The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes
Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (<inline-...
Ausführliche Beschreibung
Autor*in: |
Yuzhen Zhou [verfasserIn] Olena Kishchenko [verfasserIn] Anton Stepanenko [verfasserIn] Guimin Chen [verfasserIn] Wei Wang [verfasserIn] Jie Zhou [verfasserIn] Chaozhi Pan [verfasserIn] Nikolai Borisjuk [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Plants - MDPI AG, 2013, 11(2021), 1, p 11 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:1, p 11 |
Links: |
---|
DOI / URN: |
10.3390/plants11010011 |
---|
Katalog-ID: |
DOAJ023495294 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ023495294 | ||
003 | DE-627 | ||
005 | 20240414220248.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/plants11010011 |2 doi | |
035 | |a (DE-627)DOAJ023495294 | ||
035 | |a (DE-599)DOAJb39a2b6916cf4b8ab424d3b70e1a8850 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK1-989 | |
100 | 0 | |a Yuzhen Zhou |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<<mo< </mo<</mrow<</semantics<</math<</inline-formula<) and ammonium (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula<), in six duckweed species: <i<Spirodela polyrhiza</i<, <i<Landoltia punctata</i<, <i<Lemna aequinoctialis</i<, <i<Lemna turionifera</i<, <i<Lemna minor</i<, and <i<Wolffia globosa</i<. All six duckweed species preferred <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< over <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and started using <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< only when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in <i<S. polyrhiza</i<. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied and decreased when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< induced the glutamine synthetase (GS) genes <i<GS1;2</i< and the <i<GS2</i< by 2- to 5-fold, respectively, but repressed <i<GS1;1</i< and <i<GS1;3</i<. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC <i<cis</i<-elements, TATA-based enhancers, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mfenced<<mrow<<mi<GA</mi<<mo</</mo<<mi<CT</mi<</mrow<</mfenced<</mrow<<mi<n</mi<</msub<</mrow<</semantics<</math<</inline-formula< repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency. | ||
650 | 4 | |a duckweed | |
650 | 4 | |a <i<Spirodela polyrhiza</i< | |
650 | 4 | |a nitrogen assimilation | |
650 | 4 | |a nitrate reductase | |
650 | 4 | |a nitrite reductase | |
650 | 4 | |a glutamine synthetase | |
653 | 0 | |a Botany | |
700 | 0 | |a Olena Kishchenko |e verfasserin |4 aut | |
700 | 0 | |a Anton Stepanenko |e verfasserin |4 aut | |
700 | 0 | |a Guimin Chen |e verfasserin |4 aut | |
700 | 0 | |a Wei Wang |e verfasserin |4 aut | |
700 | 0 | |a Jie Zhou |e verfasserin |4 aut | |
700 | 0 | |a Chaozhi Pan |e verfasserin |4 aut | |
700 | 0 | |a Nikolai Borisjuk |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plants |d MDPI AG, 2013 |g 11(2021), 1, p 11 |w (DE-627)737288345 |w (DE-600)2704341-1 |x 22237747 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:1, p 11 |
856 | 4 | 0 | |u https://doi.org/10.3390/plants11010011 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b39a2b6916cf4b8ab424d3b70e1a8850 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2223-7747/11/1/11 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2223-7747 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 1, p 11 |
author_variant |
y z yz o k ok a s as g c gc w w ww j z jz c p cp n b nb |
---|---|
matchkey_str |
article:22237747:2021----::hdnmcoilnfruaahipailnsmnisrwsbumomnmmom3noosbumosmnisahnieomladnieomlmtdslynieeatcmomusprwihirwnmmmmusprweatcmtilnfru |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QK |
publishDate |
2021 |
allfields |
10.3390/plants11010011 doi (DE-627)DOAJ023495294 (DE-599)DOAJb39a2b6916cf4b8ab424d3b70e1a8850 DE-627 ger DE-627 rakwb eng QK1-989 Yuzhen Zhou verfasserin aut The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<<mo< </mo<</mrow<</semantics<</math<</inline-formula<) and ammonium (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula<), in six duckweed species: <i<Spirodela polyrhiza</i<, <i<Landoltia punctata</i<, <i<Lemna aequinoctialis</i<, <i<Lemna turionifera</i<, <i<Lemna minor</i<, and <i<Wolffia globosa</i<. All six duckweed species preferred <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< over <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and started using <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< only when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in <i<S. polyrhiza</i<. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied and decreased when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< induced the glutamine synthetase (GS) genes <i<GS1;2</i< and the <i<GS2</i< by 2- to 5-fold, respectively, but repressed <i<GS1;1</i< and <i<GS1;3</i<. