A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices
Decades of wind turbine research, development and installation have demonstrated reductions in levelized cost of energy (LCOE) resulting from turbines with larger rotor diameters and increased hub heights. Further reductions in LCOE by up-scaling turbine size can be challenged by practical limitatio...
Ausführliche Beschreibung
Autor*in: |
Abhineet Gupta [verfasserIn] Mario A. Rotea [verfasserIn] Mayank Chetan [verfasserIn] Mohammad S. Sakib [verfasserIn] D. Todd Griffith [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 14(2021), 12, p 3500 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2021 ; number:12, p 3500 |
Links: |
---|
DOI / URN: |
10.3390/en14123500 |
---|
Katalog-ID: |
DOAJ024034517 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ024034517 | ||
003 | DE-627 | ||
005 | 20240412174440.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en14123500 |2 doi | |
035 | |a (DE-627)DOAJ024034517 | ||
035 | |a (DE-599)DOAJ1c468d807de34965918cfb1698eaf258 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Abhineet Gupta |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Decades of wind turbine research, development and installation have demonstrated reductions in levelized cost of energy (LCOE) resulting from turbines with larger rotor diameters and increased hub heights. Further reductions in LCOE by up-scaling turbine size can be challenged by practical limitations such as the square-cube law: where the power scales with the square of the blade length and the added mass scales with the volume (the cube). Active blade load control can disrupt this trend, allowing longer blades with less mass. This paper presents the details of the development of a robust load control system to reduce blade fatigue loads. The control system, which we coined sectional lift control or SLC, uses a lift actuator model to emulate an active flow control device. The main contributions of this paper are: (1) Methodology for SLC design to reduce dynamic blade root moments in a neighborhood of the rotor angular frequency (1P). (2) Analysis and numerical evidence supporting the use of a single robust SLC for all wind speeds, without the need for scheduling on wind speed or readily available measurements such as collective pitch or generator angular speed. (3) Intuition and numerical evidence to demonstrate that the SLC and the turbine controller do not interact. (4) Evaluation of the SLC using a full suite of fatigue and turbine performance metrics. | ||
650 | 4 | |a wind turbine technology | |
650 | 4 | |a load control | |
650 | 4 | |a robust control | |
650 | 4 | |a active flow control | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Mario A. Rotea |e verfasserin |4 aut | |
700 | 0 | |a Mayank Chetan |e verfasserin |4 aut | |
700 | 0 | |a Mohammad S. Sakib |e verfasserin |4 aut | |
700 | 0 | |a D. Todd Griffith |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 14(2021), 12, p 3500 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2021 |g number:12, p 3500 |
856 | 4 | 0 | |u https://doi.org/10.3390/en14123500 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1c468d807de34965918cfb1698eaf258 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/14/12/3500 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2021 |e 12, p 3500 |
author_variant |
a g ag m a r mar m c mc m s s mss d t g dtg |
---|---|
matchkey_str |
article:19961073:2021----::mtoooyorbslardcinnidubnbaeui |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/en14123500 doi (DE-627)DOAJ024034517 (DE-599)DOAJ1c468d807de34965918cfb1698eaf258 DE-627 ger DE-627 rakwb eng Abhineet Gupta verfasserin aut A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Decades of wind turbine research, development and installation have demonstrated reductions in levelized cost of energy (LCOE) resulting from turbines with larger rotor diameters and increased hub heights. Further reductions in LCOE by up-scaling turbine size can be challenged by practical limitations such as the square-cube law: where the power scales with the square of the blade length and the added mass scales with the volume (the cube). Active blade load control can disrupt this trend, allowing longer blades with less mass. This paper presents the details of the development of a robust load control system to reduce blade fatigue loads. The control system, which we coined sectional lift control or SLC, uses a lift actuator model to emulate an active flow control device. The main contributions of this paper are: (1) Methodology for SLC design to reduce dynamic blade root moments in a neighborhood of the rotor angular frequency (1P). (2) Analysis and numerical evidence supporting the use of a single robust SLC for all wind speeds, without the need for scheduling on wind speed or readily available measurements such as collective pitch or generator angular speed. (3) Intuition and numerical evidence to demonstrate that the SLC and the turbine controller do not interact. (4) Evaluation of the SLC using a full suite of fatigue and turbine performance metrics. wind turbine technology load control robust control active flow control Technology T Mario A. Rotea verfasserin aut Mayank Chetan verfasserin aut Mohammad S. Sakib verfasserin aut D. Todd Griffith verfasserin aut In Energies MDPI AG, 2008 14(2021), 12, p 3500 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:14 year:2021 number:12, p 3500 https://doi.org/10.3390/en14123500 kostenfrei https://doaj.org/article/1c468d807de34965918cfb1698eaf258 kostenfrei https://www.mdpi.com/1996-1073/14/12/3500 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 12, p 3500 |
