Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis
Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific location is needed for design of hydraulic and civil infrastructure facilities. A key step in the estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than one distr...
Ausführliche Beschreibung
Autor*in: |
Lu Chen [verfasserIn] Vijay P. Singh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Entropy - MDPI AG, 2003, 19(2017), 6, p 254 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2017 ; number:6, p 254 |
Links: |
---|
DOI / URN: |
10.3390/e19060254 |
---|
Katalog-ID: |
DOAJ023894571 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ023894571 | ||
003 | DE-627 | ||
005 | 20230307071301.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/e19060254 |2 doi | |
035 | |a (DE-627)DOAJ023894571 | ||
035 | |a (DE-599)DOAJ54bf22e3c81f4905b7582f9fe9308c89 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
050 | 0 | |a QC1-999 | |
100 | 0 | |a Lu Chen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific location is needed for design of hydraulic and civil infrastructure facilities. A key step in the estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than one distribution is often found to be adequate for FFA on a given watershed and choosing the best one is often less than objective. In this study, the generalized beta distribution of the second kind (GB2) was introduced for FFA. The principle of maximum entropy (POME) method was proposed to estimate the GB2 parameters. The performance of GB2 distribution was evaluated using flood data from gauging stations on the Colorado River, USA. Frequency estimates from the GB2 distribution were also compared with those of commonly used distributions. Also, the evolution of frequency distribution along the stream from upstream to downstream was investigated. It concludes that the GB2 is appealing for FFA, since it has four parameters and includes some well-known distributions. Results of case study demonstrate that the parameters estimated by POME method are found reasonable. According to the RMSD and AIC values, the performance of the GB2 distribution is better than that of the widely used distributions in hydrology. When using different distributions for FFA, significant different design flood values are obtained. For a given return period, the design flood value of the downstream gauging stations is larger than that of the upstream gauging station. In addition, there is an evolution of distribution. Along the Yampa River, the distribution for FFA changes from the four-parameter GB2 distribution to the three-parameter Burr XII distribution. | ||
650 | 4 | |a entropy theory | |
650 | 4 | |a principle of maximum entropy (POME) | |
650 | 4 | |a GB2 distribution | |
650 | 4 | |a flood frequency analysis | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Astrophysics | |
653 | 0 | |a Physics | |
700 | 0 | |a Vijay P. Singh |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Entropy |d MDPI AG, 2003 |g 19(2017), 6, p 254 |w (DE-627)316340359 |w (DE-600)2014734-X |x 10994300 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2017 |g number:6, p 254 |
856 | 4 | 0 | |u https://doi.org/10.3390/e19060254 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/54bf22e3c81f4905b7582f9fe9308c89 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/1099-4300/19/6/254 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1099-4300 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 2017 |e 6, p 254 |
author_variant |
l c lc v p s vps |
---|---|
matchkey_str |
article:10994300:2017----::eeaiebtdsrbtooteeodidofo |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
QB |
publishDate |
2017 |
allfields |
10.3390/e19060254 doi (DE-627)DOAJ023894571 (DE-599)DOAJ54bf22e3c81f4905b7582f9fe9308c89 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Lu Chen verfasserin aut Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific location is needed for design of hydraulic and civil infrastructure facilities. A key step in the estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than one distribution is often found to be adequate for FFA on a given watershed and choosing the best one is often less than objective. In this study, the generalized beta distribution of the second kind (GB2) was introduced for FFA. The principle of maximum entropy (POME) method was proposed to estimate the GB2 parameters. The performance of GB2 distribution was evaluated using flood data from gauging stations on the Colorado River, USA. Frequency estimates from the GB2 distribution were also compared with those of commonly used distributions. Also, the evolution of frequency distribution along the stream from upstream to downstream was investigated. It concludes that the GB2 is appealing for FFA, since it has four parameters and includes some well-known distributions. Results of case study demonstrate that the parameters estimated by POME method are found reasonable. According to the RMSD and AIC values, the performance of the GB2 distribution is better than that of the widely used distributions in hydrology. When using different distributions for FFA, significant different design flood values are obtained. For a given return period, the design flood value of the downstream gauging stations is larger than that of the upstream gauging station. In addition, there is an evolution of distribution. Along the Yampa River, the distribution for FFA changes from the four-parameter GB2 distribution to the three-parameter Burr XII distribution. entropy theory principle of maximum entropy (POME) GB2 distribution flood frequency analysis Science Q Astrophysics Physics Vijay P. Singh verfasserin aut In Entropy MDPI AG, 2003 19(2017), 6, p 254 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:19 year:2017 number:6, p 254 https://doi.org/10.3390/e19060254 kostenfrei https://doaj.org/article/54bf22e3c81f4905b7582f9fe9308c89 kostenfrei http://www.mdpi.com/1099-4300/19/6/254 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2017 6, p 254 |