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC <i<cis</i<-elements, TATA-based enhancers, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mfenced<<mrow<<mi<GA</mi<<mo</</mo<<mi<CT</mi<</mrow<</mfenced<</mrow<<mi<n</mi<</msub<</mrow<</semantics<</math<</inline-formula< repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency. duckweed <i<Spirodela polyrhiza</i< nitrogen assimilation nitrate reductase nitrite reductase glutamine synthetase Botany Olena Kishchenko verfasserin aut Anton Stepanenko verfasserin aut Guimin Chen verfasserin aut Wei Wang verfasserin aut Jie Zhou verfasserin aut Chaozhi Pan verfasserin aut Nikolai Borisjuk verfasserin aut In Plants MDPI AG, 2013 11(2021), 1, p 11 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2021 number:1, p 11 https://doi.org/10.3390/plants11010011 kostenfrei https://doaj.org/article/b39a2b6916cf4b8ab424d3b70e1a8850 kostenfrei https://www.mdpi.com/2223-7747/11/1/11 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 1, p 11 |
spelling |
10.3390/plants11010011 doi (DE-627)DOAJ023495294 (DE-599)DOAJb39a2b6916cf4b8ab424d3b70e1a8850 DE-627 ger DE-627 rakwb eng QK1-989 Yuzhen Zhou verfasserin aut The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<<mo< </mo<</mrow<</semantics<</math<</inline-formula<) and ammonium (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula<), in six duckweed species: <i<Spirodela polyrhiza</i<, <i<Landoltia punctata</i<, <i<Lemna aequinoctialis</i<, <i<Lemna turionifera</i<, <i<Lemna minor</i<, and <i<Wolffia globosa</i<. All six duckweed species preferred <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< over <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and started using <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< only when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in <i<S. polyrhiza</i<. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied and decreased when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< induced the glutamine synthetase (GS) genes <i<GS1;2</i< and the <i<GS2</i< by 2- to 5-fold, respectively, but repressed <i<GS1;1</i< and <i<GS1;3</i<. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC <i<cis</i<-elements, TATA-based enhancers, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mfenced<<mrow<<mi<GA</mi<<mo</</mo<<mi<CT</mi<</mrow<</mfenced<</mrow<<mi<n</mi<</msub<</mrow<</semantics<</math<</inline-formula< repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency. duckweed <i<Spirodela polyrhiza</i< nitrogen assimilation nitrate reductase nitrite reductase glutamine synthetase Botany Olena Kishchenko verfasserin aut Anton Stepanenko verfasserin aut Guimin Chen verfasserin aut Wei Wang verfasserin aut Jie Zhou verfasserin aut Chaozhi Pan verfasserin aut Nikolai Borisjuk verfasserin aut In Plants MDPI AG, 2013 11(2021), 1, p 11 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2021 number:1, p 11 https://doi.org/10.3390/plants11010011 kostenfrei https://doaj.org/article/b39a2b6916cf4b8ab424d3b70e1a8850 kostenfrei https://www.mdpi.com/2223-7747/11/1/11 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 1, p 11 |
allfields_unstemmed |
10.3390/plants11010011 doi (DE-627)DOAJ023495294 (DE-599)DOAJb39a2b6916cf4b8ab424d3b70e1a8850 DE-627 ger DE-627 rakwb eng QK1-989 Yuzhen Zhou verfasserin aut The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<<mo< </mo<</mrow<</semantics<</math<</inline-formula<) and ammonium (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula<), in six duckweed species: <i<Spirodela polyrhiza</i<, <i<Landoltia punctata</i<, <i<Lemna aequinoctialis</i<, <i<Lemna turionifera</i<, <i<Lemna minor</i<, and <i<Wolffia globosa</i<. All six duckweed species preferred <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< over <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and started using <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< only when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in <i<S. polyrhiza</i<. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied and decreased when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< induced the glutamine synthetase (GS) genes <i<GS1;2</i< and the <i<GS2</i< by 2- to 5-fold, respectively, but repressed <i<GS1;1</i< and <i<GS1;3</i<. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC <i<cis</i<-elements, TATA-based enhancers, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mfenced<<mrow<<mi<GA</mi<<mo</</mo<<mi<CT</mi<</mrow<</mfenced<</mrow<<mi<n</mi<</msub<</mrow<</semantics<</math<</inline-formula< repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency. duckweed <i<Spirodela polyrhiza</i< nitrogen assimilation nitrate reductase nitrite reductase glutamine synthetase Botany Olena Kishchenko verfasserin aut Anton Stepanenko verfasserin aut Guimin Chen verfasserin aut Wei Wang verfasserin aut Jie Zhou verfasserin aut Chaozhi Pan verfasserin aut Nikolai Borisjuk verfasserin aut In Plants MDPI AG, 2013 11(2021), 1, p 11 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2021 number:1, p 11 https://doi.org/10.3390/plants11010011 kostenfrei https://doaj.org/article/b39a2b6916cf4b8ab424d3b70e1a8850 kostenfrei https://www.mdpi.com/2223-7747/11/1/11 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 1, p 11 |
