Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony
Tree peony (<i<Paeonia suffruticosa</i< Andr.) is a famous ornamental and medicinal flowering species. However, few high-efficiency chloroplast microsatellite markers have been developed for it to be employed in taxonomic identifications and evaluation of germplasm resources to date. In...
Ausführliche Beschreibung
Autor*in: |
Qi Guo [verfasserIn] Lili Guo [verfasserIn] Yuying Li [verfasserIn] Haijing Yang [verfasserIn] Xiaoliang Hu [verfasserIn] Chengwei Song [verfasserIn] Xiaogai Hou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Genes - MDPI AG, 2010, 13(2022), 9, p 1543 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2022 ; number:9, p 1543 |
Links: |
---|
DOI / URN: |
10.3390/genes13091543 |
---|
Katalog-ID: |
DOAJ023287330 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ023287330 | ||
003 | DE-627 | ||
005 | 20240414204114.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/genes13091543 |2 doi | |
035 | |a (DE-627)DOAJ023287330 | ||
035 | |a (DE-599)DOAJac40f1f16c37493199e6c483c8b4be52 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH426-470 | |
100 | 0 | |a Qi Guo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Tree peony (<i<Paeonia suffruticosa</i< Andr.) is a famous ornamental and medicinal flowering species. However, few high-efficiency chloroplast microsatellite markers have been developed for it to be employed in taxonomic identifications and evaluation of germplasm resources to date. In the present study, a total of 139 cpSSR loci were identified across eleven tree peony plastomes. Dinucleotide repeat SSRs (97.12%) were most abundantly repeated for the AT motif (58.27%), followed by the TA motif (30.94%) and the TC motif (7.91%). Twenty-one primer pairs were developed, and amplification tests were conducted for nine tree peony individuals. Furthermore, 19 cpSSR markers were amplified on 60 tree peony accessions by a capillary electrophoresis test. Of 19 cpSSR markers, 12 showed polymorphism with different alleles ranging from 1.333 to 3.000. The Shannon’s information index and polymorphism information content values ranged from 0.038 to 0.887 (mean 0.432) and 0.032 to 0.589 (mean 0.268), respectively. The diversity levels for twelve loci ranged from 0.016 (at loci cpSSR-8 and cpSSR-26) to 0.543 (at locus cpSSR-15), averaging 0.268 for all loci. A total of 14 haplotypes (23.33%) were detected in the three populations. The haplotypic richness ranged from 0.949 to 1.751, with a mean of 1.233 per population. The genetic relationship suggested by the neighbor-joining-based dendrogram divided the genotypes into two clusters. The Jiangnan population was allotted to Cluster II, and the other two populations were distributed into both branches. These newly developed cpSSRs can be utilized for future breeding programs, population genetics investigations, unraveling the genetic relationships between related species, and germplasm management. | ||
650 | 4 | |a tree peony | |
650 | 4 | |a cpSSRs | |
650 | 4 | |a polymorphic | |
650 | 4 | |a diversity | |
650 | 4 | |a haplotypes | |
653 | 0 | |a Genetics | |
700 | 0 | |a Lili Guo |e verfasserin |4 aut | |
700 | 0 | |a Yuying Li |e verfasserin |4 aut | |
700 | 0 | |a Haijing Yang |e verfasserin |4 aut | |
700 | 0 | |a Xiaoliang Hu |e verfasserin |4 aut | |
700 | 0 | |a Chengwei Song |e verfasserin |4 aut | |
700 | 0 | |a Xiaogai Hou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Genes |d MDPI AG, 2010 |g 13(2022), 9, p 1543 |w (DE-627)614096537 |w (DE-600)2527218-4 |x 20734425 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2022 |g number:9, p 1543 |
856 | 4 | 0 | |u https://doi.org/10.3390/genes13091543 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ac40f1f16c37493199e6c483c8b4be52 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4425/13/9/1543 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4425 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2022 |e 9, p 1543 |
author_variant |
q g qg l g lg y l yl h y hy x h xh c s cs x h xh |
---|---|
matchkey_str |
article:20734425:2022----::eeomnadhrceiainfirstlieakrbsdnhcl |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QH |
publishDate |
2022 |
allfields |
