Passivity-Based Power-Level Control of Nuclear Reactors
Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the corresponding...
Ausführliche Beschreibung
Autor*in: |
Yunlong Zhu [verfasserIn] Zhe Dong [verfasserIn] Xiaojin Huang [verfasserIn] Yujie Dong [verfasserIn] Yajun Zhang [verfasserIn] Zuoyi Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 15(2022), 14, p 4997 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:14, p 4997 |
Links: |
---|
DOI / URN: |
10.3390/en15144997 |
---|
Katalog-ID: |
DOAJ023818662 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ023818662 | ||
003 | DE-627 | ||
005 | 20240414121512.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en15144997 |2 doi | |
035 | |a (DE-627)DOAJ023818662 | ||
035 | |a (DE-599)DOAJ29d57249935b47bd9f6cbe611a90a3ee | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Yunlong Zhu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Passivity-Based Power-Level Control of Nuclear Reactors |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the corresponding control design model is a complex nonlinear system with large uncertainty. Although nuclear reactor dynamics are complex, it is meaningful to develop simple but effective power-level control methods for easy practical implementation and commissioning. In this paper, a passivity-based control (PBC) is proposed for nuclear reactor power-level dynamics, which has a simple form and relies on the measurement of both neutron flux and average primary coolant temperature. By constructing the Lyapunov function based on the shifted ectropies of neutron kinetics and reactor core thermal hydraulics, the sufficient condition for globally asymptotic closed-loop stability is further given. Finally, this PBC is applied to the power-level control of a nuclear heating reactor, and simulation results show the feasibility and satisfactory performance. | ||
650 | 4 | |a nuclear reactor | |
650 | 4 | |a power-level control | |
650 | 4 | |a passivity | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Zhe Dong |e verfasserin |4 aut | |
700 | 0 | |a Xiaojin Huang |e verfasserin |4 aut | |
700 | 0 | |a Yujie Dong |e verfasserin |4 aut | |
700 | 0 | |a Yajun Zhang |e verfasserin |4 aut | |
700 | 0 | |a Zuoyi Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 15(2022), 14, p 4997 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:14, p 4997 |
856 | 4 | 0 | |u https://doi.org/10.3390/en15144997 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/29d57249935b47bd9f6cbe611a90a3ee |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/15/14/4997 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 14, p 4997 |
author_variant |
y z yz z d zd x h xh y d yd y z yz z z zz |
---|---|
matchkey_str |
article:19961073:2022----::asvtbsdoelvlotoonc |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/en15144997 doi (DE-627)DOAJ023818662 (DE-599)DOAJ29d57249935b47bd9f6cbe611a90a3ee DE-627 ger DE-627 rakwb eng Yunlong Zhu verfasserin aut Passivity-Based Power-Level Control of Nuclear Reactors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the corresponding control design model is a complex nonlinear system with large uncertainty. Although nuclear reactor dynamics are complex, it is meaningful to develop simple but effective power-level control methods for easy practical implementation and commissioning. In this paper, a passivity-based control (PBC) is proposed for nuclear reactor power-level dynamics, which has a simple form and relies on the measurement of both neutron flux and average primary coolant temperature. By constructing the Lyapunov function based on the shifted ectropies of neutron kinetics and reactor core thermal hydraulics, the sufficient condition for globally asymptotic closed-loop stability is further given. Finally, this PBC is applied to the power-level control of a nuclear heating reactor, and simulation results show the feasibility and satisfactory performance. nuclear reactor power-level control passivity Technology T Zhe Dong verfasserin aut Xiaojin Huang verfasserin aut Yujie Dong verfasserin aut Yajun Zhang verfasserin aut Zuoyi Zhang verfasserin aut In Energies MDPI AG, 2008 15(2022), 14, p 4997 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:14, p 4997 https://doi.org/10.3390/en15144997 kostenfrei https://doaj.org/article/29d57249935b47bd9f6cbe611a90a3ee kostenfrei https://www.mdpi.com/1996-1073/15/14/4997 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 14, p 4997 |
spelling |
