Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability
Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every sta...
Ausführliche Beschreibung
Autor*in: |
Sangil Ahn [verfasserIn] Quang T.M. Pham [verfasserIn] Jitae Shin [verfasserIn] Su Jeong Song [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
future diabetic retinopathy image synthesis |
---|
Übergeordnetes Werk: |
In: Electronics - MDPI AG, 2013, 10(2021), 6, p 726 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2021 ; number:6, p 726 |
Links: |
---|
DOI / URN: |
10.3390/electronics10060726 |
---|
Katalog-ID: |
DOAJ024054801 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ024054801 | ||
003 | DE-627 | ||
005 | 20240412190515.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/electronics10060726 |2 doi | |
035 | |a (DE-627)DOAJ024054801 | ||
035 | |a (DE-599)DOAJ155d06ead5224a8f83ae2cd985051b54 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
100 | 0 | |a Sangil Ahn |e verfasserin |4 aut | |
245 | 1 | 0 | |a Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every stage of DR. While synthesizing future fundus images, the task of predicting the progression of the disease state is very challenging since we need a lot of longitudinal data over a long period of time. Even if the longitudinal data are collected, there is a pixel-level difference between the current fundus image and the target future image. It is difficult to train a model based on deep learning for synthesizing future fundus images that considers the lesion change. In this paper, we synthesize future fundus images by considering the progression of the disease with a two-step training approach to overcome these problems. In the first step, we concentrate on synthesizing a realistic fundus image using only a lesion segmentation mask and vessel segmentation mask from a large dataset for a fundus generator. In the second step, we train a lesion probability predictor to create a probability map that contains the occurrence probability information of the lesion. Finally, based on the probability map and current vessel, the pre-trained fundus generator synthesizes a predicted future fundus image. We visually demonstrate not only the capacity of the fundus generator that can control the pathological information but also the prediction of the disease progression on fundus images generated by our framework. Our framework achieves an F1-score of 0.74 for predicting DR severity and 0.91 for predicting DME occurrence. We demonstrate that our framework has a meaningful capability by comparing the scores of each class of DR severity, which are obtained by passing the predicted future image and real future image through an evaluation model. | ||
650 | 4 | |a future diabetic retinopathy image synthesis | |
650 | 4 | |a prediction occurrence probability | |
650 | 4 | |a generative adversarial network | |
653 | 0 | |a Electronics | |
700 | 0 | |a Quang T.M. Pham |e verfasserin |4 aut | |
700 | 0 | |a Jitae Shin |e verfasserin |4 aut | |
700 | 0 | |a Su Jeong Song |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronics |d MDPI AG, 2013 |g 10(2021), 6, p 726 |w (DE-627)718626478 |w (DE-600)2662127-7 |x 20799292 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2021 |g number:6, p 726 |
856 | 4 | 0 | |u https://doi.org/10.3390/electronics10060726 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/155d06ead5224a8f83ae2cd985051b54 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9292/10/6/726 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2021 |e 6, p 726 |
author_variant |
s a sa q t p qtp j s js s j s sjs |
---|---|
matchkey_str |
article:20799292:2021----::uuemgsnhssodaeirtnptyaeoteei |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.3390/electronics10060726 doi (DE-627)DOAJ024054801 (DE-599)DOAJ155d06ead5224a8f83ae2cd985051b54 DE-627 ger DE-627 rakwb eng TK7800-8360 Sangil Ahn verfasserin aut Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every stage of DR. While synthesizing future fundus images, the task of predicting the progression of the disease state is very challenging since we need a lot of longitudinal data over a long period of time. Even if the longitudinal data are collected, there is a pixel-level difference between the current fundus image and the target future image. It is difficult to train a model based on deep learning for synthesizing future fundus images that considers the lesion change. In this paper, we synthesize future fundus images by considering the progression of the disease with a two-step training approach to overcome these problems. In the first step, we concentrate on synthesizing a realistic fundus image using only a lesion segmentation mask and vessel segmentation mask from a large dataset for a fundus generator. In the second step, we train a lesion probability predictor to create a probability map that contains the occurrence probability information of the lesion. Finally, based on the probability map and current vessel, the pre-trained fundus generator synthesizes a predicted future fundus image. We visually demonstrate not only the capacity of the fundus generator that can control the pathological information but also the prediction of the disease progression on fundus images generated by our framework. Our framework achieves an F1-score of 0.74 for predicting DR severity and 0.91 for predicting DME occurrence. We demonstrate that our framework has a meaningful capability by comparing the scores of each class of DR severity, which are obtained by passing the predicted future image and real future image through an evaluation model. future diabetic retinopathy image synthesis prediction occurrence probability generative adversarial network Electronics Quang T.M. Pham verfasserin aut Jitae Shin verfasserin aut Su Jeong Song verfasserin aut In Electronics MDPI AG, 2013 10(2021), 6, p 726 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:10 year:2021 number:6, p 726 https://doi.org/10.3390/electronics10060726 kostenfrei https://doaj.org/article/155d06ead5224a8f83ae2cd985051b54 kostenfrei https://www.mdpi.com/2079-9292/10/6/726 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 6, p 726 |