10.3390/genes13091543 doi (DE-627)DOAJ023287330 (DE-599)DOAJac40f1f16c37493199e6c483c8b4be52 DE-627 ger DE-627 rakwb eng QH426-470 Qi Guo verfasserin aut Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tree peony (<i<Paeonia suffruticosa</i< Andr.) is a famous ornamental and medicinal flowering species. However, few high-efficiency chloroplast microsatellite markers have been developed for it to be employed in taxonomic identifications and evaluation of germplasm resources to date. In the present study, a total of 139 cpSSR loci were identified across eleven tree peony plastomes. Dinucleotide repeat SSRs (97.12%) were most abundantly repeated for the AT motif (58.27%), followed by the TA motif (30.94%) and the TC motif (7.91%). Twenty-one primer pairs were developed, and amplification tests were conducted for nine tree peony individuals. Furthermore, 19 cpSSR markers were amplified on 60 tree peony accessions by a capillary electrophoresis test. Of 19 cpSSR markers, 12 showed polymorphism with different alleles ranging from 1.333 to 3.000. The Shannon’s information index and polymorphism information content values ranged from 0.038 to 0.887 (mean 0.432) and 0.032 to 0.589 (mean 0.268), respectively. The diversity levels for twelve loci ranged from 0.016 (at loci cpSSR-8 and cpSSR-26) to 0.543 (at locus cpSSR-15), averaging 0.268 for all loci. A total of 14 haplotypes (23.33%) were detected in the three populations. The haplotypic richness ranged from 0.949 to 1.751, with a mean of 1.233 per population. The genetic relationship suggested by the neighbor-joining-based dendrogram divided the genotypes into two clusters. The Jiangnan population was allotted to Cluster II, and the other two populations were distributed into both branches. These newly developed cpSSRs can be utilized for future breeding programs, population genetics investigations, unraveling the genetic relationships between related species, and germplasm management. tree peony cpSSRs polymorphic diversity haplotypes Genetics Lili Guo verfasserin aut Yuying Li verfasserin aut Haijing Yang verfasserin aut Xiaoliang Hu verfasserin aut Chengwei Song verfasserin aut Xiaogai Hou verfasserin aut In Genes MDPI AG, 2010 13(2022), 9, p 1543 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:13 year:2022 number:9, p 1543 https://doi.org/10.3390/genes13091543 kostenfrei https://doaj.org/article/ac40f1f16c37493199e6c483c8b4be52 kostenfrei https://www.mdpi.com/2073-4425/13/9/1543 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 9, p 1543 |
spelling |
10.3390/genes13091543 doi (DE-627)DOAJ023287330 (DE-599)DOAJac40f1f16c37493199e6c483c8b4be52 DE-627 ger DE-627 rakwb eng QH426-470 Qi Guo verfasserin aut Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tree peony (<i<Paeonia suffruticosa</i< Andr.) is a famous ornamental and medicinal flowering species. However, few high-efficiency chloroplast microsatellite markers have been developed for it to be employed in taxonomic identifications and evaluation of germplasm resources to date. In the present study, a total of 139 cpSSR loci were identified across eleven tree peony plastomes. Dinucleotide repeat SSRs (97.12%) were most abundantly repeated for the AT motif (58.27%), followed by the TA motif (30.94%) and the TC motif (7.91%). Twenty-one primer pairs were developed, and amplification tests were conducted for nine tree peony individuals. Furthermore, 19 cpSSR markers were amplified on 60 tree peony accessions by a capillary electrophoresis test. Of 19 cpSSR markers, 12 showed polymorphism with different alleles ranging from 1.333 to 3.000. The Shannon’s information index and polymorphism information content values ranged from 0.038 to 0.887 (mean 0.432) and 0.032 to 0.589 (mean 0.268), respectively. The diversity levels for twelve loci ranged from 0.016 (at loci cpSSR-8 and cpSSR-26) to 0.543 (at locus cpSSR-15), averaging 0.268 for all loci. A total of 14 haplotypes (23.33%) were detected in the three populations. The haplotypic richness ranged from 0.949 to 1.751, with a mean of 1.233 per population. The genetic relationship suggested by the neighbor-joining-based dendrogram divided the genotypes into two clusters. The Jiangnan population was allotted to Cluster II, and the other two populations were distributed into both branches. These newly developed cpSSRs can be utilized for future breeding programs, population genetics investigations, unraveling the genetic relationships between related species, and germplasm management. tree peony cpSSRs polymorphic diversity haplotypes Genetics Lili Guo verfasserin aut Yuying Li verfasserin aut Haijing Yang verfasserin aut Xiaoliang Hu verfasserin aut Chengwei Song verfasserin aut Xiaogai Hou verfasserin aut In Genes MDPI AG, 2010 13(2022), 9, p 1543 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:13 year:2022 number:9, p 1543 https://doi.org/10.3390/genes13091543 kostenfrei https://doaj.org/article/ac40f1f16c37493199e6c483c8b4be52 kostenfrei https://www.mdpi.com/2073-4425/13/9/1543 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 9, p 1543 |
allfields_unstemmed |