10.3390/en15144997 doi (DE-627)DOAJ023818662 (DE-599)DOAJ29d57249935b47bd9f6cbe611a90a3ee DE-627 ger DE-627 rakwb eng Yunlong Zhu verfasserin aut Passivity-Based Power-Level Control of Nuclear Reactors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the corresponding control design model is a complex nonlinear system with large uncertainty. Although nuclear reactor dynamics are complex, it is meaningful to develop simple but effective power-level control methods for easy practical implementation and commissioning. In this paper, a passivity-based control (PBC) is proposed for nuclear reactor power-level dynamics, which has a simple form and relies on the measurement of both neutron flux and average primary coolant temperature. By constructing the Lyapunov function based on the shifted ectropies of neutron kinetics and reactor core thermal hydraulics, the sufficient condition for globally asymptotic closed-loop stability is further given. Finally, this PBC is applied to the power-level control of a nuclear heating reactor, and simulation results show the feasibility and satisfactory performance. nuclear reactor power-level control passivity Technology T Zhe Dong verfasserin aut Xiaojin Huang verfasserin aut Yujie Dong verfasserin aut Yajun Zhang verfasserin aut Zuoyi Zhang verfasserin aut In Energies MDPI AG, 2008 15(2022), 14, p 4997 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:14, p 4997 https://doi.org/10.3390/en15144997 kostenfrei https://doaj.org/article/29d57249935b47bd9f6cbe611a90a3ee kostenfrei https://www.mdpi.com/1996-1073/15/14/4997 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 14, p 4997 |
allfields_unstemmed |
10.3390/en15144997 doi (DE-627)DOAJ023818662 (DE-599)DOAJ29d57249935b47bd9f6cbe611a90a3ee DE-627 ger DE-627 rakwb eng Yunlong Zhu verfasserin aut Passivity-Based Power-Level Control of Nuclear Reactors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the corresponding control design model is a complex nonlinear system with large uncertainty. Although nuclear reactor dynamics are complex, it is meaningful to develop simple but effective power-level control methods for easy practical implementation and commissioning. In this paper, a passivity-based control (PBC) is proposed for nuclear reactor power-level dynamics, which has a simple form and relies on the measurement of both neutron flux and average primary coolant temperature. By constructing the Lyapunov function based on the shifted ectropies of neutron kinetics and reactor core thermal hydraulics, the sufficient condition for globally asymptotic closed-loop stability is further given. Finally, this PBC is applied to the power-level control of a nuclear heating reactor, and simulation results show the feasibility and satisfactory performance. nuclear reactor power-level control passivity Technology T Zhe Dong verfasserin aut Xiaojin Huang verfasserin aut Yujie Dong verfasserin aut Yajun Zhang verfasserin aut Zuoyi Zhang verfasserin aut In Energies MDPI AG, 2008 15(2022), 14, p 4997 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:14, p 4997 https://doi.org/10.3390/en15144997 kostenfrei https://doaj.org/article/29d57249935b47bd9f6cbe611a90a3ee kostenfrei https://www.mdpi.com/1996-1073/15/14/4997 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 14, p 4997 |
allfieldsGer |
10.3390/en15144997 doi (DE-627)DOAJ023818662 (DE-599)DOAJ29d57249935b47bd9f6cbe611a90a3ee DE-627 ger DE-627 rakwb eng Yunlong Zhu verfasserin aut Passivity-Based Power-Level Control of Nuclear Reactors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the corresponding control design model is a complex nonlinear system with large uncertainty. Although nuclear reactor dynamics are complex, it is meaningful to develop simple but effective power-level control methods for easy practical implementation and commissioning. In this paper, a passivity-based control (PBC) is proposed for nuclear reactor power-level dynamics, which has a simple form and relies on the measurement of both neutron flux and average primary coolant temperature. By constructing the Lyapunov function based on the shifted ectropies of neutron kinetics and reactor core thermal hydraulics, the sufficient condition for globally asymptotic closed-loop stability is further given. Finally, this PBC is applied to the power-level control of a nuclear heating reactor, and simulation results show the feasibility and satisfactory performance. nuclear reactor power-level control passivity Technology T Zhe Dong verfasserin aut Xiaojin Huang verfasserin aut Yujie Dong verfasserin aut Yajun Zhang verfasserin aut Zuoyi Zhang verfasserin aut In Energies MDPI AG, 2008 15(2022), 14, p 4997 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:14, p 4997 https://doi.org/10.3390/en15144997 kostenfrei https://doaj.org/article/29d57249935b47bd9f6cbe611a90a3ee kostenfrei https://www.mdpi.com/1996-1073/15/14/4997 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 14, p 4997 |
allfieldsSound |
10.3390/en15144997 doi (DE-627)DOAJ023818662 (DE-599)DOAJ29d57249935b47bd9f6cbe611a90a3ee DE-627 ger DE-627 rakwb eng Yunlong Zhu verfasserin aut Passivity-Based Power-Level Control of Nuclear Reactors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the corresponding control design model is a complex nonlinear system with large uncertainty. Although nuclear reactor dynamics are complex, it is meaningful to develop simple but effective power-level control methods for easy practical implementation and commissioning. In this paper, a passivity-based control (PBC) is proposed for nuclear reactor power-level dynamics, which has a simple form and relies on the measurement of both neutron flux and average primary coolant temperature. By constructing the Lyapunov function based on the shifted ectropies of neutron kinetics and reactor core thermal hydraulics, the sufficient condition for globally asymptotic closed-loop stability is further given. Finally, this PBC is applied to the power-level control of a nuclear heating reactor, and simulation results show the feasibility and satisfactory performance. nuclear reactor power-level control passivity Technology T Zhe Dong verfasserin aut Xiaojin Huang verfasserin aut Yujie Dong verfasserin aut Yajun Zhang verfasserin aut Zuoyi Zhang verfasserin aut In Energies MDPI AG, 2008 15(2022), 14, p 4997 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:14, p 4997 https://doi.org/10.3390/en15144997 kostenfrei https://doaj.org/article/29d57249935b47bd9f6cbe611a90a3ee kostenfrei https://www.mdpi.com/1996-1073/15/14/4997 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 14, p 4997 |