spelling |
10.3390/e19060254 doi (DE-627)DOAJ023894571 (DE-599)DOAJ54bf22e3c81f4905b7582f9fe9308c89 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Lu Chen verfasserin aut Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific location is needed for design of hydraulic and civil infrastructure facilities. A key step in the estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than one distribution is often found to be adequate for FFA on a given watershed and choosing the best one is often less than objective. In this study, the generalized beta distribution of the second kind (GB2) was introduced for FFA. The principle of maximum entropy (POME) method was proposed to estimate the GB2 parameters. The performance of GB2 distribution was evaluated using flood data from gauging stations on the Colorado River, USA. Frequency estimates from the GB2 distribution were also compared with those of commonly used distributions. Also, the evolution of frequency distribution along the stream from upstream to downstream was investigated. It concludes that the GB2 is appealing for FFA, since it has four parameters and includes some well-known distributions. Results of case study demonstrate that the parameters estimated by POME method are found reasonable. According to the RMSD and AIC values, the performance of the GB2 distribution is better than that of the widely used distributions in hydrology. When using different distributions for FFA, significant different design flood values are obtained. For a given return period, the design flood value of the downstream gauging stations is larger than that of the upstream gauging station. In addition, there is an evolution of distribution. Along the Yampa River, the distribution for FFA changes from the four-parameter GB2 distribution to the three-parameter Burr XII distribution. entropy theory principle of maximum entropy (POME) GB2 distribution flood frequency analysis Science Q Astrophysics Physics Vijay P. Singh verfasserin aut In Entropy MDPI AG, 2003 19(2017), 6, p 254 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:19 year:2017 number:6, p 254 https://doi.org/10.3390/e19060254 kostenfrei https://doaj.org/article/54bf22e3c81f4905b7582f9fe9308c89 kostenfrei http://www.mdpi.com/1099-4300/19/6/254 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2017 6, p 254 |
allfields_unstemmed |
10.3390/e19060254 doi (DE-627)DOAJ023894571 (DE-599)DOAJ54bf22e3c81f4905b7582f9fe9308c89 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Lu Chen verfasserin aut Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific location is needed for design of hydraulic and civil infrastructure facilities. A key step in the estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than one distribution is often found to be adequate for FFA on a given watershed and choosing the best one is often less than objective. In this study, the generalized beta distribution of the second kind (GB2) was introduced for FFA. The principle of maximum entropy (POME) method was proposed to estimate the GB2 parameters. The performance of GB2 distribution was evaluated using flood data from gauging stations on the Colorado River, USA. Frequency estimates from the GB2 distribution were also compared with those of commonly used distributions. Also, the evolution of frequency distribution along the stream from upstream to downstream was investigated. It concludes that the GB2 is appealing for FFA, since it has four parameters and includes some well-known distributions. Results of case study demonstrate that the parameters estimated by POME method are found reasonable. According to the RMSD and AIC values, the performance of the GB2 distribution is better than that of the widely used distributions in hydrology. When using different distributions for FFA, significant different design flood values are obtained. For a given return period, the design flood value of the downstream gauging stations is larger than that of the upstream gauging station. In addition, there is an evolution of distribution. Along the Yampa River, the distribution for FFA changes from the four-parameter GB2 distribution to the three-parameter Burr XII distribution. entropy theory principle of maximum entropy (POME) GB2 distribution flood frequency analysis Science Q Astrophysics Physics Vijay P. Singh verfasserin aut In Entropy MDPI AG, 2003 19(2017), 6, p 254 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:19 year:2017 number:6, p 254 https://doi.org/10.3390/e19060254 kostenfrei https://doaj.org/article/54bf22e3c81f4905b7582f9fe9308c89 kostenfrei http://www.mdpi.com/1099-4300/19/6/254 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2017 6, p 254 |
allfieldsGer |
10.3390/e19060254 doi (DE-627)DOAJ023894571 (DE-599)DOAJ54bf22e3c81f4905b7582f9fe9308c89 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Lu Chen verfasserin aut Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific location is needed for design of hydraulic and civil infrastructure facilities. A key step in the estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than one distribution is often found to be adequate for FFA on a given watershed and choosing the best one is often less than objective. In this study, the generalized beta distribution of the second kind (GB2) was introduced for FFA. The principle of maximum entropy (POME) method was proposed to estimate the GB2 parameters. The performance of GB2 distribution was evaluated using flood data from gauging stations on the Colorado River, USA. Frequency estimates from the GB2 distribution were also compared with those of commonly used distributions. Also, the evolution of frequency distribution along the stream from upstream to downstream was investigated. It concludes that the GB2 is appealing for FFA, since it has four parameters and includes some well-known distributions. Results of case study demonstrate that the parameters estimated by POME method are found reasonable. According to the RMSD and AIC values, the performance of the GB2 