Performance improvement for PMSM control system based on composite controller used adaptive internal model controller
The dead-zone time is inevitable during the inverter working process, thus, the relationships between the input variables and the output variables of the permanent magnet synchronous motor (PMSM) control system exhibit nonlinearity characteristic. Additionally, the PMSM control system suffers from s...
Ausführliche Beschreibung
Autor*in: |
Tianqing Yuan [verfasserIn] Yupeng Zhang [verfasserIn] Dazhi Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Permanent magnet synchronous motor |
---|
Übergeordnetes Werk: |
In: Energy Reports - Elsevier, 2016, 8(2022), Seite 11078-11087 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; pages:11078-11087 |
Links: |
---|
DOI / URN: |
10.1016/j.egyr.2022.08.257 |
---|
Katalog-ID: |
DOAJ023631708 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ023631708 | ||
003 | DE-627 | ||
005 | 20230311045147.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.egyr.2022.08.257 |2 doi | |
035 | |a (DE-627)DOAJ023631708 | ||
035 | |a (DE-599)DOAJ7bc831a58fdc41c394bbd442a1cad7cd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Tianqing Yuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Performance improvement for PMSM control system based on composite controller used adaptive internal model controller |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The dead-zone time is inevitable during the inverter working process, thus, the relationships between the input variables and the output variables of the permanent magnet synchronous motor (PMSM) control system exhibit nonlinearity characteristic. Additionally, the PMSM control system suffers from some drawbacks, such as high amount current harmonics and large torque ripples. In order to improve the operation performance for the PMSM control system, a composite controller for the current loop is proposed in this paper, which can enhance the current harmonics suppression ability. Firstly, the components of the current harmonics are analyzed. The parameters of the proportional controller are analyzed through three-dimensional image and two-dimensional image of frequency characteristics. In view of the real sampling number in the delay element maybe not an integer, an adaptive internal model controller is designed for the repetitive controller. Thus, a composite controller consist of a proportional controller and the improved repetitive controller is proposed in this paper. The parameters of the improved repetitive controller are also studied. Furthermore, the stability of the control system used the proposed composite controller is analyzed through Lyapunov theory. Finally, the PMSM control system model is established through Matlab/Simulink software, and the operation performances of the PMSM control system used different current loop controllers are studied. And the simulation results show that the proposed composite controller can suppress the current harmonics and the torque ripples effectively. | ||
650 | 4 | |a Permanent magnet synchronous motor | |
650 | 4 | |a Current harmonics | |
650 | 4 | |a Adaptive internal model controller | |
650 | 4 | |a Repetitive controller | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Yupeng Zhang |e verfasserin |4 aut | |
700 | 0 | |a Dazhi Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energy Reports |d Elsevier, 2016 |g 8(2022), Seite 11078-11087 |w (DE-627)820689033 |w (DE-600)2814795-9 |x 23524847 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g pages:11078-11087 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.egyr.2022.08.257 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7bc831a58fdc41c394bbd442a1cad7cd |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2352484722017012 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2352-4847 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |h 11078-11087 |
author_variant |
t y ty y z yz d w dw |
---|---|
matchkey_str |
article:23524847:2022----::efracipoeetopscnrlytmaeocmoieotolrsdd |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1016/j.egyr.2022.08.257 doi (DE-627)DOAJ023631708 (DE-599)DOAJ7bc831a58fdc41c394bbd442a1cad7cd DE-627 ger DE-627 rakwb eng TK1-9971 Tianqing Yuan verfasserin aut Performance improvement for PMSM control system based on composite controller used adaptive internal model controller 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The dead-zone time is inevitable during the inverter working process, thus, the relationships between the input variables and the output variables of the permanent magnet synchronous motor (PMSM) control system exhibit nonlinearity characteristic. Additionally, the PMSM control system suffers from some drawbacks, such as high amount current harmonics and large torque ripples. In order to improve the operation performance for the PMSM control system, a composite controller for the current loop is proposed in this paper, which can enhance the current harmonics suppression ability. Firstly, the components of the current harmonics are analyzed. The parameters of the proportional controller are analyzed through three-dimensional image and two-dimensional image of frequency characteristics. In view of the real sampling number in the delay element maybe not an integer, an adaptive internal model controller is designed for the repetitive controller. Thus, a