spelling |
10.3390/electronics10060726 doi (DE-627)DOAJ024054801 (DE-599)DOAJ155d06ead5224a8f83ae2cd985051b54 DE-627 ger DE-627 rakwb eng TK7800-8360 Sangil Ahn verfasserin aut Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every stage of DR. While synthesizing future fundus images, the task of predicting the progression of the disease state is very challenging since we need a lot of longitudinal data over a long period of time. Even if the longitudinal data are collected, there is a pixel-level difference between the current fundus image and the target future image. It is difficult to train a model based on deep learning for synthesizing future fundus images that considers the lesion change. In this paper, we synthesize future fundus images by considering the progression of the disease with a two-step training approach to overcome these problems. In the first step, we concentrate on synthesizing a realistic fundus image using only a lesion segmentation mask and vessel segmentation mask from a large dataset for a fundus generator. In the second step, we train a lesion probability predictor to create a probability map that contains the occurrence probability information of the lesion. Finally, based on the probability map and current vessel, the pre-trained fundus generator synthesizes a predicted future fundus image. We visually demonstrate not only the capacity of the fundus generator that can control the pathological information but also the prediction of the disease progression on fundus images generated by our framework. Our framework achieves an F1-score of 0.74 for predicting DR severity and 0.91 for predicting DME occurrence. We demonstrate that our framework has a meaningful capability by comparing the scores of each class of DR severity, which are obtained by passing the predicted future image and real future image through an evaluation model. future diabetic retinopathy image synthesis prediction occurrence probability generative adversarial network Electronics Quang T.M. Pham verfasserin aut Jitae Shin verfasserin aut Su Jeong Song verfasserin aut In Electronics MDPI AG, 2013 10(2021), 6, p 726 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:10 year:2021 number:6, p 726 https://doi.org/10.3390/electronics10060726 kostenfrei https://doaj.org/article/155d06ead5224a8f83ae2cd985051b54 kostenfrei https://www.mdpi.com/2079-9292/10/6/726 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 6, p 726 |
allfields_unstemmed |
10.3390/electronics10060726 doi (DE-627)DOAJ024054801 (DE-599)DOAJ155d06ead5224a8f83ae2cd985051b54 DE-627 ger DE-627 rakwb eng TK7800-8360 Sangil Ahn verfasserin aut Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every stage of DR. While synthesizing future fundus images, the task of predicting the progression of the disease state is very challenging since we need a lot of longitudinal data over a long period of time. Even if the longitudinal data are collected, there is a pixel-level difference between the current fundus image and the target future image. It is difficult to train a model based on deep learning for synthesizing future fundus images that considers the lesion change. In this paper, we synthesize future fundus images by considering the progression of the disease with a two-step training approach to overcome these problems. In the first step, we concentrate on synthesizing a realistic fundus image using only a lesion segmentation mask and vessel segmentation mask from a large dataset for a fundus generator. In the second step, we train a lesion probability predictor to create a probability map that contains the occurrence probability information of the lesion. Finally, based on the probability map and current vessel, the pre-trained fundus generator synthesizes a predicted future fundus image. We visually demonstrate not only the capacity of the fundus generator that can control the pathological information but also the prediction of the disease progression on fundus images generated by our framework. Our framework achieves an F1-score of 0.74 for predicting DR severity and 0.91 for predicting DME occurrence. We demonstrate that our framework has a meaningful capability by comparing the scores of each class of DR severity, which are obtained by passing the predicted future image and real future image through an evaluation model. future diabetic retinopathy image synthesis prediction occurrence probability generative adversarial network Electronics Quang T.M. Pham verfasserin aut Jitae Shin verfasserin aut Su Jeong Song verfasserin aut In Electronics MDPI AG, 2013 10(2021), 6, p 726 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:10 year:2021 number:6, p 726 https://doi.org/10.3390/electronics10060726 kostenfrei https://doaj.org/article/155d06ead5224a8f83ae2cd985051b54 kostenfrei https://www.mdpi.com/2079-9292/10/6/726 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 6, p 726 |
allfieldsGer |
10.3390/electronics10060726 doi (DE-627)DOAJ024054801 (DE-599)DOAJ155d06ead5224a8f83ae2cd985051b54 DE-627 ger DE-627 rakwb eng TK7800-8360 Sangil Ahn verfasserin aut Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every stage of DR. While synthesizing future fundus images, the task of predicting the progression of the disease state is very challenging since we need a lot of longitudinal data over a long period of time. Even if the longitudinal data are collected, there is a pixel-level difference between the current fundus image and the target future image. It is difficult to train a model based on deep learning for synthesizing future fundus images that considers the lesion change. In this paper, we synthesize future fundus images by considering the progression of the disease with a two-step training approach to overcome these problems. In the first step, we concentrate on synthesizing a realistic fundus image using only a lesion segmentation mask and vessel segmentation mask from a large dataset for a fundus generator. In the second step, we train a lesion probability predictor to create a probability map that