distribution is better than that of the widely used distributions in hydrology. When using different distributions for FFA, significant different design flood values are obtained. For a given return period, the design flood value of the downstream gauging stations is larger than that of the upstream gauging station. In addition, there is an evolution of distribution. Along the Yampa River, the distribution for FFA changes from the four-parameter GB2 distribution to the three-parameter Burr XII distribution. entropy theory principle of maximum entropy (POME) GB2 distribution flood frequency analysis Science Q Astrophysics Physics Vijay P. Singh verfasserin aut In Entropy MDPI AG, 2003 19(2017), 6, p 254 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:19 year:2017 number:6, p 254 https://doi.org/10.3390/e19060254 kostenfrei https://doaj.org/article/54bf22e3c81f4905b7582f9fe9308c89 kostenfrei http://www.mdpi.com/1099-4300/19/6/254 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2017 6, p 254 |
allfieldsSound |
10.3390/e19060254 doi (DE-627)DOAJ023894571 (DE-599)DOAJ54bf22e3c81f4905b7582f9fe9308c89 DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Lu Chen verfasserin aut Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific location is needed for design of hydraulic and civil infrastructure facilities. A key step in the estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than one distribution is often found to be adequate for FFA on a given watershed and choosing the best one is often less than objective. In this study, the generalized beta distribution of the second kind (GB2) was introduced for FFA. The principle of maximum entropy (POME) method was proposed to estimate the GB2 parameters. The performance of GB2 distribution was evaluated using flood data from gauging stations on the Colorado River, USA. Frequency estimates from the GB2 distribution were also compared with those of commonly used distributions. Also, the evolution of frequency distribution along the stream from upstream to downstream was investigated. It concludes that the GB2 is appealing for FFA, since it has four parameters and includes some well-known distributions. Results of case study demonstrate that the parameters estimated by POME method are found reasonable. According to the RMSD and AIC values, the performance of the GB2 distribution is better than that of the widely used distributions in hydrology. When using different distributions for FFA, significant different design flood values are obtained. For a given return period, the design flood value of the downstream gauging stations is larger than that of the upstream gauging station. In addition, there is an evolution of distribution. Along the Yampa River, the distribution for FFA changes from the four-parameter GB2 distribution to the three-parameter Burr XII distribution. entropy theory principle of maximum entropy (POME) GB2 distribution flood frequency analysis Science Q Astrophysics Physics Vijay P. Singh verfasserin aut In Entropy MDPI AG, 2003 19(2017), 6, p 254 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:19 year:2017 number:6, p 254 https://doi.org/10.3390/e19060254 kostenfrei https://doaj.org/article/54bf22e3c81f4905b7582f9fe9308c89 kostenfrei http://www.mdpi.com/1099-4300/19/6/254 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2017 6, p 254 |
language |
English |
source |
In Entropy 19(2017), 6, p 254 volume:19 year:2017 number:6, p 254 |
sourceStr |
In Entropy 19(2017), 6, p 254 volume:19 year:2017 number:6, p 254 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
entropy theory principle of maximum entropy (POME) GB2 distribution flood frequency analysis Science Q Astrophysics Physics |
isfreeaccess_bool |
true |
container_title |
Entropy |
authorswithroles_txt_mv |
Lu Chen @@aut@@ Vijay P. Singh @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
316340359 |
id |
DOAJ023894571 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ023894571</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307071301.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/e19060254</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ023894571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ54bf22e3c81f4905b7582f9fe9308c89</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lu Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific location is needed for design of hydraulic and civil infrastructure facilities. A key step in the estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than one distribution is often found to be adequate for FFA on a given watershed and choosing the best one is often less than objective. In this study, the generalized beta distribution of the second kind (GB2) was introduced for FFA. The principle of maximum entropy (POME) method was proposed to estimate the GB2 parameters. The performance of GB2 distribution was evaluated using flood data from gauging stations on the Colorado River, USA. Frequency estimates from the GB2 distribution were also compared with those of commonly used distributions. Also, the evolution of frequency distribution along the stream from upstream to downstream was investigated. It concludes that the GB2 is appealing for FFA, since it has four parameters and includes some well-known distributions. Results of case study demonstrate that the parameters estimated by POME method are found reasonable. According to the RMSD and AIC values, the performance of the GB2 distribution is better than that of the widely used distributions in hydrology. When using different distributions for FFA, significant different design flood values are obtained. For a given return period, the design flood value of the downstream gauging stations is larger than that of the upstream gauging station. In addition, there is an evolution of distribution. Along the Yampa River, the distribution for FFA changes from the four-parameter GB2 distribution to the three-parameter Burr XII distribution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">entropy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">principle of maximum entropy (POME)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GB2 distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flood frequency analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vijay P. Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Entropy</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">19(2017), 6, p 254</subfield><subfield code="w">(DE-627)316340359</subfield><subfield code="w">(DE-600)2014734-X</subfield><subfield code="x">10994300</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6, p 254</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/e19060254</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/54bf22e3c81f4905b7582f9fe9308c89</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1099-4300/19/6/254</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1099-4300</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2017</subfield><subfield code="e">6, p 254</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Lu Chen |
spellingShingle |
Lu Chen misc QB460-466 misc QC1-999 misc entropy theory misc principle of maximum entropy (POME) misc GB2 distribution misc flood frequency analysis misc Science misc Q misc Astrophysics misc Physics Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis |
authorStr |
Lu Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316340359 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
10994300 |
topic_title |
QB460-466 QC1-999 Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis entropy theory principle of maximum entropy (POME) GB2 distribution flood frequency analysis |
topic |
misc QB460-466 misc QC1-999 misc entropy theory misc principle of maximum entropy (POME) misc GB2 distribution misc flood frequency analysis misc Science misc Q misc Astrophysics misc Physics |
topic_unstemmed |
misc QB460-466 misc QC1-999 misc entropy theory misc principle of maximum entropy (POME) misc GB2 distribution misc flood frequency analysis misc Science misc Q misc Astrophysics misc Physics |
topic_browse |
misc QB460-466 misc QC1-999 misc entropy theory misc principle of maximum entropy (POME) misc GB2 distribution misc flood frequency analysis misc Science misc Q misc Astrophysics misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Entropy |
hierarchy_parent_id |
316340359 |
hierarchy_top_title |
Entropy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)316340359 (DE-600)2014734-X |
title |
Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis |
ctrlnum |
(DE-627)DOAJ023894571 (DE-599)DOAJ54bf22e3c81f4905b7582f9fe9308c89 |
title_full |
Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis |
author_sort |
Lu Chen |
journal |
Entropy |
journalStr |
Entropy |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Lu Chen Vijay P. Singh |
container_volume |
19 |
class |
QB460-466 QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Lu Chen |
doi_str_mv |
10.3390/e19060254 |
author2-role |
verfasserin |
title_sort |
generalized beta distribution of the second kind for flood frequency analysis |
callnumber |
QB460-466 |
title_auth |
Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis |
abstract |
Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific location is needed for design of hydraulic and civil infrastructure facilities. A key step in the estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than one distribution is often found to be adequate for FFA on a given watershed and choosing the best one is often less than objective. In this study, the generalized beta distribution of the second kind (GB2) was introduced for FFA. The principle of maximum entropy (POME) method was proposed to estimate the GB2 parameters. The performance of GB2 distribution was evaluated using flood data from gauging stations on the Colorado River, USA. Frequency estimates from the GB2 distribution were also compared with those of commonly used distributions. Also, the evolution of frequency distribution along the stream from upstream to downstream was investigated. It concludes that the GB2 is appealing for FFA, since it has four parameters and includes some well-known distributions. Results of case study demonstrate that the parameters estimated by POME method are found reasonable. According to the RMSD and AIC values, the performance of the GB2 distribution is better than that of the widely used distributions in hydrology. When using different distributions for FFA, significant different design flood values are obtained. For a given return period, the design flood value of the downstream gauging stations is larger than that of the upstream gauging station. In addition, there is an evolution of distribution. Along the Yampa River, the distribution for FFA changes from the four-parameter GB2 distribution to the three-parameter Burr XII distribution. |
abstractGer |
Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific location is needed for design of hydraulic and civil infrastructure facilities. A key step in the estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than one distribution is often found to be adequate for FFA on a given watershed and choosing the best one is often less than objective. In this study, the generalized beta distribution of the second kind (GB2) was introduced for FFA. The principle of maximum entropy (POME) method was proposed to estimate the GB2 parameters. The performance of GB2 distribution was evaluated using flood data from gauging stations on the Colorado River, USA. Frequency estimates from the GB2 distribution were also compared with those of commonly used distributions. Also, the evolution of frequency distribution along the stream from upstream to downstream was investigated. It concludes that the GB2 is appealing for FFA, since it has four parameters and includes some well-known distributions. Results of case study demonstrate that the parameters estimated by POME method are found reasonable. According to the RMSD and AIC values, the performance of the GB2 distribution is better than that of the widely used distributions in hydrology. When using different distributions for FFA, significant different design flood values are obtained. For a given return period, the design flood value of the downstream gauging stations is larger than that of the upstream gauging station. In addition, there is an evolution of distribution. Along the Yampa River, the distribution for FFA changes from the four-parameter GB2 distribution to the three-parameter Burr XII distribution. |
