Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation
Quasi-2-level (Q2L) operation of multi-level bridge-legs, especially of flying-capacitor converters (FCC), is an interesting option for realizing single-cell power conversion in applications whose system voltages exceed the ratings of available power semiconductors. To ensure equal voltage sharing a...
Ausführliche Beschreibung
Autor*in: |
Piotr Czyz [verfasserIn] Panteleimon Papamanolis [verfasserIn] Francesc Trunas Bruguera [verfasserIn] Thomas Guillod [verfasserIn] Florian Krismer [verfasserIn] Vladan Lazarevic [verfasserIn] Jonas Huber [verfasserIn] Johann W. Kolar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
flying capacitor converter (FCC) |
---|
Übergeordnetes Werk: |
In: Electronics - MDPI AG, 2013, 10(2021), 19, p 2414 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2021 ; number:19, p 2414 |
Links: |
---|
DOI / URN: |
10.3390/electronics10192414 |
---|
Katalog-ID: |
DOAJ02393669X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ02393669X | ||
003 | DE-627 | ||
005 | 20240412141016.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/electronics10192414 |2 doi | |
035 | |a (DE-627)DOAJ02393669X | ||
035 | |a (DE-599)DOAJ88f63e53328f49399725912341102a33 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
100 | 0 | |a Piotr Czyz |e verfasserin |4 aut | |
245 | 1 | 0 | |a Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Quasi-2-level (Q2L) operation of multi-level bridge-legs, especially of flying-capacitor converters (FCC), is an interesting option for realizing single-cell power conversion in applications whose system voltages exceed the ratings of available power semiconductors. To ensure equal voltage sharing among a Q2L-FCC’s switches, the voltages of a Q2L-FCC’s minimized flying capacitors (FCs) must always be balanced. Thus, we propose a concept for load-independent FC voltage balancing: For non-zero load current, we use a model predictive control (MPC) approach to identify the commutation sequence of the individual switches within a Q2L transition that minimizes the FC or cell voltage errors. In case of zero load current, we employ a novel MPC-based approach using cell multiple switching (CMS), i.e., the insertion of additional zero-current commutations within a Q2L transition, to exchange charge between the FCs via the charging currents of the switches’ parasitic capacitances. Experiments with a 5-level FCC half-bridge demonstrator confirm the validity of the derived models and verify the performance of the proposed load-independent balancing concept. | ||
650 | 4 | |a quasi-2-level (Q2L) | |
650 | 4 | |a flying capacitor converter (FCC) | |
650 | 4 | |a model predictive control (MPC) | |
650 | 4 | |a flying capacitor balancing | |
650 | 4 | |a multi-level converter | |
653 | 0 | |a Electronics | |
700 | 0 | |a Panteleimon Papamanolis |e verfasserin |4 aut | |
700 | 0 | |a Francesc Trunas Bruguera |e verfasserin |4 aut | |
700 | 0 | |a Thomas Guillod |e verfasserin |4 aut | |
700 | 0 | |a Florian Krismer |e verfasserin |4 aut | |
700 | 0 | |a Vladan Lazarevic |e verfasserin |4 aut | |
700 | 0 | |a Jonas Huber |e verfasserin |4 aut | |
700 | 0 | |a Johann W. Kolar |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronics |d MDPI AG, 2013 |g 10(2021), 19, p 2414 |w (DE-627)718626478 |w (DE-600)2662127-7 |x 20799292 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2021 |g number:19, p 2414 |
856 | 4 | 0 | |u https://doi.org/10.3390/electronics10192414 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/88f63e53328f49399725912341102a33 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9292/10/19/2414 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2021 |e 19, p 2414 |
author_variant |
p c pc p p pp f t b ftb t g tg f k fk v l vl j h jh j w k jwk |
---|---|
matchkey_str |
article:20799292:2021----::odneednvlaeaacnomlieefyncpctrovre |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.3390/electronics10192414 doi (DE-627)DOAJ02393669X (DE-599)DOAJ88f63e53328f49399725912341102a33 DE-627 ger DE-627 rakwb eng TK7800-8360 Piotr Czyz verfasserin aut Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quasi-2-level (Q2L) operation of multi-level bridge-legs, especially of flying-capacitor converters (FCC), is an interesting option for realizing single-cell power conversion in applications whose system voltages exceed the ratings of available power semiconductors. To ensure equal voltage sharing among a Q2L-FCC’s switches, the voltages of a Q2L-FCC’s minimized flying capacitors (FCs) must always be balanced. Thus, we propose a concept for load-independent FC voltage balancing: For non-zero load current, we use a model predictive