spelling |
10.3390/en14123500 doi (DE-627)DOAJ024034517 (DE-599)DOAJ1c468d807de34965918cfb1698eaf258 DE-627 ger DE-627 rakwb eng Abhineet Gupta verfasserin aut A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Decades of wind turbine research, development and installation have demonstrated reductions in levelized cost of energy (LCOE) resulting from turbines with larger rotor diameters and increased hub heights. Further reductions in LCOE by up-scaling turbine size can be challenged by practical limitations such as the square-cube law: where the power scales with the square of the blade length and the added mass scales with the volume (the cube). Active blade load control can disrupt this trend, allowing longer blades with less mass. This paper presents the details of the development of a robust load control system to reduce blade fatigue loads. The control system, which we coined sectional lift control or SLC, uses a lift actuator model to emulate an active flow control device. The main contributions of this paper are: (1) Methodology for SLC design to reduce dynamic blade root moments in a neighborhood of the rotor angular frequency (1P). (2) Analysis and numerical evidence supporting the use of a single robust SLC for all wind speeds, without the need for scheduling on wind speed or readily available measurements such as collective pitch or generator angular speed. (3) Intuition and numerical evidence to demonstrate that the SLC and the turbine controller do not interact. (4) Evaluation of the SLC using a full suite of fatigue and turbine performance metrics. wind turbine technology load control robust control active flow control Technology T Mario A. Rotea verfasserin aut Mayank Chetan verfasserin aut Mohammad S. Sakib verfasserin aut D. Todd Griffith verfasserin aut In Energies MDPI AG, 2008 14(2021), 12, p 3500 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:14 year:2021 number:12, p 3500 https://doi.org/10.3390/en14123500 kostenfrei https://doaj.org/article/1c468d807de34965918cfb1698eaf258 kostenfrei https://www.mdpi.com/1996-1073/14/12/3500 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 12, p 3500 |
allfields_unstemmed |
10.3390/en14123500 doi (DE-627)DOAJ024034517 (DE-599)DOAJ1c468d807de34965918cfb1698eaf258 DE-627 ger DE-627 rakwb eng Abhineet Gupta verfasserin aut A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Decades of wind turbine research, development and installation have demonstrated reductions in levelized cost of energy (LCOE) resulting from turbines with larger rotor diameters and increased hub heights. Further reductions in LCOE by up-scaling turbine size can be challenged by practical limitations such as the square-cube law: where the power scales with the square of the blade length and the added mass scales with the volume (the cube). Active blade load control can disrupt this trend, allowing longer blades with less mass. This paper presents the details of the development of a robust load control system to reduce blade fatigue loads. The control system, which we coined sectional lift control or SLC, uses a lift actuator model to emulate an active flow control device. The main contributions of this paper are: (1) Methodology for SLC design to reduce dynamic blade root moments in a neighborhood of the rotor angular frequency (1P). (2) Analysis and numerical evidence supporting the use of a single robust SLC for all wind speeds, without the need for scheduling on wind speed or readily available measurements such as collective pitch or generator angular speed. (3) Intuition and numerical evidence to demonstrate that the SLC and the turbine controller do not interact. (4) Evaluation of the SLC using a full suite of fatigue and turbine performance metrics. wind turbine technology load control robust control active flow control Technology T Mario A. Rotea verfasserin aut Mayank Chetan verfasserin aut Mohammad S. Sakib verfasserin aut D. Todd Griffith verfasserin aut In Energies MDPI AG, 2008 14(2021), 12, p 3500 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:14 year:2021 number:12, p 3500 https://doi.org/10.3390/en14123500 kostenfrei https://doaj.org/article/1c468d807de34965918cfb1698eaf258 kostenfrei https://www.mdpi.com/1996-1073/14/12/3500 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 12, p 3500 |
allfieldsGer |