composite controller consist of a proportional controller and the improved repetitive controller is proposed in this paper. The parameters of the improved repetitive controller are also studied. Furthermore, the stability of the control system used the proposed composite controller is analyzed through Lyapunov theory. Finally, the PMSM control system model is established through Matlab/Simulink software, and the operation performances of the PMSM control system used different current loop controllers are studied. And the simulation results show that the proposed composite controller can suppress the current harmonics and the torque ripples effectively. Permanent magnet synchronous motor Current harmonics Adaptive internal model controller Repetitive controller Electrical engineering. Electronics. Nuclear engineering Yupeng Zhang verfasserin aut Dazhi Wang verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 11078-11087 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:11078-11087 https://doi.org/10.1016/j.egyr.2022.08.257 kostenfrei https://doaj.org/article/7bc831a58fdc41c394bbd442a1cad7cd kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484722017012 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 11078-11087 |
spelling |
10.1016/j.egyr.2022.08.257 doi (DE-627)DOAJ023631708 (DE-599)DOAJ7bc831a58fdc41c394bbd442a1cad7cd DE-627 ger DE-627 rakwb eng TK1-9971 Tianqing Yuan verfasserin aut Performance improvement for PMSM control system based on composite controller used adaptive internal model controller 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The dead-zone time is inevitable during the inverter working process, thus, the relationships between the input variables and the output variables of the permanent magnet synchronous motor (PMSM) control system exhibit nonlinearity characteristic. Additionally, the PMSM control system suffers from some drawbacks, such as high amount current harmonics and large torque ripples. In order to improve the operation performance for the PMSM control system, a composite controller for the current loop is proposed in this paper, which can enhance the current harmonics suppression ability. Firstly, the components of the current harmonics are analyzed. The parameters of the proportional controller are analyzed through three-dimensional image and two-dimensional image of frequency characteristics. In view of the real sampling number in the delay element maybe not an integer, an adaptive internal model controller is designed for the repetitive controller. Thus, a composite controller consist of a proportional controller and the improved repetitive controller is proposed in this paper. The parameters of the improved repetitive controller are also studied. Furthermore, the stability of the control system used the proposed composite controller is analyzed through Lyapunov theory. Finally, the PMSM control system model is established through Matlab/Simulink software, and the operation performances of the PMSM control system used different current loop controllers are studied. And the simulation results show that the proposed composite controller can suppress the current harmonics and the torque ripples effectively. Permanent magnet synchronous motor Current harmonics Adaptive internal model controller Repetitive controller Electrical engineering. Electronics. Nuclear engineering Yupeng Zhang verfasserin aut Dazhi Wang verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 11078-11087 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:11078-11087 https://doi.org/10.1016/j.egyr.2022.08.257 kostenfrei https://doaj.org/article/7bc831a58fdc41c394bbd442a1cad7cd kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484722017012 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 11078-11087 |
allfields_unstemmed |
10.1016/j.egyr.2022.08.257 doi (DE-627)DOAJ023631708 (DE-599)DOAJ7bc831a58fdc41c394bbd442a1cad7cd DE-627 ger DE-627 rakwb eng TK1-9971 Tianqing Yuan verfasserin aut Performance improvement for PMSM control system based on composite controller used adaptive internal model controller 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The dead-zone time is inevitable during the inverter working process, thus, the relationships between the input variables and the output variables of the permanent magnet synchronous motor (PMSM) control system exhibit nonlinearity characteristic. Additionally, the PMSM control system suffers from some drawbacks, such as high amount current harmonics and large torque ripples. In order to improve the operation performance for the PMSM control system, a composite controller for the current loop is proposed in this paper, which can enhance the current harmonics suppression ability. Firstly, the components of the current harmonics are analyzed. The parameters of the proportional controller are analyzed through three-dimensional image and two-dimensional image of frequency characteristics. In view of the real sampling number in the delay element maybe not an integer, an adaptive internal model controller is designed for the repetitive controller. Thus, a composite controller consist of a proportional controller and the improved repetitive controller is proposed in this paper. The parameters of the improved repetitive controller are also studied. Furthermore, the stability of the control system used the proposed composite controller is analyzed