control (MPC) approach to identify the commutation sequence of the individual switches within a Q2L transition that minimizes the FC or cell voltage errors. In case of zero load current, we employ a novel MPC-based approach using cell multiple switching (CMS), i.e., the insertion of additional zero-current commutations within a Q2L transition, to exchange charge between the FCs via the charging currents of the switches’ parasitic capacitances. Experiments with a 5-level FCC half-bridge demonstrator confirm the validity of the derived models and verify the performance of the proposed load-independent balancing concept. quasi-2-level (Q2L) flying capacitor converter (FCC) model predictive control (MPC) flying capacitor balancing multi-level converter Electronics Panteleimon Papamanolis verfasserin aut Francesc Trunas Bruguera verfasserin aut Thomas Guillod verfasserin aut Florian Krismer verfasserin aut Vladan Lazarevic verfasserin aut Jonas Huber verfasserin aut Johann W. Kolar verfasserin aut In Electronics MDPI AG, 2013 10(2021), 19, p 2414 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:10 year:2021 number:19, p 2414 https://doi.org/10.3390/electronics10192414 kostenfrei https://doaj.org/article/88f63e53328f49399725912341102a33 kostenfrei https://www.mdpi.com/2079-9292/10/19/2414 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 19, p 2414 |
spelling |
10.3390/electronics10192414 doi (DE-627)DOAJ02393669X (DE-599)DOAJ88f63e53328f49399725912341102a33 DE-627 ger DE-627 rakwb eng TK7800-8360 Piotr Czyz verfasserin aut Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quasi-2-level (Q2L) operation of multi-level bridge-legs, especially of flying-capacitor converters (FCC), is an interesting option for realizing single-cell power conversion in applications whose system voltages exceed the ratings of available power semiconductors. To ensure equal voltage sharing among a Q2L-FCC’s switches, the voltages of a Q2L-FCC’s minimized flying capacitors (FCs) must always be balanced. Thus, we propose a concept for load-independent FC voltage balancing: For non-zero load current, we use a model predictive control (MPC) approach to identify the commutation sequence of the individual switches within a Q2L transition that minimizes the FC or cell voltage errors. In case of zero load current, we employ a novel MPC-based approach using cell multiple switching (CMS), i.e., the insertion of additional zero-current commutations within a Q2L transition, to exchange charge between the FCs via the charging currents of the switches’ parasitic capacitances. Experiments with a 5-level FCC half-bridge demonstrator confirm the validity of the derived models and verify the performance of the proposed load-independent balancing concept. quasi-2-level (Q2L) flying capacitor converter (FCC) model predictive control (MPC) flying capacitor balancing multi-level converter Electronics Panteleimon Papamanolis verfasserin aut Francesc Trunas Bruguera verfasserin aut Thomas Guillod verfasserin aut Florian Krismer verfasserin aut Vladan Lazarevic verfasserin aut Jonas Huber verfasserin aut Johann W. Kolar verfasserin aut In Electronics MDPI AG, 2013 10(2021), 19, p 2414 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:10 year:2021 number:19, p 2414 https://doi.org/10.3390/electronics10192414 kostenfrei https://doaj.org/article/88f63e53328f49399725912341102a33 kostenfrei https://www.mdpi.com/2079-9292/10/19/2414 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 19, p 2414 |
allfields_unstemmed |
10.3390/electronics10192414 doi (DE-627)DOAJ02393669X (DE-599)DOAJ88f63e53328f49399725912341102a33 DE-627 ger DE-627 rakwb eng TK7800-8360 Piotr Czyz verfasserin aut Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quasi-2-level (Q2L) operation of multi-level bridge-legs, especially of flying-capacitor converters (FCC), is an interesting option for realizing single-cell power conversion in applications whose system voltages exceed the ratings of available power semiconductors. To ensure equal voltage sharing among a Q2L-FCC’s switches, the voltages of a Q2L-FCC’s minimized flying capacitors (FCs) must always be balanced. Thus, we propose a concept for load-independent FC voltage balancing: For non-zero load current, we use a model predictive control (MPC) approach to identify the commutation sequence of the individual switches within a Q2L transition that minimizes the FC or cell voltage errors. In case of zero load current, we employ a novel MPC-based approach using cell multiple switching (CMS), i.e., the insertion of additional zero-current commutations within a Q2L transition, to exchange charge between the FCs via the charging currents of the