10.3390/en14123500 doi (DE-627)DOAJ024034517 (DE-599)DOAJ1c468d807de34965918cfb1698eaf258 DE-627 ger DE-627 rakwb eng Abhineet Gupta verfasserin aut A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Decades of wind turbine research, development and installation have demonstrated reductions in levelized cost of energy (LCOE) resulting from turbines with larger rotor diameters and increased hub heights. Further reductions in LCOE by up-scaling turbine size can be challenged by practical limitations such as the square-cube law: where the power scales with the square of the blade length and the added mass scales with the volume (the cube). Active blade load control can disrupt this trend, allowing longer blades with less mass. This paper presents the details of the development of a robust load control system to reduce blade fatigue loads. The control system, which we coined sectional lift control or SLC, uses a lift actuator model to emulate an active flow control device. The main contributions of this paper are: (1) Methodology for SLC design to reduce dynamic blade root moments in a neighborhood of the rotor angular frequency (1P). (2) Analysis and numerical evidence supporting the use of a single robust SLC for all wind speeds, without the need for scheduling on wind speed or readily available measurements such as collective pitch or generator angular speed. (3) Intuition and numerical evidence to demonstrate that the SLC and the turbine controller do not interact. (4) Evaluation of the SLC using a full suite of fatigue and turbine performance metrics. wind turbine technology load control robust control active flow control Technology T Mario A. Rotea verfasserin aut Mayank Chetan verfasserin aut Mohammad S. Sakib verfasserin aut D. Todd Griffith verfasserin aut In Energies MDPI AG, 2008 14(2021), 12, p 3500 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:14 year:2021 number:12, p 3500 https://doi.org/10.3390/en14123500 kostenfrei https://doaj.org/article/1c468d807de34965918cfb1698eaf258 kostenfrei https://www.mdpi.com/1996-1073/14/12/3500 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 12, p 3500 |
allfieldsSound |
10.3390/en14123500 doi (DE-627)DOAJ024034517 (DE-599)DOAJ1c468d807de34965918cfb1698eaf258 DE-627 ger DE-627 rakwb eng Abhineet Gupta verfasserin aut A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Decades of wind turbine research, development and installation have demonstrated reductions in levelized cost of energy (LCOE) resulting from turbines with larger rotor diameters and increased hub heights. Further reductions in LCOE by up-scaling turbine size can be challenged by practical limitations such as the square-cube law: where the power scales with the square of the blade length and the added mass scales with the volume (the cube). Active blade load control can disrupt this trend, allowing longer blades with less mass. This paper presents the details of the development of a robust load control system to reduce blade fatigue loads. The control system, which we coined sectional lift control or SLC, uses a lift actuator model to emulate an active flow control device. The main contributions of this paper are: (1) Methodology for SLC design to reduce dynamic blade root moments in a neighborhood of the rotor angular frequency (1P). (2) Analysis and numerical evidence supporting the use of a single robust SLC for all wind speeds, without the need for scheduling on wind speed or readily available measurements such as collective pitch or generator angular speed. (3) Intuition and numerical evidence to demonstrate that the SLC and the turbine controller do not interact. (4) Evaluation of the SLC using a full suite of fatigue and turbine performance metrics. wind turbine technology load control robust control active flow control Technology T Mario A. Rotea verfasserin aut Mayank Chetan verfasserin aut Mohammad S. Sakib verfasserin aut D. Todd Griffith verfasserin aut In Energies MDPI AG, 2008 14(2021), 12, p 3500 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:14 year:2021 number:12, p 3500 https://doi.org/10.3390/en14123500 kostenfrei https://doaj.org/article/1c468d807de34965918cfb1698eaf258 kostenfrei https://www.mdpi.com/1996-1073/14/12/3500 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 12, p 3500 |
language |
English |
source |
In Energies 14(2021), 12, p 3500 volume:14 year:2021 number:12, p 3500 |
sourceStr |
In Energies 14(2021), 12, p 3500 volume:14 year:2021 number:12, p 3500 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wind turbine technology load control robust control active flow control Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Abhineet Gupta @@aut@@ Mario A. Rotea @@aut@@ Mayank Chetan @@aut@@ Mohammad S. Sakib @@aut@@ D. Todd Griffith @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ024034517 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024034517</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412174440.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en14123500</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024034517</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1c468d807de34965918cfb1698eaf258</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Abhineet Gupta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Decades of wind turbine research, development and installation have demonstrated reductions in levelized cost of energy (LCOE) resulting from turbines with larger rotor diameters and increased hub heights. Further reductions in LCOE by up-scaling turbine size can be challenged by practical limitations such as the square-cube law: where the power scales with the square of the blade length and the added mass scales with the volume (the cube). Active blade load control can disrupt this trend, allowing longer blades with less mass. This paper presents the details of the development of a robust load control system to reduce blade fatigue loads. The control system, which we coined sectional lift control or SLC, uses a lift actuator model to emulate an active flow control device. The main contributions of this paper are: (1) Methodology