through Lyapunov theory. Finally, the PMSM control system model is established through Matlab/Simulink software, and the operation performances of the PMSM control system used different current loop controllers are studied. And the simulation results show that the proposed composite controller can suppress the current harmonics and the torque ripples effectively. Permanent magnet synchronous motor Current harmonics Adaptive internal model controller Repetitive controller Electrical engineering. Electronics. Nuclear engineering Yupeng Zhang verfasserin aut Dazhi Wang verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 11078-11087 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:11078-11087 https://doi.org/10.1016/j.egyr.2022.08.257 kostenfrei https://doaj.org/article/7bc831a58fdc41c394bbd442a1cad7cd kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484722017012 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 11078-11087 |
allfieldsGer |
10.1016/j.egyr.2022.08.257 doi (DE-627)DOAJ023631708 (DE-599)DOAJ7bc831a58fdc41c394bbd442a1cad7cd DE-627 ger DE-627 rakwb eng TK1-9971 Tianqing Yuan verfasserin aut Performance improvement for PMSM control system based on composite controller used adaptive internal model controller 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The dead-zone time is inevitable during the inverter working process, thus, the relationships between the input variables and the output variables of the permanent magnet synchronous motor (PMSM) control system exhibit nonlinearity characteristic. Additionally, the PMSM control system suffers from some drawbacks, such as high amount current harmonics and large torque ripples. In order to improve the operation performance for the PMSM control system, a composite controller for the current loop is proposed in this paper, which can enhance the current harmonics suppression ability. Firstly, the components of the current harmonics are analyzed. The parameters of the proportional controller are analyzed through three-dimensional image and two-dimensional image of frequency characteristics. In view of the real sampling number in the delay element maybe not an integer, an adaptive internal model controller is designed for the repetitive controller. Thus, a composite controller consist of a proportional controller and the improved repetitive controller is proposed in this paper. The parameters of the improved repetitive controller are also studied. Furthermore, the stability of the control system used the proposed composite controller is analyzed through Lyapunov theory. Finally, the PMSM control system model is established through Matlab/Simulink software, and the operation performances of the PMSM control system used different current loop controllers are studied. And the simulation results show that the proposed composite controller can suppress the current harmonics and the torque ripples effectively. Permanent magnet synchronous motor Current harmonics Adaptive internal model controller Repetitive controller Electrical engineering. Electronics. Nuclear engineering Yupeng Zhang verfasserin aut Dazhi Wang verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 11078-11087 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:11078-11087 https://doi.org/10.1016/j.egyr.2022.08.257 kostenfrei https://doaj.org/article/7bc831a58fdc41c394bbd442a1cad7cd kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484722017012 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 11078-11087 |
allfieldsSound |
10.1016/j.egyr.2022.08.257 doi (DE-627)DOAJ023631708 (DE-599)DOAJ7bc831a58fdc41c394bbd442a1cad7cd DE-627 ger DE-627 rakwb eng TK1-9971 Tianqing Yuan verfasserin aut Performance improvement for PMSM control system based on composite controller used adaptive internal model controller 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The dead-zone time is inevitable during the inverter working process, thus, the relationships between the input variables and the output variables of the permanent magnet synchronous motor (PMSM) control system exhibit nonlinearity characteristic. Additionally, the PMSM control system suffers from some drawbacks, such as high amount current harmonics and large torque ripples. In order to improve the operation performance for the PMSM control system, a composite controller for the current loop is proposed in this paper, which can enhance the current harmonics suppression ability. Firstly, the components of the current harmonics are analyzed. The parameters of the proportional controller are analyzed through three-dimensional image and two-dimensional image of frequency characteristics. In view of the real sampling number in the delay element maybe not an integer, an adaptive internal model controller is designed for the repetitive controller. Thus, a composite controller consist of a proportional controller and the improved repetitive controller is proposed in this paper. The parameters of the improved repetitive controller are also studied. Furthermore, the stability of the control system used the proposed composite controller is analyzed through Lyapunov theory. Finally, the PMSM control system model is established through Matlab/Simulink software, and the operation performances of the PMSM control system used different current loop controllers are studied. And the simulation results show that the proposed composite controller can suppress the current harmonics and the torque ripples effectively. Permanent magnet synchronous motor Current harmonics Adaptive internal model controller Repetitive controller Electrical engineering. Electronics. Nuclear engineering Yupeng Zhang verfasserin aut Dazhi Wang verfasserin aut In Energy Reports Elsevier, 2016 8(2022), Seite 11078-11087 (DE-627)820689033 (DE-600)2814795-9 23524847 nnns volume:8 year:2022 pages:11078-11087 https://doi.org/10.1016/j.egyr.2022.08.257 kostenfrei https://doaj.org/article/7bc831a58fdc41c394bbd442a1cad7cd kostenfrei http://www.sciencedirect.com/science/article/pii/S2352484722017012 kostenfrei https://doaj.org/toc/2352-4847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 11078-11087 |