switches’ parasitic capacitances. Experiments with a 5-level FCC half-bridge demonstrator confirm the validity of the derived models and verify the performance of the proposed load-independent balancing concept. quasi-2-level (Q2L) flying capacitor converter (FCC) model predictive control (MPC) flying capacitor balancing multi-level converter Electronics Panteleimon Papamanolis verfasserin aut Francesc Trunas Bruguera verfasserin aut Thomas Guillod verfasserin aut Florian Krismer verfasserin aut Vladan Lazarevic verfasserin aut Jonas Huber verfasserin aut Johann W. Kolar verfasserin aut In Electronics MDPI AG, 2013 10(2021), 19, p 2414 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:10 year:2021 number:19, p 2414 https://doi.org/10.3390/electronics10192414 kostenfrei https://doaj.org/article/88f63e53328f49399725912341102a33 kostenfrei https://www.mdpi.com/2079-9292/10/19/2414 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 19, p 2414 |
allfieldsGer |
10.3390/electronics10192414 doi (DE-627)DOAJ02393669X (DE-599)DOAJ88f63e53328f49399725912341102a33 DE-627 ger DE-627 rakwb eng TK7800-8360 Piotr Czyz verfasserin aut Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quasi-2-level (Q2L) operation of multi-level bridge-legs, especially of flying-capacitor converters (FCC), is an interesting option for realizing single-cell power conversion in applications whose system voltages exceed the ratings of available power semiconductors. To ensure equal voltage sharing among a Q2L-FCC’s switches, the voltages of a Q2L-FCC’s minimized flying capacitors (FCs) must always be balanced. Thus, we propose a concept for load-independent FC voltage balancing: For non-zero load current, we use a model predictive control (MPC) approach to identify the commutation sequence of the individual switches within a Q2L transition that minimizes the FC or cell voltage errors. In case of zero load current, we employ a novel MPC-based approach using cell multiple switching (CMS), i.e., the insertion of additional zero-current commutations within a Q2L transition, to exchange charge between the FCs via the charging currents of the switches’ parasitic capacitances. Experiments with a 5-level FCC half-bridge demonstrator confirm the validity of the derived models and verify the performance of the proposed load-independent balancing concept. quasi-2-level (Q2L) flying capacitor converter (FCC) model predictive control (MPC) flying capacitor balancing multi-level converter Electronics Panteleimon Papamanolis verfasserin aut Francesc Trunas Bruguera verfasserin aut Thomas Guillod verfasserin aut Florian Krismer verfasserin aut Vladan Lazarevic verfasserin aut Jonas Huber verfasserin aut Johann W. Kolar verfasserin aut In Electronics MDPI AG, 2013 10(2021), 19, p 2414 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:10 year:2021 number:19, p 2414 https://doi.org/10.3390/electronics10192414 kostenfrei https://doaj.org/article/88f63e53328f49399725912341102a33 kostenfrei https://www.mdpi.com/2079-9292/10/19/2414 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 19, p 2414 |
allfieldsSound |
10.3390/electronics10192414 doi (DE-627)DOAJ02393669X (DE-599)DOAJ88f63e53328f49399725912341102a33 DE-627 ger DE-627 rakwb eng TK7800-8360 Piotr Czyz verfasserin aut Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Quasi-2-level (Q2L) operation of multi-level bridge-legs, especially of flying-capacitor converters (FCC), is an interesting option for realizing single-cell power conversion in applications whose system voltages exceed the ratings of available power semiconductors. To ensure equal voltage sharing among a Q2L-FCC’s switches, the voltages of a Q2L-FCC’s minimized flying capacitors (FCs) must always be balanced. Thus, we propose a concept for load-independent FC voltage balancing: For non-zero load current, we use a model predictive control (MPC) approach to identify the commutation sequence of the individual switches within a Q2L transition that minimizes the FC or cell voltage errors. In case of zero load current, we employ a novel MPC-based approach using cell multiple switching (CMS), i.e., the insertion of additional zero-current commutations within a Q2L transition, to exchange charge between the FCs via the charging currents of the switches’ parasitic capacitances. Experiments with a 5-level FCC half-bridge demonstrator confirm the validity of the derived models and verify the performance of the proposed load-independent balancing concept. quasi-2-level (Q2L) flying capacitor converter (FCC) model predictive control (MPC) flying capacitor balancing multi-level converter Electronics Panteleimon Papamanolis verfasserin aut Francesc Trunas Bruguera verfasserin aut Thomas Guillod verfasserin aut Florian Krismer verfasserin aut Vladan Lazarevic verfasserin aut Jonas Huber verfasserin aut Johann W. Kolar verfasserin aut In Electronics MDPI AG, 2013 10(2021), 19, p 2414 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:10 year:2021 number:19, p 2414 https://doi.org/10.3390/electronics10192414 kostenfrei https://doaj.org/article/88f63e53328f49399725912341102a33 kostenfrei https://www.mdpi.com/2079-9292/10/19/2414 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 19, p 2414 |