allfieldsGer |
10.3390/plants11010011 doi (DE-627)DOAJ023495294 (DE-599)DOAJb39a2b6916cf4b8ab424d3b70e1a8850 DE-627 ger DE-627 rakwb eng QK1-989 Yuzhen Zhou verfasserin aut The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<<mo< </mo<</mrow<</semantics<</math<</inline-formula<) and ammonium (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula<), in six duckweed species: <i<Spirodela polyrhiza</i<, <i<Landoltia punctata</i<, <i<Lemna aequinoctialis</i<, <i<Lemna turionifera</i<, <i<Lemna minor</i<, and <i<Wolffia globosa</i<. All six duckweed species preferred <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< over <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and started using <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< only when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in <i<S. polyrhiza</i<. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied and decreased when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< induced the glutamine synthetase (GS) genes <i<GS1;2</i< and the <i<GS2</i< by 2- to 5-fold, respectively, but repressed <i<GS1;1</i< and <i<GS1;3</i<. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC <i<cis</i<-elements, TATA-based enhancers, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mfenced<<mrow<<mi<GA</mi<<mo</</mo<<mi<CT</mi<</mrow<</mfenced<</mrow<<mi<n</mi<</msub<</mrow<</semantics<</math<</inline-formula< repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency. duckweed <i<Spirodela polyrhiza</i< nitrogen assimilation nitrate reductase nitrite reductase glutamine synthetase Botany Olena Kishchenko verfasserin aut Anton Stepanenko verfasserin aut Guimin Chen verfasserin aut Wei Wang verfasserin aut Jie Zhou verfasserin aut Chaozhi Pan verfasserin aut Nikolai Borisjuk verfasserin aut In Plants MDPI AG, 2013 11(2021), 1, p 11 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2021 number:1, p 11 https://doi.org/10.3390/plants11010011 kostenfrei https://doaj.org/article/b39a2b6916cf4b8ab424d3b70e1a8850 kostenfrei https://www.mdpi.com/2223-7747/11/1/11 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 1, p 11 |
allfieldsSound |
10.3390/plants11010011 doi (DE-627)DOAJ023495294 (DE-599)DOAJb39a2b6916cf4b8ab424d3b70e1a8850 DE-627 ger DE-627 rakwb eng QK1-989 Yuzhen Zhou verfasserin aut The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<<mo< </mo<</mrow<</semantics<</math<</inline-formula<) and ammonium (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula<), in six duckweed species: <i<Spirodela polyrhiza</i<, <i<Landoltia punctata</i<, <i<Lemna aequinoctialis</i<, <i<Lemna turionifera</i<, <i<Lemna minor</i<, and <i<Wolffia globosa</i<. All six duckweed species preferred <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< over <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and started using <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< only when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in <i<S. polyrhiza</i<. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied and decreased when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< induced the glutamine synthetase (GS) genes <i<GS1;2</i< and the <i<GS2</i< by 2- to 5-fold, respectively, but repressed <i<GS1;1</i< and <i<GS1;3</i<. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC <i<cis</i<-elements, TATA-based enhancers, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mfenced<<mrow<<mi<GA</mi<<mo</</mo<<mi<CT</mi<</mrow<</mfenced<</mrow<<mi<n</mi<</msub<</mrow<</semantics<</math<</inline-formula< repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency. duckweed <i<Spirodela polyrhiza</i< nitrogen assimilation nitrate reductase nitrite reductase glutamine synthetase Botany Olena Kishchenko verfasserin aut Anton Stepanenko verfasserin aut Guimin Chen verfasserin aut Wei Wang verfasserin aut Jie Zhou verfasserin aut Chaozhi Pan verfasserin aut Nikolai Borisjuk verfasserin aut In Plants MDPI AG, 2013 11(2021), 1, p 11 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2021 number:1, p 11 https://doi.org/10.3390/plants11010011 kostenfrei https://doaj.org/article/b39a2b6916cf4b8ab424d3b70e1a8850 kostenfrei https://www.mdpi.com/2223-7747/11/1/11 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 1, p 11 |