10.3390/genes13091543 doi (DE-627)DOAJ023287330 (DE-599)DOAJac40f1f16c37493199e6c483c8b4be52 DE-627 ger DE-627 rakwb eng QH426-470 Qi Guo verfasserin aut Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tree peony (<i<Paeonia suffruticosa</i< Andr.) is a famous ornamental and medicinal flowering species. However, few high-efficiency chloroplast microsatellite markers have been developed for it to be employed in taxonomic identifications and evaluation of germplasm resources to date. In the present study, a total of 139 cpSSR loci were identified across eleven tree peony plastomes. Dinucleotide repeat SSRs (97.12%) were most abundantly repeated for the AT motif (58.27%), followed by the TA motif (30.94%) and the TC motif (7.91%). Twenty-one primer pairs were developed, and amplification tests were conducted for nine tree peony individuals. Furthermore, 19 cpSSR markers were amplified on 60 tree peony accessions by a capillary electrophoresis test. Of 19 cpSSR markers, 12 showed polymorphism with different alleles ranging from 1.333 to 3.000. The Shannon’s information index and polymorphism information content values ranged from 0.038 to 0.887 (mean 0.432) and 0.032 to 0.589 (mean 0.268), respectively. The diversity levels for twelve loci ranged from 0.016 (at loci cpSSR-8 and cpSSR-26) to 0.543 (at locus cpSSR-15), averaging 0.268 for all loci. A total of 14 haplotypes (23.33%) were detected in the three populations. The haplotypic richness ranged from 0.949 to 1.751, with a mean of 1.233 per population. The genetic relationship suggested by the neighbor-joining-based dendrogram divided the genotypes into two clusters. The Jiangnan population was allotted to Cluster II, and the other two populations were distributed into both branches. These newly developed cpSSRs can be utilized for future breeding programs, population genetics investigations, unraveling the genetic relationships between related species, and germplasm management. tree peony cpSSRs polymorphic diversity haplotypes Genetics Lili Guo verfasserin aut Yuying Li verfasserin aut Haijing Yang verfasserin aut Xiaoliang Hu verfasserin aut Chengwei Song verfasserin aut Xiaogai Hou verfasserin aut In Genes MDPI AG, 2010 13(2022), 9, p 1543 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:13 year:2022 number:9, p 1543 https://doi.org/10.3390/genes13091543 kostenfrei https://doaj.org/article/ac40f1f16c37493199e6c483c8b4be52 kostenfrei https://www.mdpi.com/2073-4425/13/9/1543 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 9, p 1543 |
allfieldsGer |
10.3390/genes13091543 doi (DE-627)DOAJ023287330 (DE-599)DOAJac40f1f16c37493199e6c483c8b4be52 DE-627 ger DE-627 rakwb eng QH426-470 Qi Guo verfasserin aut Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tree peony (<i<Paeonia suffruticosa</i< Andr.) is a famous ornamental and medicinal flowering species. However, few high-efficiency chloroplast microsatellite markers have been developed for it to be employed in taxonomic identifications and evaluation of germplasm resources to date. In the present study, a total of 139 cpSSR loci were identified across eleven tree peony plastomes. Dinucleotide repeat SSRs (97.12%) were most abundantly repeated for the AT motif (58.27%), followed by the TA motif (30.94%) and the TC motif (7.91%). Twenty-one primer pairs were developed, and amplification tests were conducted for nine tree peony individuals. Furthermore, 19 cpSSR markers were amplified on 60 tree peony accessions by a capillary electrophoresis test. Of 19 cpSSR markers, 12 showed polymorphism with different alleles ranging from 1.333 to 3.000. The Shannon’s information index and polymorphism information content values ranged from 0.038 to 0.887 (mean 0.432) and 0.032 to 0.589 (mean 0.268), respectively. The diversity levels for twelve loci ranged from 0.016 (at loci cpSSR-8 and cpSSR-26) to 0.543 (at locus cpSSR-15), averaging 0.268 for all loci. A total of 14 haplotypes (23.33%) were detected in the three populations. The haplotypic richness ranged from 0.949 to 1.751, with a mean of 1.233 per population. The genetic relationship suggested by the neighbor-joining-based dendrogram divided the genotypes into two clusters. The Jiangnan population was allotted to Cluster II, and the other two populations were distributed into both branches. These newly developed cpSSRs can be utilized for future breeding programs, population genetics investigations, unraveling the genetic relationships between related species, and germplasm management. tree peony cpSSRs polymorphic diversity haplotypes Genetics Lili Guo verfasserin aut Yuying Li verfasserin aut Haijing Yang verfasserin aut Xiaoliang Hu verfasserin aut Chengwei Song verfasserin aut Xiaogai Hou verfasserin aut In Genes MDPI AG, 2010 13(2022), 9, p 1543 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:13 year:2022 number:9, p 1543 https://doi.org/10.3390/genes13091543 kostenfrei https://doaj.org/article/ac40f1f16c37493199e6c483c8b4be52 kostenfrei https://www.mdpi.com/2073-4425/13/9/1543 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 9, p 1543 |