language |
English |
source |
In Energies 15(2022), 14, p 4997 volume:15 year:2022 number:14, p 4997 |
sourceStr |
In Energies 15(2022), 14, p 4997 volume:15 year:2022 number:14, p 4997 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nuclear reactor power-level control passivity Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Yunlong Zhu @@aut@@ Zhe Dong @@aut@@ Xiaojin Huang @@aut@@ Yujie Dong @@aut@@ Yajun Zhang @@aut@@ Zuoyi Zhang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ023818662 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ023818662</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414121512.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15144997</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ023818662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ29d57249935b47bd9f6cbe611a90a3ee</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yunlong Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Passivity-Based Power-Level Control of Nuclear Reactors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the corresponding control design model is a complex nonlinear system with large uncertainty. Although nuclear reactor dynamics are complex, it is meaningful to develop simple but effective power-level control methods for easy practical implementation and commissioning. In this paper, a passivity-based control (PBC) is proposed for nuclear reactor power-level dynamics, which has a simple form and relies on the measurement of both neutron flux and average primary coolant temperature. By constructing the Lyapunov function based on the shifted ectropies of neutron kinetics and reactor core thermal hydraulics, the sufficient condition for globally asymptotic closed-loop stability is further given. Finally, this PBC is applied to the power-level control of a nuclear heating reactor, and simulation results show the feasibility and satisfactory performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nuclear reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power-level control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passivity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhe Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaojin Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yujie Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yajun Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zuoyi Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 14, p 4997</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:14, p 4997</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15144997</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/29d57249935b47bd9f6cbe611a90a3ee</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/14/4997</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">14, p 4997</subfield></datafield></record></collection>
|
author |
Yunlong Zhu |
spellingShingle |
Yunlong Zhu misc nuclear reactor misc power-level control misc passivity misc Technology misc T Passivity-Based Power-Level Control of Nuclear Reactors |
authorStr |
Yunlong Zhu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Passivity-Based Power-Level Control of Nuclear Reactors nuclear reactor power-level control passivity |
topic |
misc nuclear reactor misc power-level control misc passivity misc Technology misc T |
topic_unstemmed |
misc nuclear reactor misc power-level control misc passivity misc Technology misc T |
topic_browse |
misc nuclear reactor misc power-level control misc passivity misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Passivity-Based Power-Level Control of Nuclear Reactors |
ctrlnum |
(DE-627)DOAJ023818662 (DE-599)DOAJ29d57249935b47bd9f6cbe611a90a3ee |
title_full |
Passivity-Based Power-Level Control of Nuclear Reactors |
author_sort |
Yunlong Zhu |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Yunlong Zhu Zhe Dong Xiaojin Huang Yujie Dong Yajun Zhang Zuoyi Zhang |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Yunlong Zhu |
doi_str_mv |
10.3390/en15144997 |
author2-role |
verfasserin |
title_sort |
passivity-based power-level control of nuclear reactors |
title_auth |
Passivity-Based Power-Level Control of Nuclear Reactors |
abstract |
Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the corresponding control design model is a complex nonlinear system with large uncertainty. Although nuclear reactor dynamics are complex, it is meaningful to develop simple but effective power-level control methods for easy practical implementation and commissioning. In this paper, a passivity-based control (PBC) is proposed for nuclear reactor power-level dynamics, which has a simple form and relies on the measurement of both neutron flux and average primary coolant temperature. By constructing the Lyapunov function based on the shifted ectropies of neutron kinetics and reactor core thermal hydraulics, the sufficient condition for globally asymptotic closed-loop stability is further given. Finally, this PBC is applied to the power-level control of a nuclear heating reactor, and simulation results show the feasibility and satisfactory performance. |