language |
English |
source |
In Plants 11(2021), 1, p 11 volume:11 year:2021 number:1, p 11 |
sourceStr |
In Plants 11(2021), 1, p 11 volume:11 year:2021 number:1, p 11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
duckweed <i<Spirodela polyrhiza</i< nitrogen assimilation nitrate reductase nitrite reductase glutamine synthetase Botany |
isfreeaccess_bool |
true |
container_title |
Plants |
authorswithroles_txt_mv |
Yuzhen Zhou @@aut@@ Olena Kishchenko @@aut@@ Anton Stepanenko @@aut@@ Guimin Chen @@aut@@ Wei Wang @@aut@@ Jie Zhou @@aut@@ Chaozhi Pan @@aut@@ Nikolai Borisjuk @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
737288345 |
id |
DOAJ023495294 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ023495294</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414220248.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants11010011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ023495294</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb39a2b6916cf4b8ab424d3b70e1a8850</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuzhen Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<<mo< </mo<</mrow<</semantics<</math<</inline-formula<) and ammonium (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula<), in six duckweed species: <i<Spirodela polyrhiza</i<, <i<Landoltia punctata</i<, <i<Lemna aequinoctialis</i<, <i<Lemna turionifera</i<, <i<Lemna minor</i<, and <i<Wolffia globosa</i<. All six duckweed species preferred <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< over <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and started using <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< only when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in <i<S. polyrhiza</i<. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied and decreased when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< induced the glutamine synthetase (GS) genes <i<GS1;2</i< and the <i<GS2</i< by 2- to 5-fold, respectively, but repressed <i<GS1;1</i< and <i<GS1;3</i<. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC <i<cis</i<-elements, TATA-based enhancers, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mfenced<<mrow<<mi<GA</mi<<mo</</mo<<mi<CT</mi<</mrow<</mfenced<</mrow<<mi<n</mi<</msub<</mrow<</semantics<</math<</inline-formula< repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">duckweed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Spirodela polyrhiza</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitrogen assimilation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitrate reductase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitrite reductase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">glutamine synthetase</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olena Kishchenko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anton Stepanenko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guimin Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chaozhi Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikolai Borisjuk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2021), 1, p 11</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1, p 11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants11010011</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b39a2b6916cf4b8ab424d3b70e1a8850</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/11/1/11</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">1, p 11</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yuzhen Zhou |
spellingShingle |
Yuzhen Zhou misc QK1-989 misc duckweed misc <i<Spirodela polyrhiza</i< misc nitrogen assimilation misc nitrate reductase misc nitrite reductase misc glutamine synthetase misc Botany The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes |
authorStr |
Yuzhen Zhou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737288345 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK1-989 |
illustrated |
Not Illustrated |
issn |
22237747 |
topic_title |
QK1-989 The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes duckweed <i<Spirodela polyrhiza</i< nitrogen assimilation nitrate reductase nitrite reductase glutamine synthetase |
topic |
misc QK1-989 misc duckweed misc <i<Spirodela polyrhiza</i< misc nitrogen assimilation misc nitrate reductase misc nitrite reductase misc glutamine synthetase misc Botany |
topic_unstemmed |
misc QK1-989 misc duckweed misc <i<Spirodela polyrhiza</i< misc nitrogen assimilation misc nitrate reductase misc nitrite reductase misc glutamine synthetase misc Botany |