allfieldsSound |
10.3390/genes13091543 doi (DE-627)DOAJ023287330 (DE-599)DOAJac40f1f16c37493199e6c483c8b4be52 DE-627 ger DE-627 rakwb eng QH426-470 Qi Guo verfasserin aut Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tree peony (<i<Paeonia suffruticosa</i< Andr.) is a famous ornamental and medicinal flowering species. However, few high-efficiency chloroplast microsatellite markers have been developed for it to be employed in taxonomic identifications and evaluation of germplasm resources to date. In the present study, a total of 139 cpSSR loci were identified across eleven tree peony plastomes. Dinucleotide repeat SSRs (97.12%) were most abundantly repeated for the AT motif (58.27%), followed by the TA motif (30.94%) and the TC motif (7.91%). Twenty-one primer pairs were developed, and amplification tests were conducted for nine tree peony individuals. Furthermore, 19 cpSSR markers were amplified on 60 tree peony accessions by a capillary electrophoresis test. Of 19 cpSSR markers, 12 showed polymorphism with different alleles ranging from 1.333 to 3.000. The Shannon’s information index and polymorphism information content values ranged from 0.038 to 0.887 (mean 0.432) and 0.032 to 0.589 (mean 0.268), respectively. The diversity levels for twelve loci ranged from 0.016 (at loci cpSSR-8 and cpSSR-26) to 0.543 (at locus cpSSR-15), averaging 0.268 for all loci. A total of 14 haplotypes (23.33%) were detected in the three populations. The haplotypic richness ranged from 0.949 to 1.751, with a mean of 1.233 per population. The genetic relationship suggested by the neighbor-joining-based dendrogram divided the genotypes into two clusters. The Jiangnan population was allotted to Cluster II, and the other two populations were distributed into both branches. These newly developed cpSSRs can be utilized for future breeding programs, population genetics investigations, unraveling the genetic relationships between related species, and germplasm management. tree peony cpSSRs polymorphic diversity haplotypes Genetics Lili Guo verfasserin aut Yuying Li verfasserin aut Haijing Yang verfasserin aut Xiaoliang Hu verfasserin aut Chengwei Song verfasserin aut Xiaogai Hou verfasserin aut In Genes MDPI AG, 2010 13(2022), 9, p 1543 (DE-627)614096537 (DE-600)2527218-4 20734425 nnns volume:13 year:2022 number:9, p 1543 https://doi.org/10.3390/genes13091543 kostenfrei https://doaj.org/article/ac40f1f16c37493199e6c483c8b4be52 kostenfrei https://www.mdpi.com/2073-4425/13/9/1543 kostenfrei https://doaj.org/toc/2073-4425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 9, p 1543 |
language |
English |
source |
In Genes 13(2022), 9, p 1543 volume:13 year:2022 number:9, p 1543 |
sourceStr |
In Genes 13(2022), 9, p 1543 volume:13 year:2022 number:9, p 1543 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
tree peony cpSSRs polymorphic diversity haplotypes Genetics |
isfreeaccess_bool |
true |
container_title |
Genes |
authorswithroles_txt_mv |
Qi Guo @@aut@@ Lili Guo @@aut@@ Yuying Li @@aut@@ Haijing Yang @@aut@@ Xiaoliang Hu @@aut@@ Chengwei Song @@aut@@ Xiaogai Hou @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
614096537 |
id |
DOAJ023287330 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ023287330</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204114.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/genes13091543</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ023287330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJac40f1f16c37493199e6c483c8b4be52</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qi Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tree peony (<i<Paeonia suffruticosa</i< Andr.) is a famous ornamental and medicinal flowering species. However, few high-efficiency chloroplast microsatellite markers have been developed for it to be employed in taxonomic identifications and evaluation of germplasm resources to date. In the present study, a total of 139 cpSSR loci were identified across eleven tree peony plastomes. Dinucleotide repeat SSRs (97.12%) were most abundantly repeated for the AT motif (58.27%), followed by the TA motif (30.94%) and the TC motif (7.91%). Twenty-one primer pairs were developed, and amplification tests were conducted for nine tree peony