language |
English |
source |
In Energy Reports 8(2022), Seite 11078-11087 volume:8 year:2022 pages:11078-11087 |
sourceStr |
In Energy Reports 8(2022), Seite 11078-11087 volume:8 year:2022 pages:11078-11087 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Permanent magnet synchronous motor Current harmonics Adaptive internal model controller Repetitive controller Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
Energy Reports |
authorswithroles_txt_mv |
Tianqing Yuan @@aut@@ Yupeng Zhang @@aut@@ Dazhi Wang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
820689033 |
id |
DOAJ023631708 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ023631708</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311045147.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.egyr.2022.08.257</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ023631708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7bc831a58fdc41c394bbd442a1cad7cd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tianqing Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance improvement for PMSM control system based on composite controller used adaptive internal model controller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The dead-zone time is inevitable during the inverter working process, thus, the relationships between the input variables and the output variables of the permanent magnet synchronous motor (PMSM) control system exhibit nonlinearity characteristic. Additionally, the PMSM control system suffers from some drawbacks, such as high amount current harmonics and large torque ripples. In order to improve the operation performance for the PMSM control system, a composite controller for the current loop is proposed in this paper, which can enhance the current harmonics suppression ability. Firstly, the components of the current harmonics are analyzed. The parameters of the proportional controller are analyzed through three-dimensional image and two-dimensional image of frequency characteristics. In view of the real sampling number in the delay element maybe not an integer, an adaptive internal model controller is designed for the repetitive controller. Thus, a composite controller consist of a proportional controller and the improved repetitive controller is proposed in this paper. The parameters of the improved repetitive controller are also studied. Furthermore, the stability of the control system used the proposed composite controller is analyzed through Lyapunov theory. Finally, the PMSM control system model is established through Matlab/Simulink software, and the operation performances of the PMSM control system used different current loop controllers are studied. And the simulation results show that the proposed composite controller can suppress the current harmonics and the torque ripples effectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permanent magnet synchronous motor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current harmonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive internal model controller</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Repetitive controller</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yupeng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dazhi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Reports</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">8(2022), Seite 11078-11087</subfield><subfield code="w">(DE-627)820689033</subfield><subfield code="w">(DE-600)2814795-9</subfield><subfield code="x">23524847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:11078-11087</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.egyr.2022.08.257</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7bc831a58fdc41c394bbd442a1cad7cd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2352484722017012</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2352-4847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="h">11078-11087</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Tianqing Yuan |
spellingShingle |
Tianqing Yuan misc TK1-9971 misc Permanent magnet synchronous motor misc Current harmonics misc Adaptive internal model controller misc Repetitive controller misc Electrical engineering. Electronics. Nuclear engineering Performance improvement for PMSM control system based on composite controller used adaptive internal model controller |
authorStr |
Tianqing Yuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820689033 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
23524847 |
topic_title |
