the current demanded by the load. Moreover, an alternative cost function is proposed, including the output voltage and current. Through real-time simulation, using a 1000 V/600 V 12 kW DAB converter, it is shown that the proposed control is able to reduce the losses on the converter. Furthermore, the proposed control presents fast and accurate response, and precise transition between the modulation techniques. dual active bridge converter model predictive control power electronics switching losses adaptive control Technology T Arthur Amorim verfasserin aut Nelson Santana verfasserin aut Emilio Bueno verfasserin aut Lucas Encarnação verfasserin aut Walbermark Santos verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6628 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6628 https://doi.org/10.3390/en15186628 kostenfrei https://doaj.org/article/fbc92e85cfbd4e5d98586f52f6a305c1 kostenfrei https://www.mdpi.com/1996-1073/15/18/6628 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6628 |
allfieldsGer |
10.3390/en15186628 doi (DE-627)DOAJ023278870 (DE-599)DOAJfbc92e85cfbd4e5d98586f52f6a305c1 DE-627 ger DE-627 rakwb eng Adriano Nardoto verfasserin aut Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solid-state transformer is the enabling technology for the future of electric power systems. The increasing relevance of this equipment demands higher standards for efficiency and losses reduction. The dual active bridge (DAB) topology is the most usual DC-DC converter used in the solid-state transformer, and is responsible for part of its switching losses. The traditional phase-shift modulation used on DAB converters presents significant switching losses during the operation with reduced loads. The alternative Triangular and Trapezoidal Modulations have been proposed in recent literature; however, there are limitations on the maximum power these techniques can deal with. This paper presents an adaptive model predictive control to select among these three techniques, according to the converter model, the one that minimizes the switching losses and allows the current demanded by the load. Moreover, an alternative cost function is proposed, including the output voltage and current. Through real-time simulation, using a 1000 V/600 V 12 kW DAB converter, it is shown that the proposed control is able to reduce the losses on the converter. Furthermore, the proposed control presents fast and accurate response, and precise transition between the modulation techniques. dual active bridge converter model predictive control power electronics switching losses adaptive control Technology T Arthur Amorim verfasserin aut Nelson Santana verfasserin aut Emilio Bueno verfasserin aut Lucas Encarnação verfasserin aut Walbermark Santos verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6628 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6628 https://doi.org/10.3390/en15186628 kostenfrei https://doaj.org/article/fbc92e85cfbd4e5d98586f52f6a305c1 kostenfrei https://www.mdpi.com/1996-1073/15/18/6628 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6628 |
allfieldsSound |
10.3390/en15186628 doi (DE-627)DOAJ023278870 (DE-599)DOAJfbc92e85cfbd4e5d98586f52f6a305c1 DE-627 ger DE-627 rakwb eng Adriano Nardoto verfasserin aut Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The solid-state transformer is the enabling technology for the future of electric power systems. The increasing relevance of this equipment demands higher standards for efficiency and losses reduction. The dual active bridge (DAB) topology is the most usual DC-DC converter used in the solid-state transformer, and is responsible for part of its switching losses. The traditional phase-shift modulation used on DAB converters presents significant switching losses during the operation with reduced loads. The alternative Triangular and Trapezoidal Modulations have been proposed in recent literature; however, there are limitations on the maximum power these techniques can deal with. This paper presents an adaptive model predictive control to select among these three techniques, according to the converter model, the one that minimizes the switching losses and allows the current demanded by the load. Moreover, an alternative cost function is proposed, including the output voltage and current. Through real-time simulation, using a 1000 V/600 V 12 kW DAB converter, it is shown that the proposed control is able to reduce the losses on the converter. Furthermore, the proposed control presents fast and accurate response, and precise transition between the modulation techniques. dual active bridge converter model predictive control power electronics switching losses adaptive control Technology T Arthur Amorim verfasserin aut Nelson Santana verfasserin aut Emilio Bueno verfasserin aut Lucas Encarnação verfasserin aut Walbermark Santos verfasserin aut In Energies MDPI AG, 2008 15(2022), 18, p 6628 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:18, p 6628 https://doi.org/10.3390/en15186628 kostenfrei https://doaj.org/article/fbc92e85cfbd4e5d98586f52f6a305c1 kostenfrei https://www.mdpi.com/1996-1073/15/18/6628 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 18, p 6628 |
language |
English |
source |
In Energies 15(2022), 18, p 6628 volume:15 year:2022 number:18, p 6628 |
sourceStr |
In Energies 15(2022), 18, p 6628 volume:15 year:2022 number:18, p 6628 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