individuals. Furthermore, 19 cpSSR markers were amplified on 60 tree peony accessions by a capillary electrophoresis test. Of 19 cpSSR markers, 12 showed polymorphism with different alleles ranging from 1.333 to 3.000. The Shannon’s information index and polymorphism information content values ranged from 0.038 to 0.887 (mean 0.432) and 0.032 to 0.589 (mean 0.268), respectively. The diversity levels for twelve loci ranged from 0.016 (at loci cpSSR-8 and cpSSR-26) to 0.543 (at locus cpSSR-15), averaging 0.268 for all loci. A total of 14 haplotypes (23.33%) were detected in the three populations. The haplotypic richness ranged from 0.949 to 1.751, with a mean of 1.233 per population. The genetic relationship suggested by the neighbor-joining-based dendrogram divided the genotypes into two clusters. The Jiangnan population was allotted to Cluster II, and the other two populations were distributed into both branches. These newly developed cpSSRs can be utilized for future breeding programs, population genetics investigations, unraveling the genetic relationships between related species, and germplasm management.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tree peony</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cpSSRs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polymorphic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diversity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">haplotypes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lili Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuying Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haijing Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoliang Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengwei Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaogai Hou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genes</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2022), 9, p 1543</subfield><subfield code="w">(DE-627)614096537</subfield><subfield code="w">(DE-600)2527218-4</subfield><subfield code="x">20734425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9, p 1543</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/genes13091543</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ac40f1f16c37493199e6c483c8b4be52</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4425/13/9/1543</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">9, p 1543</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Qi Guo |
spellingShingle |
Qi Guo misc QH426-470 misc tree peony misc cpSSRs misc polymorphic misc diversity misc haplotypes misc Genetics Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony |
authorStr |
Qi Guo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)614096537 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH426-470 |
illustrated |
Not Illustrated |
issn |
20734425 |
topic_title |
QH426-470 Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony tree peony cpSSRs polymorphic diversity haplotypes |
topic |
misc QH426-470 misc tree peony misc cpSSRs misc polymorphic misc diversity misc haplotypes misc Genetics |
topic_unstemmed |
misc QH426-470 misc tree peony misc cpSSRs misc polymorphic misc diversity misc haplotypes misc Genetics |
topic_browse |
misc QH426-470 misc tree peony misc cpSSRs misc polymorphic misc diversity misc haplotypes misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genes |
hierarchy_parent_id |
614096537 |
hierarchy_top_title |
Genes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)614096537 (DE-600)2527218-4 |
title |
Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony |
ctrlnum |
(DE-627)DOAJ023287330 (DE-599)DOAJac40f1f16c37493199e6c483c8b4be52 |
title_full |
Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony |
author_sort |
Qi Guo |
journal |
Genes |
journalStr |
Genes |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Qi Guo Lili Guo Yuying Li Haijing Yang Xiaoliang Hu Chengwei Song Xiaogai Hou |
container_volume |
13 |
class |
QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Qi Guo |
doi_str_mv |
10.3390/genes13091543 |
author2-role |
verfasserin |
title_sort |
development and characterization of microsatellite markers based on the chloroplast genome of tree peony |
callnumber |
QH426-470 |
title_auth |
Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony |
abstract |