TK1-9971 Performance improvement for PMSM control system based on composite controller used adaptive internal model controller Permanent magnet synchronous motor Current harmonics Adaptive internal model controller Repetitive controller |
topic |
misc TK1-9971 misc Permanent magnet synchronous motor misc Current harmonics misc Adaptive internal model controller misc Repetitive controller misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Permanent magnet synchronous motor misc Current harmonics misc Adaptive internal model controller misc Repetitive controller misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Permanent magnet synchronous motor misc Current harmonics misc Adaptive internal model controller misc Repetitive controller misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy Reports |
hierarchy_parent_id |
820689033 |
hierarchy_top_title |
Energy Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820689033 (DE-600)2814795-9 |
title |
Performance improvement for PMSM control system based on composite controller used adaptive internal model controller |
ctrlnum |
(DE-627)DOAJ023631708 (DE-599)DOAJ7bc831a58fdc41c394bbd442a1cad7cd |
title_full |
Performance improvement for PMSM control system based on composite controller used adaptive internal model controller |
author_sort |
Tianqing Yuan |
journal |
Energy Reports |
journalStr |
Energy Reports |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
11078 |
author_browse |
Tianqing Yuan Yupeng Zhang Dazhi Wang |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Tianqing Yuan |
doi_str_mv |
10.1016/j.egyr.2022.08.257 |
author2-role |
verfasserin |
title_sort |
performance improvement for pmsm control system based on composite controller used adaptive internal model controller |
callnumber |
TK1-9971 |
title_auth |
Performance improvement for PMSM control system based on composite controller used adaptive internal model controller |
abstract |
The dead-zone time is inevitable during the inverter working process, thus, the relationships between the input variables and the output variables of the permanent magnet synchronous motor (PMSM) control system exhibit nonlinearity characteristic. Additionally, the PMSM control system suffers from some drawbacks, such as high amount current harmonics and large torque ripples. In order to improve the operation performance for the PMSM control system, a composite controller for the current loop is proposed in this paper, which can enhance the current harmonics suppression ability. Firstly, the components of the current harmonics are analyzed. The parameters of the proportional controller are analyzed through three-dimensional image and two-dimensional image of frequency characteristics. In view of the real sampling number in the delay element maybe not an integer, an adaptive internal model controller is designed for the repetitive controller. Thus, a composite controller consist of a proportional controller and the improved repetitive controller is proposed in this paper. The parameters of the improved repetitive controller are also studied. Furthermore, the stability of the control system used the proposed composite controller is analyzed through Lyapunov theory. Finally, the PMSM control system model is established through Matlab/Simulink software, and the operation performances of the PMSM control system used different current loop controllers are studied. And the simulation results show that the proposed composite controller can suppress the current harmonics and the torque ripples effectively. |
abstractGer |
The dead-zone time is inevitable during the inverter working process, thus, the relationships between the input variables and the output variables of the permanent magnet synchronous motor (PMSM) control system exhibit nonlinearity characteristic. Additionally, the PMSM control system suffers from some drawbacks, such as high amount current harmonics and large torque ripples. In order to improve the operation performance for the PMSM control system, a composite controller for the current loop is proposed in this paper, which can enhance the current harmonics suppression ability. Firstly, the components of the current harmonics are analyzed. The parameters of the proportional controller are analyzed through three-dimensional image and two-dimensional image of frequency characteristics. In view of the real sampling number in the delay element maybe not an integer, an adaptive internal model controller is designed for the repetitive controller. Thus, a composite controller consist of a proportional controller and the improved repetitive controller is proposed in this paper. The parameters of the improved repetitive controller are also studied. Furthermore, the stability of the control system used the proposed composite controller is analyzed through Lyapunov theory. Finally, the PMSM control system model is established through Matlab/Simulink software, and the operation performances of the PMSM control system used different current loop controllers are studied. And the simulation results show that the proposed composite controller can suppress the current harmonics and the torque ripples effectively. |
abstract_unstemmed |