abstract_unstemmed |
Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific location is needed for design of hydraulic and civil infrastructure facilities. A key step in the estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than one distribution is often found to be adequate for FFA on a given watershed and choosing the best one is often less than objective. In this study, the generalized beta distribution of the second kind (GB2) was introduced for FFA. The principle of maximum entropy (POME) method was proposed to estimate the GB2 parameters. The performance of GB2 distribution was evaluated using flood data from gauging stations on the Colorado River, USA. Frequency estimates from the GB2 distribution were also compared with those of commonly used distributions. Also, the evolution of frequency distribution along the stream from upstream to downstream was investigated. It concludes that the GB2 is appealing for FFA, since it has four parameters and includes some well-known distributions. Results of case study demonstrate that the parameters estimated by POME method are found reasonable. According to the RMSD and AIC values, the performance of the GB2 distribution is better than that of the widely used distributions in hydrology. When using different distributions for FFA, significant different design flood values are obtained. For a given return period, the design flood value of the downstream gauging stations is larger than that of the upstream gauging station. In addition, there is an evolution of distribution. Along the Yampa River, the distribution for FFA changes from the four-parameter GB2 distribution to the three-parameter Burr XII distribution. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 254 |
title_short |
Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis |
url |
https://doi.org/10.3390/e19060254 https://doaj.org/article/54bf22e3c81f4905b7582f9fe9308c89 http://www.mdpi.com/1099-4300/19/6/254 https://doaj.org/toc/1099-4300 |
remote_bool |
true |
author2 |
Vijay P. Singh |
author2Str |
Vijay P. Singh |
ppnlink |
316340359 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/e19060254 |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T20:03:49.971Z |
_version_ |
1803589548745162752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ023894571</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307071301.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/e19060254</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ023894571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ54bf22e3c81f4905b7582f9fe9308c89</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lu Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized Beta Distribution of the Second Kind for Flood Frequency Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific location is needed for design of hydraulic and civil infrastructure facilities. A key step in the estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than one distribution is often found to be adequate for FFA on a given watershed and choosing the best one is often less than objective. In this study, the generalized beta distribution of the second kind (GB2) was introduced for FFA. The principle of maximum entropy (POME) method was proposed to estimate the GB2 parameters. The performance of GB2 distribution was evaluated using flood data from gauging stations on the Colorado River, USA. Frequency estimates from the GB2 distribution were also compared with those of commonly used distributions. Also, the evolution of frequency distribution along the stream from upstream to downstream was investigated. It concludes that the GB2 is appealing for FFA, since it has four parameters and includes some well-known distributions. Results of case study demonstrate that the parameters estimated by POME method are found reasonable. According to the RMSD and AIC values, the performance of the GB2 distribution is better than that of the widely used distributions in hydrology. When using different distributions for FFA, significant different design flood values are obtained. For a given return period, the design flood value of the downstream gauging stations is larger than that of the upstream gauging station. In addition, there is an evolution of distribution. Along the Yampa River, the distribution for FFA changes from the four-parameter GB2 distribution to the three-parameter Burr XII distribution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">entropy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">principle of maximum entropy (POME)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GB2 distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flood frequency analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vijay P. Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Entropy</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">19(2017), 6, p 254</subfield><subfield code="w">(DE-627)316340359</subfield><subfield code="w">(DE-600)2014734-X</subfield><subfield code="x">10994300</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6, p 254</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/e19060254</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/54bf22e3c81f4905b7582f9fe9308c89</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1099-4300/19/6/254</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1099-4300</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2017</subfield><subfield code="e">6, p 254</subfield></datafield></record></collection>
|
score |
7.402916 |