dual active bridge converter model predictive control power electronics switching losses adaptive control Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Adriano Nardoto @@aut@@ Arthur Amorim @@aut@@ Nelson Santana @@aut@@ Emilio Bueno @@aut@@ Lucas Encarnação @@aut@@ Walbermark Santos @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ023278870 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ023278870</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204751.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15186628</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ023278870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfbc92e85cfbd4e5d98586f52f6a305c1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Adriano Nardoto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The solid-state transformer is the enabling technology for the future of electric power systems. The increasing relevance of this equipment demands higher standards for efficiency and losses reduction. The dual active bridge (DAB) topology is the most usual DC-DC converter used in the solid-state transformer, and is responsible for part of its switching losses. The traditional phase-shift modulation used on DAB converters presents significant switching losses during the operation with reduced loads. The alternative Triangular and Trapezoidal Modulations have been proposed in recent literature; however, there are limitations on the maximum power these techniques can deal with. This paper presents an adaptive model predictive control to select among these three techniques, according to the converter model, the one that minimizes the switching losses and allows the current demanded by the load. Moreover, an alternative cost function is proposed, including the output voltage and current. Through real-time simulation, using a 1000 V/600 V 12 kW DAB converter, it is shown that the proposed control is able to reduce the losses on the converter. Furthermore, the proposed control presents fast and accurate response, and precise transition between the modulation techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dual active bridge converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model predictive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switching losses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arthur Amorim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nelson Santana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emilio Bueno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lucas Encarnação</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Walbermark Santos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 18, p 6628</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:18, p 6628</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15186628</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fbc92e85cfbd4e5d98586f52f6a305c1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/18/6628</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">18, p 6628</subfield></datafield></record></collection>
|
author |
Adriano Nardoto |
spellingShingle |
Adriano Nardoto misc dual active bridge converter misc model predictive control misc power electronics misc switching losses misc adaptive control misc Technology misc T Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction |
authorStr |
Adriano Nardoto |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction dual active bridge converter model predictive control power electronics switching losses adaptive control |
topic |
misc dual active bridge converter misc model predictive control misc power electronics misc switching losses misc adaptive control misc Technology misc T |
topic_unstemmed |
misc dual active bridge converter misc model predictive control misc power electronics misc switching losses misc adaptive control misc Technology misc T |
topic_browse |
misc dual active bridge converter misc model predictive control misc power electronics misc switching losses misc adaptive control misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction |
ctrlnum |
(DE-627)DOAJ023278870 (DE-599)DOAJfbc92e85cfbd4e5d98586f52f6a305c1 |
title_full |
Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction |
author_sort |
Adriano Nardoto |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Adriano Nardoto Arthur Amorim Nelson Santana Emilio Bueno Lucas Encarnação Walbermark Santos |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Adriano Nardoto |
doi_str_mv |
10.3390/en15186628 |
author2-role |
verfasserin |
title_sort |
adaptive model predictive control for dab converter switching losses reduction |
title_auth |
Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction |
abstract |
The solid-state transformer is the enabling technology for the future of electric power systems. The increasing relevance of this equipment demands higher standards for efficiency and losses reduction. The dual active bridge (DAB) topology is the most usual DC-DC converter used in the solid-state transformer, and is responsible for part of its switching losses. The traditional phase-shift modulation used on DAB converters presents significant switching losses during the operation with reduced loads. The alternative Triangular and Trapezoidal Modulations have been proposed in recent literature; however, there are limitations on the maximum power these techniques can deal with. This paper presents an adaptive model predictive control to select among these three techniques, according to the converter model, the one that minimizes the switching losses and allows the current demanded by the load. Moreover, an alternative cost function is proposed, including the output voltage and current. Through real-time simulation, using a 1000 V/600 V 12 kW DAB converter, it is shown that the proposed control is able to reduce the losses on the converter. Furthermore, the proposed control presents fast and accurate response, and precise transition between the modulation techniques. |
abstractGer |