Tree peony (<i<Paeonia suffruticosa</i< Andr.) is a famous ornamental and medicinal flowering species. However, few high-efficiency chloroplast microsatellite markers have been developed for it to be employed in taxonomic identifications and evaluation of germplasm resources to date. In the present study, a total of 139 cpSSR loci were identified across eleven tree peony plastomes. Dinucleotide repeat SSRs (97.12%) were most abundantly repeated for the AT motif (58.27%), followed by the TA motif (30.94%) and the TC motif (7.91%). Twenty-one primer pairs were developed, and amplification tests were conducted for nine tree peony individuals. Furthermore, 19 cpSSR markers were amplified on 60 tree peony accessions by a capillary electrophoresis test. Of 19 cpSSR markers, 12 showed polymorphism with different alleles ranging from 1.333 to 3.000. The Shannon’s information index and polymorphism information content values ranged from 0.038 to 0.887 (mean 0.432) and 0.032 to 0.589 (mean 0.268), respectively. The diversity levels for twelve loci ranged from 0.016 (at loci cpSSR-8 and cpSSR-26) to 0.543 (at locus cpSSR-15), averaging 0.268 for all loci. A total of 14 haplotypes (23.33%) were detected in the three populations. The haplotypic richness ranged from 0.949 to 1.751, with a mean of 1.233 per population. The genetic relationship suggested by the neighbor-joining-based dendrogram divided the genotypes into two clusters. The Jiangnan population was allotted to Cluster II, and the other two populations were distributed into both branches. These newly developed cpSSRs can be utilized for future breeding programs, population genetics investigations, unraveling the genetic relationships between related species, and germplasm management. |
abstractGer |
Tree peony (<i<Paeonia suffruticosa</i< Andr.) is a famous ornamental and medicinal flowering species. However, few high-efficiency chloroplast microsatellite markers have been developed for it to be employed in taxonomic identifications and evaluation of germplasm resources to date. In the present study, a total of 139 cpSSR loci were identified across eleven tree peony plastomes. Dinucleotide repeat SSRs (97.12%) were most abundantly repeated for the AT motif (58.27%), followed by the TA motif (30.94%) and the TC motif (7.91%). Twenty-one primer pairs were developed, and amplification tests were conducted for nine tree peony individuals. Furthermore, 19 cpSSR markers were amplified on 60 tree peony accessions by a capillary electrophoresis test. Of 19 cpSSR markers, 12 showed polymorphism with different alleles ranging from 1.333 to 3.000. The Shannon’s information index and polymorphism information content values ranged from 0.038 to 0.887 (mean 0.432) and 0.032 to 0.589 (mean 0.268), respectively. The diversity levels for twelve loci ranged from 0.016 (at loci cpSSR-8 and cpSSR-26) to 0.543 (at locus cpSSR-15), averaging 0.268 for all loci. A total of 14 haplotypes (23.33%) were detected in the three populations. The haplotypic richness ranged from 0.949 to 1.751, with a mean of 1.233 per population. The genetic relationship suggested by the neighbor-joining-based dendrogram divided the genotypes into two clusters. The Jiangnan population was allotted to Cluster II, and the other two populations were distributed into both branches. These newly developed cpSSRs can be utilized for future breeding programs, population genetics investigations, unraveling the genetic relationships between related species, and germplasm management. |
abstract_unstemmed |
Tree peony (<i<Paeonia suffruticosa</i< Andr.) is a famous ornamental and medicinal flowering species. However, few high-efficiency chloroplast microsatellite markers have been developed for it to be employed in taxonomic identifications and evaluation of germplasm resources to date. In the present study, a total of 139 cpSSR loci were identified across eleven tree peony plastomes. Dinucleotide repeat SSRs (97.12%) were most abundantly repeated for the AT motif (58.27%), followed by the TA motif (30.94%) and the TC motif (7.91%). Twenty-one primer pairs were developed, and amplification tests were conducted for nine tree peony individuals. Furthermore, 19 cpSSR markers were amplified on 60 tree peony accessions by a capillary electrophoresis test. Of 19 cpSSR markers, 12 showed polymorphism with different alleles ranging from 1.333 to 3.000. The Shannon’s information index and polymorphism information content values ranged from 0.038 to 0.887 (mean 0.432) and 0.032 to 0.589 (mean 0.268), respectively. The diversity levels for twelve loci ranged from 0.016 (at loci cpSSR-8 and cpSSR-26) to 0.543 (at locus cpSSR-15), averaging 0.268 for all loci. A total of 14 haplotypes (23.33%) were detected in the three populations. The haplotypic richness ranged from 0.949 to 1.751, with a mean of 1.233 per population. The genetic relationship suggested by the neighbor-joining-based dendrogram divided the genotypes into two clusters. The Jiangnan population was allotted to Cluster II, and the other two populations were distributed into both branches. These newly developed cpSSRs can be utilized for future breeding programs, population genetics investigations, unraveling the genetic relationships between related species, and germplasm management. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 1543 |