for SLC design to reduce dynamic blade root moments in a neighborhood of the rotor angular frequency (1P). (2) Analysis and numerical evidence supporting the use of a single robust SLC for all wind speeds, without the need for scheduling on wind speed or readily available measurements such as collective pitch or generator angular speed. (3) Intuition and numerical evidence to demonstrate that the SLC and the turbine controller do not interact. (4) Evaluation of the SLC using a full suite of fatigue and turbine performance metrics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind turbine technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">load control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robust control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active flow control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mario A. Rotea</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mayank Chetan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad S. Sakib</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. Todd Griffith</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">14(2021), 12, p 3500</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 3500</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en14123500</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1c468d807de34965918cfb1698eaf258</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/14/12/3500</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 3500</subfield></datafield></record></collection>
|
author |
Abhineet Gupta |
spellingShingle |
Abhineet Gupta misc wind turbine technology misc load control misc robust control misc active flow control misc Technology misc T A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices |
authorStr |
Abhineet Gupta |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices wind turbine technology load control robust control active flow control |
topic |
misc wind turbine technology misc load control misc robust control misc active flow control misc Technology misc T |
topic_unstemmed |
misc wind turbine technology misc load control misc robust control misc active flow control misc Technology misc T |
topic_browse |
misc wind turbine technology misc load control misc robust control misc active flow control misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices |
ctrlnum |
(DE-627)DOAJ024034517 (DE-599)DOAJ1c468d807de34965918cfb1698eaf258 |
title_full |
A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices |
author_sort |
Abhineet Gupta |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Abhineet Gupta Mario A. Rotea Mayank Chetan Mohammad S. Sakib D. Todd Griffith |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Abhineet Gupta |
doi_str_mv |
10.3390/en14123500 |
author2-role |
verfasserin |
title_sort |
methodology for robust load reduction in wind turbine blades using flow control devices |
title_auth |
A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices |
abstract |
Decades of wind turbine research, development and installation have demonstrated reductions in levelized cost of energy (LCOE) resulting from turbines with larger rotor diameters and increased hub heights. Further reductions in LCOE by up-scaling turbine size can be challenged by practical limitations such as the square-cube law: where the power scales with the square of the blade length and the added mass scales with the volume (the cube). Active blade load control can disrupt this trend, allowing longer blades with less mass. This paper presents the details of the development of a robust load control system to reduce blade fatigue loads. The control system, which we coined sectional lift control or SLC, uses a lift actuator model to emulate an active flow control device. The main contributions of this paper are: (1) Methodology for SLC design to reduce dynamic blade root moments in a neighborhood of the rotor angular frequency (1P). (2) Analysis and numerical evidence supporting the use of a single robust SLC for all wind speeds, without the need for scheduling on wind speed or readily available measurements such as collective pitch or generator angular speed. (3) Intuition and numerical evidence to demonstrate that the SLC and the turbine controller do not interact. (4) Evaluation of the SLC using a full suite of fatigue and turbine performance metrics. |
abstractGer |
Decades of wind turbine research, development and installation have demonstrated reductions in levelized cost of energy (LCOE) resulting from turbines with larger rotor diameters and increased hub heights. Further reductions in LCOE by up-scaling turbine size can be challenged by practical limitations such as the square-cube law: where the power scales with the square of the blade length and the added mass scales with the volume (the cube). Active blade load control can disrupt this trend, allowing longer blades with less mass. This paper presents the details of the development of a robust load control system to reduce blade fatigue loads. The control system, which we coined sectional lift control or SLC, uses a lift actuator model to emulate an active flow control device. The main contributions of this paper are: (1) Methodology for SLC design to reduce dynamic blade root moments in a neighborhood of the rotor angular frequency (1P). (2) Analysis and numerical evidence supporting the use of a single robust SLC for all wind speeds, without the need for scheduling on wind speed or readily available measurements such as collective pitch or generator angular speed. (3) Intuition and numerical evidence to demonstrate that the SLC and the turbine controller do not interact. (4) Evaluation of the SLC using a full suite of fatigue and turbine performance metrics. |