The dead-zone time is inevitable during the inverter working process, thus, the relationships between the input variables and the output variables of the permanent magnet synchronous motor (PMSM) control system exhibit nonlinearity characteristic. Additionally, the PMSM control system suffers from some drawbacks, such as high amount current harmonics and large torque ripples. In order to improve the operation performance for the PMSM control system, a composite controller for the current loop is proposed in this paper, which can enhance the current harmonics suppression ability. Firstly, the components of the current harmonics are analyzed. The parameters of the proportional controller are analyzed through three-dimensional image and two-dimensional image of frequency characteristics. In view of the real sampling number in the delay element maybe not an integer, an adaptive internal model controller is designed for the repetitive controller. Thus, a composite controller consist of a proportional controller and the improved repetitive controller is proposed in this paper. The parameters of the improved repetitive controller are also studied. Furthermore, the stability of the control system used the proposed composite controller is analyzed through Lyapunov theory. Finally, the PMSM control system model is established through Matlab/Simulink software, and the operation performances of the PMSM control system used different current loop controllers are studied. And the simulation results show that the proposed composite controller can suppress the current harmonics and the torque ripples effectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Performance improvement for PMSM control system based on composite controller used adaptive internal model controller |
url |
https://doi.org/10.1016/j.egyr.2022.08.257 https://doaj.org/article/7bc831a58fdc41c394bbd442a1cad7cd http://www.sciencedirect.com/science/article/pii/S2352484722017012 https://doaj.org/toc/2352-4847 |
remote_bool |
true |
author2 |
Yupeng Zhang Dazhi Wang |
author2Str |
Yupeng Zhang Dazhi Wang |
ppnlink |
820689033 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.egyr.2022.08.257 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T18:40:09.296Z |
_version_ |
1803584284187951104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ023631708</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311045147.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.egyr.2022.08.257</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ023631708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7bc831a58fdc41c394bbd442a1cad7cd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tianqing Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance improvement for PMSM control system based on composite controller used adaptive internal model controller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The dead-zone time is inevitable during the inverter working process, thus, the relationships between the input variables and the output variables of the permanent magnet synchronous motor (PMSM) control system exhibit nonlinearity characteristic. Additionally, the PMSM control system suffers from some drawbacks, such as high amount current harmonics and large torque ripples. In order to improve the operation performance for the PMSM control system, a composite controller for the current loop is proposed in this paper, which can enhance the current harmonics suppression ability. Firstly, the components of the current harmonics are analyzed. The parameters of the proportional controller are analyzed through three-dimensional image and two-dimensional image of frequency characteristics. In view of the real sampling number in the delay element maybe not an integer, an adaptive internal model controller is designed for the repetitive controller. Thus, a composite controller consist of a proportional controller and the improved repetitive controller is proposed in this paper. The parameters of the improved repetitive controller are also studied. Furthermore, the stability of the control system used the proposed composite controller is analyzed through Lyapunov theory. Finally, the PMSM control system model is established through Matlab/Simulink software, and the operation performances of the PMSM control system used different current loop controllers are studied. And the simulation results show that the proposed composite controller can suppress the current harmonics and the torque ripples effectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permanent magnet synchronous motor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current harmonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive internal model controller</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Repetitive controller</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yupeng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dazhi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energy Reports</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">8(2022), Seite 11078-11087</subfield><subfield code="w">(DE-627)820689033</subfield><subfield code="w">(DE-600)2814795-9</subfield><subfield code="x">23524847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:11078-11087</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.egyr.2022.08.257</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7bc831a58fdc41c394bbd442a1cad7cd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2352484722017012</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2352-4847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="h">11078-11087</subfield></datafield></record></collection>
|
score |
7.399703 |