title_short |
Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony |
url |
https://doi.org/10.3390/genes13091543 https://doaj.org/article/ac40f1f16c37493199e6c483c8b4be52 https://www.mdpi.com/2073-4425/13/9/1543 https://doaj.org/toc/2073-4425 |
remote_bool |
true |
author2 |
Lili Guo Yuying Li Haijing Yang Xiaoliang Hu Chengwei Song Xiaogai Hou |
author2Str |
Lili Guo Yuying Li Haijing Yang Xiaoliang Hu Chengwei Song Xiaogai Hou |
ppnlink |
614096537 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/genes13091543 |
callnumber-a |
QH426-470 |
up_date |
2024-07-03T16:46:24.196Z |
_version_ |
1803577127548747776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ023287330</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204114.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/genes13091543</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ023287330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJac40f1f16c37493199e6c483c8b4be52</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qi Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development and Characterization of Microsatellite Markers Based on the Chloroplast Genome of Tree Peony</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tree peony (<i<Paeonia suffruticosa</i< Andr.) is a famous ornamental and medicinal flowering species. However, few high-efficiency chloroplast microsatellite markers have been developed for it to be employed in taxonomic identifications and evaluation of germplasm resources to date. In the present study, a total of 139 cpSSR loci were identified across eleven tree peony plastomes. Dinucleotide repeat SSRs (97.12%) were most abundantly repeated for the AT motif (58.27%), followed by the TA motif (30.94%) and the TC motif (7.91%). Twenty-one primer pairs were developed, and amplification tests were conducted for nine tree peony individuals. Furthermore, 19 cpSSR markers were amplified on 60 tree peony accessions by a capillary electrophoresis test. Of 19 cpSSR markers, 12 showed polymorphism with different alleles ranging from 1.333 to 3.000. The Shannon’s information index and polymorphism information content values ranged from 0.038 to 0.887 (mean 0.432) and 0.032 to 0.589 (mean 0.268), respectively. The diversity levels for twelve loci ranged from 0.016 (at loci cpSSR-8 and cpSSR-26) to 0.543 (at locus cpSSR-15), averaging 0.268 for all loci. A total of 14 haplotypes (23.33%) were detected in the three populations. The haplotypic richness ranged from 0.949 to 1.751, with a mean of 1.233 per population. The genetic relationship suggested by the neighbor-joining-based dendrogram divided the genotypes into two clusters. The Jiangnan population was allotted to Cluster II, and the other two populations were distributed into both branches. These newly developed cpSSRs can be utilized for future breeding programs, population genetics investigations, unraveling the genetic relationships between related species, and germplasm management.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tree peony</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cpSSRs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polymorphic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diversity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">haplotypes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lili Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuying Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haijing Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoliang Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengwei Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaogai Hou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genes</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2022), 9, p 1543</subfield><subfield code="w">(DE-627)614096537</subfield><subfield code="w">(DE-600)2527218-4</subfield><subfield code="x">20734425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9, p 1543</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/genes13091543</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ac40f1f16c37493199e6c483c8b4be52</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4425/13/9/1543</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">9, p 1543</subfield></datafield></record></collection>
|
score |
7.4010057 |