The solid-state transformer is the enabling technology for the future of electric power systems. The increasing relevance of this equipment demands higher standards for efficiency and losses reduction. The dual active bridge (DAB) topology is the most usual DC-DC converter used in the solid-state transformer, and is responsible for part of its switching losses. The traditional phase-shift modulation used on DAB converters presents significant switching losses during the operation with reduced loads. The alternative Triangular and Trapezoidal Modulations have been proposed in recent literature; however, there are limitations on the maximum power these techniques can deal with. This paper presents an adaptive model predictive control to select among these three techniques, according to the converter model, the one that minimizes the switching losses and allows the current demanded by the load. Moreover, an alternative cost function is proposed, including the output voltage and current. Through real-time simulation, using a 1000 V/600 V 12 kW DAB converter, it is shown that the proposed control is able to reduce the losses on the converter. Furthermore, the proposed control presents fast and accurate response, and precise transition between the modulation techniques. |
abstract_unstemmed |
The solid-state transformer is the enabling technology for the future of electric power systems. The increasing relevance of this equipment demands higher standards for efficiency and losses reduction. The dual active bridge (DAB) topology is the most usual DC-DC converter used in the solid-state transformer, and is responsible for part of its switching losses. The traditional phase-shift modulation used on DAB converters presents significant switching losses during the operation with reduced loads. The alternative Triangular and Trapezoidal Modulations have been proposed in recent literature; however, there are limitations on the maximum power these techniques can deal with. This paper presents an adaptive model predictive control to select among these three techniques, according to the converter model, the one that minimizes the switching losses and allows the current demanded by the load. Moreover, an alternative cost function is proposed, including the output voltage and current. Through real-time simulation, using a 1000 V/600 V 12 kW DAB converter, it is shown that the proposed control is able to reduce the losses on the converter. Furthermore, the proposed control presents fast and accurate response, and precise transition between the modulation techniques. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
18, p 6628 |
title_short |
Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction |
url |
https://doi.org/10.3390/en15186628 https://doaj.org/article/fbc92e85cfbd4e5d98586f52f6a305c1 https://www.mdpi.com/1996-1073/15/18/6628 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Arthur Amorim Nelson Santana Emilio Bueno Lucas Encarnação Walbermark Santos |
author2Str |
Arthur Amorim Nelson Santana Emilio Bueno Lucas Encarnação Walbermark Santos |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en15186628 |
up_date |
2024-07-03T16:43:36.063Z |
_version_ |
1803576951244324864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ023278870</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204751.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15186628</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ023278870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfbc92e85cfbd4e5d98586f52f6a305c1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Adriano Nardoto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The solid-state transformer is the enabling technology for the future of electric power systems. The increasing relevance of this equipment demands higher standards for efficiency and losses reduction. The dual active bridge (DAB) topology is the most usual DC-DC converter used in the solid-state transformer, and is responsible for part of its switching losses. The traditional phase-shift modulation used on DAB converters presents significant switching losses during the operation with reduced loads. The alternative Triangular and Trapezoidal Modulations have been proposed in recent literature; however, there are limitations on the maximum power these techniques can deal with. This paper presents an adaptive model predictive control to select among these three techniques, according to the converter model, the one that minimizes the switching losses and allows the current demanded by the load. Moreover, an alternative cost function is proposed, including the output voltage and current. Through real-time simulation, using a 1000 V/600 V 12 kW DAB converter, it is shown that the proposed control is able to reduce the losses on the converter. Furthermore, the proposed control presents fast and accurate response, and precise transition between the modulation techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dual active bridge converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model predictive control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switching losses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arthur Amorim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nelson Santana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emilio Bueno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lucas Encarnação</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Walbermark Santos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 18, p 6628</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:18, p 6628</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15186628</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fbc92e85cfbd4e5d98586f52f6a305c1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/18/6628</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">18, p 6628</subfield></datafield></record></collection>
|
score |
7.402669 |