topic_browse |
misc QK1-989 misc duckweed misc <i<Spirodela polyrhiza</i< misc nitrogen assimilation misc nitrate reductase misc nitrite reductase misc glutamine synthetase misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plants |
hierarchy_parent_id |
737288345 |
hierarchy_top_title |
Plants |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737288345 (DE-600)2704341-1 |
title |
The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes |
ctrlnum |
(DE-627)DOAJ023495294 (DE-599)DOAJb39a2b6916cf4b8ab424d3b70e1a8850 |
title_full |
The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes |
author_sort |
Yuzhen Zhou |
journal |
Plants |
journalStr |
Plants |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Yuzhen Zhou Olena Kishchenko Anton Stepanenko Guimin Chen Wei Wang Jie Zhou Chaozhi Pan Nikolai Borisjuk |
container_volume |
11 |
class |
QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Yuzhen Zhou |
doi_str_mv |
10.3390/plants11010011 |
author2-role |
verfasserin |
title_sort |
dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<no</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<nh</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< uptake in duckweed are coordinated with the expression of major nitrogen assimilation genes |
callnumber |
QK1-989 |
title_auth |
The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes |
abstract |
Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<<mo< </mo<</mrow<</semantics<</math<</inline-formula<) and ammonium (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula<), in six duckweed species: <i<Spirodela polyrhiza</i<, <i<Landoltia punctata</i<, <i<Lemna aequinoctialis</i<, <i<Lemna turionifera</i<, <i<Lemna minor</i<, and <i<Wolffia globosa</i<. All six duckweed species preferred <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< over <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and started using <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< only when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in <i<S. polyrhiza</i<. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied and decreased when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< induced the glutamine synthetase (GS) genes <i<GS1;2</i< and the <i<GS2</i< by 2- to 5-fold, respectively, but repressed <i<GS1;1</i< and <i<GS1;3</i<. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC <i<cis</i<-elements, TATA-based enhancers, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mfenced<<mrow<<mi<GA</mi<<mo</</mo<<mi<CT</mi<</mrow<</mfenced<</mrow<<mi<n</mi<</msub<</mrow<</semantics<</math<</inline-formula< repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency. |
abstractGer |
Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<<mo< </mo<</mrow<</semantics<</math<</inline-formula<) and ammonium (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula<), in six duckweed species: <i<Spirodela polyrhiza</i<, <i<Landoltia punctata</i<, <i<Lemna aequinoctialis</i<, <i<Lemna turionifera</i<, <i<Lemna minor</i<, and <i<Wolffia globosa</i<. All six duckweed species preferred <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< over <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and started using <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< only when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in <i<S. polyrhiza</i<. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied and decreased when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< induced the glutamine synthetase (GS) genes <i<GS1;2</i< and the <i<GS2</i< by 2- to 5-fold, respectively, but repressed <i<GS1;1</i< and <i<GS1;3</i<. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC <i<cis</i<-elements, TATA-based enhancers, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mfenced<<mrow<<mi<GA</mi<<mo</</mo<<mi<CT</mi<</mrow<</mfenced<</mrow<<mi<n</mi<</msub<</mrow<</semantics<</math<</inline-formula< repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency. |
abstract_unstemmed |
Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<<mo< </mo<</mrow<</semantics<</math<</inline-formula<) and ammonium (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula<), in six duckweed species: <i<Spirodela polyrhiza</i<, <i<Landoltia punctata</i<, <i<Lemna aequinoctialis</i<, <i<Lemna turionifera</i<, <i<Lemna minor</i<, and <i<Wolffia globosa</i<. All six duckweed species preferred <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< over <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and started using <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< only when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in <i<S. polyrhiza</i<. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied and decreased when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< induced the glutamine synthetase (GS) genes <i<GS1;2</i< and the <i<GS2</i< by 2- to 5-fold, respectively, but repressed <i<GS1;1</i< and <i<GS1;3</i<. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC <i<cis</i<-elements, TATA-based enhancers, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mfenced<<mrow<<mi<GA</mi<<mo</</mo<<mi<CT</mi<</mrow<</mfenced<</mrow<<mi<n</mi<</msub<</mrow<</semantics<</math<</inline-formula< repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 11 |