contains the occurrence probability information of the lesion. Finally, based on the probability map and current vessel, the pre-trained fundus generator synthesizes a predicted future fundus image. We visually demonstrate not only the capacity of the fundus generator that can control the pathological information but also the prediction of the disease progression on fundus images generated by our framework. Our framework achieves an F1-score of 0.74 for predicting DR severity and 0.91 for predicting DME occurrence. We demonstrate that our framework has a meaningful capability by comparing the scores of each class of DR severity, which are obtained by passing the predicted future image and real future image through an evaluation model. future diabetic retinopathy image synthesis prediction occurrence probability generative adversarial network Electronics Quang T.M. Pham verfasserin aut Jitae Shin verfasserin aut Su Jeong Song verfasserin aut In Electronics MDPI AG, 2013 10(2021), 6, p 726 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:10 year:2021 number:6, p 726 https://doi.org/10.3390/electronics10060726 kostenfrei https://doaj.org/article/155d06ead5224a8f83ae2cd985051b54 kostenfrei https://www.mdpi.com/2079-9292/10/6/726 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 6, p 726 |
allfieldsSound |
10.3390/electronics10060726 doi (DE-627)DOAJ024054801 (DE-599)DOAJ155d06ead5224a8f83ae2cd985051b54 DE-627 ger DE-627 rakwb eng TK7800-8360 Sangil Ahn verfasserin aut Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every stage of DR. While synthesizing future fundus images, the task of predicting the progression of the disease state is very challenging since we need a lot of longitudinal data over a long period of time. Even if the longitudinal data are collected, there is a pixel-level difference between the current fundus image and the target future image. It is difficult to train a model based on deep learning for synthesizing future fundus images that considers the lesion change. In this paper, we synthesize future fundus images by considering the progression of the disease with a two-step training approach to overcome these problems. In the first step, we concentrate on synthesizing a realistic fundus image using only a lesion segmentation mask and vessel segmentation mask from a large dataset for a fundus generator. In the second step, we train a lesion probability predictor to create a probability map that contains the occurrence probability information of the lesion. Finally, based on the probability map and current vessel, the pre-trained fundus generator synthesizes a predicted future fundus image. We visually demonstrate not only the capacity of the fundus generator that can control the pathological information but also the prediction of the disease progression on fundus images generated by our framework. Our framework achieves an F1-score of 0.74 for predicting DR severity and 0.91 for predicting DME occurrence. We demonstrate that our framework has a meaningful capability by comparing the scores of each class of DR severity, which are obtained by passing the predicted future image and real future image through an evaluation model. future diabetic retinopathy image synthesis prediction occurrence probability generative adversarial network Electronics Quang T.M. Pham verfasserin aut Jitae Shin verfasserin aut Su Jeong Song verfasserin aut In Electronics MDPI AG, 2013 10(2021), 6, p 726 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:10 year:2021 number:6, p 726 https://doi.org/10.3390/electronics10060726 kostenfrei https://doaj.org/article/155d06ead5224a8f83ae2cd985051b54 kostenfrei https://www.mdpi.com/2079-9292/10/6/726 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2021 6, p 726 |
language |
English |
source |
In Electronics 10(2021), 6, p 726 volume:10 year:2021 number:6, p 726 |
sourceStr |
In Electronics 10(2021), 6, p 726 volume:10 year:2021 number:6, p 726 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
future diabetic retinopathy image synthesis prediction occurrence probability generative adversarial network Electronics |
isfreeaccess_bool |
true |
container_title |
Electronics |
authorswithroles_txt_mv |
Sangil Ahn @@aut@@ Quang T.M. Pham @@aut@@ Jitae Shin @@aut@@ Su Jeong Song @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
718626478 |
id |
DOAJ024054801 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024054801</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412190515.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics10060726</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024054801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ155d06ead5224a8f83ae2cd985051b54</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sangil Ahn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every stage of DR. While synthesizing future fundus images, the task of predicting the progression of the disease state is very challenging since we need a lot of longitudinal data over a long period of time. Even if the longitudinal data are collected, there is a pixel-level difference between the current fundus image and the target future image. It is difficult to train a model based on deep learning for synthesizing future fundus images that considers the lesion change. In this paper, we synthesize future fundus images by considering the progression of the disease with a two-step training approach to overcome these problems. In the first step, we concentrate on synthesizing a realistic fundus image using only a lesion segmentation mask and vessel segmentation mask from a large dataset for a fundus generator. In the second step, we train a lesion probability predictor to create a probability map that contains the occurrence probability information of the lesion. Finally, based on the probability map and current vessel, the pre-trained fundus generator synthesizes a predicted future fundus image. We visually demonstrate not only the capacity of the fundus generator that can control the pathological information but also the prediction of the disease progression on fundus