abstractGer |
Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the corresponding control design model is a complex nonlinear system with large uncertainty. Although nuclear reactor dynamics are complex, it is meaningful to develop simple but effective power-level control methods for easy practical implementation and commissioning. In this paper, a passivity-based control (PBC) is proposed for nuclear reactor power-level dynamics, which has a simple form and relies on the measurement of both neutron flux and average primary coolant temperature. By constructing the Lyapunov function based on the shifted ectropies of neutron kinetics and reactor core thermal hydraulics, the sufficient condition for globally asymptotic closed-loop stability is further given. Finally, this PBC is applied to the power-level control of a nuclear heating reactor, and simulation results show the feasibility and satisfactory performance. |
abstract_unstemmed |
Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the corresponding control design model is a complex nonlinear system with large uncertainty. Although nuclear reactor dynamics are complex, it is meaningful to develop simple but effective power-level control methods for easy practical implementation and commissioning. In this paper, a passivity-based control (PBC) is proposed for nuclear reactor power-level dynamics, which has a simple form and relies on the measurement of both neutron flux and average primary coolant temperature. By constructing the Lyapunov function based on the shifted ectropies of neutron kinetics and reactor core thermal hydraulics, the sufficient condition for globally asymptotic closed-loop stability is further given. Finally, this PBC is applied to the power-level control of a nuclear heating reactor, and simulation results show the feasibility and satisfactory performance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
14, p 4997 |
title_short |
Passivity-Based Power-Level Control of Nuclear Reactors |
url |
https://doi.org/10.3390/en15144997 https://doaj.org/article/29d57249935b47bd9f6cbe611a90a3ee https://www.mdpi.com/1996-1073/15/14/4997 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Zhe Dong Xiaojin Huang Yujie Dong Yajun Zhang Zuoyi Zhang |
author2Str |
Zhe Dong Xiaojin Huang Yujie Dong Yajun Zhang Zuoyi Zhang |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en15144997 |
up_date |
2024-07-03T19:39:14.221Z |
_version_ |
1803588001303887872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ023818662</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414121512.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15144997</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ023818662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ29d57249935b47bd9f6cbe611a90a3ee</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yunlong Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Passivity-Based Power-Level Control of Nuclear Reactors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the corresponding control design model is a complex nonlinear system with large uncertainty. Although nuclear reactor dynamics are complex, it is meaningful to develop simple but effective power-level control methods for easy practical implementation and commissioning. In this paper, a passivity-based control (PBC) is proposed for nuclear reactor power-level dynamics, which has a simple form and relies on the measurement of both neutron flux and average primary coolant temperature. By constructing the Lyapunov function based on the shifted ectropies of neutron kinetics and reactor core thermal hydraulics, the sufficient condition for globally asymptotic closed-loop stability is further given. Finally, this PBC is applied to the power-level control of a nuclear heating reactor, and simulation results show the feasibility and satisfactory performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nuclear reactor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power-level control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passivity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhe Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaojin Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yujie Dong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yajun Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zuoyi Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 14, p 4997</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:14, p 4997</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15144997</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/29d57249935b47bd9f6cbe611a90a3ee</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/14/4997</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">14, p 4997</subfield></datafield></record></collection>
|
score |
7.401023 |