language |
English |
source |
In Electronics 10(2021), 19, p 2414 volume:10 year:2021 number:19, p 2414 |
sourceStr |
In Electronics 10(2021), 19, p 2414 volume:10 year:2021 number:19, p 2414 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
quasi-2-level (Q2L) flying capacitor converter (FCC) model predictive control (MPC) flying capacitor balancing multi-level converter Electronics |
isfreeaccess_bool |
true |
container_title |
Electronics |
authorswithroles_txt_mv |
Piotr Czyz @@aut@@ Panteleimon Papamanolis @@aut@@ Francesc Trunas Bruguera @@aut@@ Thomas Guillod @@aut@@ Florian Krismer @@aut@@ Vladan Lazarevic @@aut@@ Jonas Huber @@aut@@ Johann W. Kolar @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
718626478 |
id |
DOAJ02393669X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02393669X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412141016.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics10192414</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02393669X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ88f63e53328f49399725912341102a33</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Piotr Czyz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quasi-2-level (Q2L) operation of multi-level bridge-legs, especially of flying-capacitor converters (FCC), is an interesting option for realizing single-cell power conversion in applications whose system voltages exceed the ratings of available power semiconductors. To ensure equal voltage sharing among a Q2L-FCC’s switches, the voltages of a Q2L-FCC’s minimized flying capacitors (FCs) must always be balanced. Thus, we propose a concept for load-independent FC voltage balancing: For non-zero load current, we use a model predictive control (MPC) approach to identify the commutation sequence of the individual switches within a Q2L transition that minimizes the FC or cell voltage errors. In case of zero load current, we employ a novel MPC-based approach using cell multiple switching (CMS), i.e., the insertion of additional zero-current commutations within a Q2L transition, to exchange charge between the FCs via the charging currents of the switches’ parasitic capacitances. Experiments with a 5-level FCC half-bridge demonstrator confirm the validity of the derived models and verify the performance of the proposed load-independent balancing concept.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quasi-2-level (Q2L)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flying capacitor converter (FCC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model predictive control (MPC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flying capacitor balancing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-level converter</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Panteleimon Papamanolis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francesc Trunas Bruguera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas Guillod</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Florian Krismer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vladan Lazarevic</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonas Huber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johann W. Kolar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2021), 19, p 2414</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:19, p 2414</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics10192414</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/88f63e53328f49399725912341102a33</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/10/19/2414</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">19, p 2414</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Piotr Czyz |
spellingShingle |
Piotr Czyz misc TK7800-8360 misc quasi-2-level (Q2L) misc flying capacitor converter (FCC) misc model predictive control (MPC) misc flying capacitor balancing misc multi-level converter misc Electronics Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation |
authorStr |
Piotr Czyz |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718626478 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
20799292 |