images generated by our framework. Our framework achieves an F1-score of 0.74 for predicting DR severity and 0.91 for predicting DME occurrence. We demonstrate that our framework has a meaningful capability by comparing the scores of each class of DR severity, which are obtained by passing the predicted future image and real future image through an evaluation model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">future diabetic retinopathy image synthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prediction occurrence probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generative adversarial network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Quang T.M. Pham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jitae Shin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Su Jeong Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2021), 6, p 726</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6, p 726</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics10060726</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/155d06ead5224a8f83ae2cd985051b54</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/10/6/726</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">6, p 726</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Sangil Ahn |
spellingShingle |
Sangil Ahn misc TK7800-8360 misc future diabetic retinopathy image synthesis misc prediction occurrence probability misc generative adversarial network misc Electronics Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability |
authorStr |
Sangil Ahn |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718626478 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
20799292 |
topic_title |
TK7800-8360 Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability future diabetic retinopathy image synthesis prediction occurrence probability generative adversarial network |
topic |
misc TK7800-8360 misc future diabetic retinopathy image synthesis misc prediction occurrence probability misc generative adversarial network misc Electronics |
topic_unstemmed |
misc TK7800-8360 misc future diabetic retinopathy image synthesis misc prediction occurrence probability misc generative adversarial network misc Electronics |
topic_browse |
misc TK7800-8360 misc future diabetic retinopathy image synthesis misc prediction occurrence probability misc generative adversarial network misc Electronics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronics |
hierarchy_parent_id |
718626478 |
hierarchy_top_title |
Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718626478 (DE-600)2662127-7 |
title |
Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability |
ctrlnum |
(DE-627)DOAJ024054801 (DE-599)DOAJ155d06ead5224a8f83ae2cd985051b54 |
title_full |
Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability |
author_sort |
Sangil Ahn |
journal |
Electronics |
journalStr |
Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Sangil Ahn Quang T.M. Pham Jitae Shin Su Jeong Song |
container_volume |
10 |
class |
TK7800-8360 |
format_se |
Elektronische Aufsätze |
author-letter |
Sangil Ahn |
doi_str_mv |
10.3390/electronics10060726 |
author2-role |
verfasserin |
title_sort |
future image synthesis for diabetic retinopathy based on the lesion occurrence probability |
callnumber |
TK7800-8360 |
title_auth |
Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability |
abstract |
Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every stage of DR. While synthesizing future fundus images, the task of predicting the progression of the disease state is very challenging since we need a lot of longitudinal data over a long period of time. Even if the longitudinal data are collected, there is a pixel-level difference between the current fundus image and the target future image. It is difficult to train a model based on deep learning for synthesizing future fundus images that considers the lesion change. In this paper, we synthesize future fundus images by considering the progression of the disease with a two-step training approach to overcome these problems. In the first step, we concentrate on synthesizing a realistic fundus image using only a lesion segmentation mask and vessel segmentation mask from a large dataset for a fundus generator. In the second step, we train a lesion probability predictor to create a probability map that contains the occurrence probability information of the lesion. Finally, based on the probability map and current vessel, the pre-trained fundus generator synthesizes a predicted future fundus image. We visually demonstrate not only the capacity of the fundus generator that can control the pathological information but also the prediction of the disease progression on fundus images generated by our framework. Our framework achieves an F1-score of 0.74 for predicting DR severity and 0.91 for predicting DME occurrence. We demonstrate that our framework has a meaningful capability by comparing the scores of each class of DR severity, which are obtained by passing the predicted future image and real future image through an evaluation model. |
abstractGer |
Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every stage of DR. While synthesizing future fundus images, the task of predicting the progression of the disease state is very challenging since we need a lot of longitudinal data over a long period of time. Even if the longitudinal data are collected, there is a pixel-level difference between the current fundus image and the target future image. It is difficult to train a model based on deep learning for synthesizing future fundus images that considers the lesion change. In this paper, we synthesize future fundus images by considering the progression of the disease with a two-step training approach to overcome these problems. In the first step, we concentrate on synthesizing a realistic fundus image using only a lesion segmentation mask and vessel segmentation mask from a large dataset for a fundus generator. In the second step, we train a lesion probability predictor to create a probability map that contains the occurrence probability information of the lesion. Finally, based on the probability map and current vessel, the pre-trained fundus generator synthesizes a predicted future fundus image. We visually demonstrate not only the capacity of the fundus generator that can control the pathological information but also the prediction of the disease progression on fundus images generated by our framework. Our framework achieves an F1-score of 0.74 for predicting DR severity and 0.91 for predicting DME occurrence. We demonstrate that our framework has a meaningful capability by comparing the scores of each class of DR severity, which are obtained by passing the predicted future image and real future image through an evaluation model. |