title_short |
The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes |
url |
https://doi.org/10.3390/plants11010011 https://doaj.org/article/b39a2b6916cf4b8ab424d3b70e1a8850 https://www.mdpi.com/2223-7747/11/1/11 https://doaj.org/toc/2223-7747 |
remote_bool |
true |
author2 |
Olena Kishchenko Anton Stepanenko Guimin Chen Wei Wang Jie Zhou Chaozhi Pan Nikolai Borisjuk |
author2Str |
Olena Kishchenko Anton Stepanenko Guimin Chen Wei Wang Jie Zhou Chaozhi Pan Nikolai Borisjuk |
ppnlink |
737288345 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/plants11010011 |
callnumber-a |
QK1-989 |
up_date |
2024-07-03T17:55:23.841Z |
_version_ |
1803581468283240448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ023495294</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414220248.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants11010011</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ023495294</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb39a2b6916cf4b8ab424d3b70e1a8850</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuzhen Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Dynamics of <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< Uptake in Duckweed Are Coordinated with the Expression of Major Nitrogen Assimilation Genes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<<mo< </mo<</mrow<</semantics<</math<</inline-formula<) and ammonium (<inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula<), in six duckweed species: <i<Spirodela polyrhiza</i<, <i<Landoltia punctata</i<, <i<Lemna aequinoctialis</i<, <i<Lemna turionifera</i<, <i<Lemna minor</i<, and <i<Wolffia globosa</i<. All six duckweed species preferred <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< over <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and started using <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< only when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in <i<S. polyrhiza</i<. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied and decreased when <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< was supplied. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< induced the glutamine synthetase (GS) genes <i<GS1;2</i< and the <i<GS2</i< by 2- to 5-fold, respectively, but repressed <i<GS1;1</i< and <i<GS1;3</i<. <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NH</mi<</mrow<<mn<4</mn<<mo<+</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< and <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msubsup<<mrow<<mi<NO</mi<</mrow<<mn<3</mn<<mo<−</mo<</msubsup<</mrow<</semantics<</math<</inline-formula< upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC <i<cis</i<-elements, TATA-based enhancers, <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mfenced<<mrow<<mi<GA</mi<<mo</</mo<<mi<CT</mi<</mrow<</mfenced<</mrow<<mi<n</mi<</msub<</mrow<</semantics<</math<</inline-formula< repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">duckweed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Spirodela polyrhiza</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitrogen assimilation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitrate reductase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitrite reductase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">glutamine synthetase</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olena Kishchenko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anton Stepanenko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guimin Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chaozhi Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikolai Borisjuk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2021), 1, p 11</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1, p 11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants11010011</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b39a2b6916cf4b8ab424d3b70e1a8850</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/11/1/11</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">1, p 11</subfield></datafield></record></collection>
|
score |
7.4014387 |