abstract_unstemmed |
Decades of wind turbine research, development and installation have demonstrated reductions in levelized cost of energy (LCOE) resulting from turbines with larger rotor diameters and increased hub heights. Further reductions in LCOE by up-scaling turbine size can be challenged by practical limitations such as the square-cube law: where the power scales with the square of the blade length and the added mass scales with the volume (the cube). Active blade load control can disrupt this trend, allowing longer blades with less mass. This paper presents the details of the development of a robust load control system to reduce blade fatigue loads. The control system, which we coined sectional lift control or SLC, uses a lift actuator model to emulate an active flow control device. The main contributions of this paper are: (1) Methodology for SLC design to reduce dynamic blade root moments in a neighborhood of the rotor angular frequency (1P). (2) Analysis and numerical evidence supporting the use of a single robust SLC for all wind speeds, without the need for scheduling on wind speed or readily available measurements such as collective pitch or generator angular speed. (3) Intuition and numerical evidence to demonstrate that the SLC and the turbine controller do not interact. (4) Evaluation of the SLC using a full suite of fatigue and turbine performance metrics. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 3500 |
title_short |
A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices |
url |
https://doi.org/10.3390/en14123500 https://doaj.org/article/1c468d807de34965918cfb1698eaf258 https://www.mdpi.com/1996-1073/14/12/3500 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Mario A. Rotea Mayank Chetan Mohammad S. Sakib D. Todd Griffith |
author2Str |
Mario A. Rotea Mayank Chetan Mohammad S. Sakib D. Todd Griffith |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en14123500 |
up_date |
2024-07-03T20:51:12.879Z |
_version_ |
1803592529746067456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024034517</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412174440.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en14123500</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024034517</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1c468d807de34965918cfb1698eaf258</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Abhineet Gupta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Methodology for Robust Load Reduction in Wind Turbine Blades Using Flow Control Devices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Decades of wind turbine research, development and installation have demonstrated reductions in levelized cost of energy (LCOE) resulting from turbines with larger rotor diameters and increased hub heights. Further reductions in LCOE by up-scaling turbine size can be challenged by practical limitations such as the square-cube law: where the power scales with the square of the blade length and the added mass scales with the volume (the cube). Active blade load control can disrupt this trend, allowing longer blades with less mass. This paper presents the details of the development of a robust load control system to reduce blade fatigue loads. The control system, which we coined sectional lift control or SLC, uses a lift actuator model to emulate an active flow control device. The main contributions of this paper are: (1) Methodology for SLC design to reduce dynamic blade root moments in a neighborhood of the rotor angular frequency (1P). (2) Analysis and numerical evidence supporting the use of a single robust SLC for all wind speeds, without the need for scheduling on wind speed or readily available measurements such as collective pitch or generator angular speed. (3) Intuition and numerical evidence to demonstrate that the SLC and the turbine controller do not interact. (4) Evaluation of the SLC using a full suite of fatigue and turbine performance metrics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wind turbine technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">load control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robust control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active flow control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mario A. Rotea</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mayank Chetan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad S. Sakib</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. Todd Griffith</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">14(2021), 12, p 3500</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 3500</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en14123500</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1c468d807de34965918cfb1698eaf258</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/14/12/3500</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 3500</subfield></datafield></record></collection>
|
score |
7.4011526 |