topic_title |
TK7800-8360 Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation quasi-2-level (Q2L) flying capacitor converter (FCC) model predictive control (MPC) flying capacitor balancing multi-level converter |
topic |
misc TK7800-8360 misc quasi-2-level (Q2L) misc flying capacitor converter (FCC) misc model predictive control (MPC) misc flying capacitor balancing misc multi-level converter misc Electronics |
topic_unstemmed |
misc TK7800-8360 misc quasi-2-level (Q2L) misc flying capacitor converter (FCC) misc model predictive control (MPC) misc flying capacitor balancing misc multi-level converter misc Electronics |
topic_browse |
misc TK7800-8360 misc quasi-2-level (Q2L) misc flying capacitor converter (FCC) misc model predictive control (MPC) misc flying capacitor balancing misc multi-level converter misc Electronics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronics |
hierarchy_parent_id |
718626478 |
hierarchy_top_title |
Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718626478 (DE-600)2662127-7 |
title |
Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation |
ctrlnum |
(DE-627)DOAJ02393669X (DE-599)DOAJ88f63e53328f49399725912341102a33 |
title_full |
Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation |
author_sort |
Piotr Czyz |
journal |
Electronics |
journalStr |
Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Piotr Czyz Panteleimon Papamanolis Francesc Trunas Bruguera Thomas Guillod Florian Krismer Vladan Lazarevic Jonas Huber Johann W. Kolar |
container_volume |
10 |
class |
TK7800-8360 |
format_se |
Elektronische Aufsätze |
author-letter |
Piotr Czyz |
doi_str_mv |
10.3390/electronics10192414 |
author2-role |
verfasserin |
title_sort |
load-independent voltage balancing of multi-level flying capacitor converters in quasi-2-level operation |
callnumber |
TK7800-8360 |
title_auth |
Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation |
abstract |
Quasi-2-level (Q2L) operation of multi-level bridge-legs, especially of flying-capacitor converters (FCC), is an interesting option for realizing single-cell power conversion in applications whose system voltages exceed the ratings of available power semiconductors. To ensure equal voltage sharing among a Q2L-FCC’s switches, the voltages of a Q2L-FCC’s minimized flying capacitors (FCs) must always be balanced. Thus, we propose a concept for load-independent FC voltage balancing: For non-zero load current, we use a model predictive control (MPC) approach to identify the commutation sequence of the individual switches within a Q2L transition that minimizes the FC or cell voltage errors. In case of zero load current, we employ a novel MPC-based approach using cell multiple switching (CMS), i.e., the insertion of additional zero-current commutations within a Q2L transition, to exchange charge between the FCs via the charging currents of the switches’ parasitic capacitances. Experiments with a 5-level FCC half-bridge demonstrator confirm the validity of the derived models and verify the performance of the proposed load-independent balancing concept. |
abstractGer |
Quasi-2-level (Q2L) operation of multi-level bridge-legs, especially of flying-capacitor converters (FCC), is an interesting option for realizing single-cell power conversion in applications whose system voltages exceed the ratings of available power semiconductors. To ensure equal voltage sharing among a Q2L-FCC’s switches, the voltages of a Q2L-FCC’s minimized flying capacitors (FCs) must always be balanced. Thus, we propose a concept for load-independent FC voltage balancing: For non-zero load current, we use a model predictive control (MPC) approach to identify the commutation sequence of the individual switches within a Q2L transition that minimizes the FC or cell voltage errors. In case of zero load current, we employ a novel MPC-based approach using cell multiple switching (CMS), i.e., the insertion of additional zero-current commutations within a Q2L transition, to exchange charge between the FCs via the charging currents of the switches’ parasitic capacitances. Experiments with a 5-level FCC half-bridge demonstrator confirm the validity of the derived models and verify the performance of the proposed load-independent balancing concept. |
abstract_unstemmed |