abstract_unstemmed |
Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every stage of DR. While synthesizing future fundus images, the task of predicting the progression of the disease state is very challenging since we need a lot of longitudinal data over a long period of time. Even if the longitudinal data are collected, there is a pixel-level difference between the current fundus image and the target future image. It is difficult to train a model based on deep learning for synthesizing future fundus images that considers the lesion change. In this paper, we synthesize future fundus images by considering the progression of the disease with a two-step training approach to overcome these problems. In the first step, we concentrate on synthesizing a realistic fundus image using only a lesion segmentation mask and vessel segmentation mask from a large dataset for a fundus generator. In the second step, we train a lesion probability predictor to create a probability map that contains the occurrence probability information of the lesion. Finally, based on the probability map and current vessel, the pre-trained fundus generator synthesizes a predicted future fundus image. We visually demonstrate not only the capacity of the fundus generator that can control the pathological information but also the prediction of the disease progression on fundus images generated by our framework. Our framework achieves an F1-score of 0.74 for predicting DR severity and 0.91 for predicting DME occurrence. We demonstrate that our framework has a meaningful capability by comparing the scores of each class of DR severity, which are obtained by passing the predicted future image and real future image through an evaluation model. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 726 |
title_short |
Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability |
url |
https://doi.org/10.3390/electronics10060726 https://doaj.org/article/155d06ead5224a8f83ae2cd985051b54 https://www.mdpi.com/2079-9292/10/6/726 https://doaj.org/toc/2079-9292 |
remote_bool |
true |
author2 |
Quang T.M. Pham Jitae Shin Su Jeong Song |
author2Str |
Quang T.M. Pham Jitae Shin Su Jeong Song |
ppnlink |
718626478 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/electronics10060726 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-03T20:57:43.058Z |
_version_ |
1803592938887839744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024054801</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412190515.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics10060726</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024054801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ155d06ead5224a8f83ae2cd985051b54</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sangil Ahn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every stage of DR. While synthesizing future fundus images, the task of predicting the progression of the disease state is very challenging since we need a lot of longitudinal data over a long period of time. Even if the longitudinal data are collected, there is a pixel-level difference between the current fundus image and the target future image. It is difficult to train a model based on deep learning for synthesizing future fundus images that considers the lesion change. In this paper, we synthesize future fundus images by considering the progression of the disease with a two-step training approach to overcome these problems. In the first step, we concentrate on synthesizing a realistic fundus image using only a lesion segmentation mask and vessel segmentation mask from a large dataset for a fundus generator. In the second step, we train a lesion probability predictor to create a probability map that contains the occurrence probability information of the lesion. Finally, based on the probability map and current vessel, the pre-trained fundus generator synthesizes a predicted future fundus image. We visually demonstrate not only the capacity of the fundus generator that can control the pathological information but also the prediction of the disease progression on fundus images generated by our framework. Our framework achieves an F1-score of 0.74 for predicting DR severity and 0.91 for predicting DME occurrence. We demonstrate that our framework has a meaningful capability by comparing the scores of each class of DR severity, which are obtained by passing the predicted future image and real future image through an evaluation model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">future diabetic retinopathy image synthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prediction occurrence probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generative adversarial network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Quang T.M. Pham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jitae Shin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Su Jeong Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2021), 6, p 726</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6, p 726</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics10060726</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/155d06ead5224a8f83ae2cd985051b54</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/10/6/726</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">6, p 726</subfield></datafield></record></collection>
|
score |
7.401552 |