Quasi-2-level (Q2L) operation of multi-level bridge-legs, especially of flying-capacitor converters (FCC), is an interesting option for realizing single-cell power conversion in applications whose system voltages exceed the ratings of available power semiconductors. To ensure equal voltage sharing among a Q2L-FCC’s switches, the voltages of a Q2L-FCC’s minimized flying capacitors (FCs) must always be balanced. Thus, we propose a concept for load-independent FC voltage balancing: For non-zero load current, we use a model predictive control (MPC) approach to identify the commutation sequence of the individual switches within a Q2L transition that minimizes the FC or cell voltage errors. In case of zero load current, we employ a novel MPC-based approach using cell multiple switching (CMS), i.e., the insertion of additional zero-current commutations within a Q2L transition, to exchange charge between the FCs via the charging currents of the switches’ parasitic capacitances. Experiments with a 5-level FCC half-bridge demonstrator confirm the validity of the derived models and verify the performance of the proposed load-independent balancing concept. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
19, p 2414 |
title_short |
Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation |
url |
https://doi.org/10.3390/electronics10192414 https://doaj.org/article/88f63e53328f49399725912341102a33 https://www.mdpi.com/2079-9292/10/19/2414 https://doaj.org/toc/2079-9292 |
remote_bool |
true |
author2 |
Panteleimon Papamanolis Francesc Trunas Bruguera Thomas Guillod Florian Krismer Vladan Lazarevic Jonas Huber Johann W. Kolar |
author2Str |
Panteleimon Papamanolis Francesc Trunas Bruguera Thomas Guillod Florian Krismer Vladan Lazarevic Jonas Huber Johann W. Kolar |
ppnlink |
718626478 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/electronics10192414 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-03T20:18:27.110Z |
_version_ |
1803590468488921088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02393669X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412141016.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics10192414</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02393669X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ88f63e53328f49399725912341102a33</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Piotr Czyz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Load-Independent Voltage Balancing of Multi-Level Flying Capacitor Converters in Quasi-2-Level Operation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quasi-2-level (Q2L) operation of multi-level bridge-legs, especially of flying-capacitor converters (FCC), is an interesting option for realizing single-cell power conversion in applications whose system voltages exceed the ratings of available power semiconductors. To ensure equal voltage sharing among a Q2L-FCC’s switches, the voltages of a Q2L-FCC’s minimized flying capacitors (FCs) must always be balanced. Thus, we propose a concept for load-independent FC voltage balancing: For non-zero load current, we use a model predictive control (MPC) approach to identify the commutation sequence of the individual switches within a Q2L transition that minimizes the FC or cell voltage errors. In case of zero load current, we employ a novel MPC-based approach using cell multiple switching (CMS), i.e., the insertion of additional zero-current commutations within a Q2L transition, to exchange charge between the FCs via the charging currents of the switches’ parasitic capacitances. Experiments with a 5-level FCC half-bridge demonstrator confirm the validity of the derived models and verify the performance of the proposed load-independent balancing concept.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quasi-2-level (Q2L)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flying capacitor converter (FCC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model predictive control (MPC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flying capacitor balancing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-level converter</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Panteleimon Papamanolis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francesc Trunas Bruguera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thomas Guillod</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Florian Krismer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vladan Lazarevic</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonas Huber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Johann W. Kolar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2021), 19, p 2414</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:19, p 2414</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics10192414</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/88f63e53328f49399725912341102a33</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/10/19/2414</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">19, p 2414</subfield></datafield></record></collection>
|
score |
7.4022045 |