Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections
Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term s...
Ausführliche Beschreibung
Autor*in: |
Richard Allan Proctor [verfasserIn] Andre eKriegeskorte [verfasserIn] Barbara eKahl [verfasserIn] Karsten eBecker [verfasserIn] Bettina eLöffler [verfasserIn] Georg ePeters [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Cellular and Infection Microbiology - Frontiers Media S.A., 2016, 4(2014) |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2014 |
Links: |
---|
DOI / URN: |
10.3389/fcimb.2014.00099 |
---|
Katalog-ID: |
DOAJ024134988 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ024134988 | ||
003 | DE-627 | ||
005 | 20230307072712.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fcimb.2014.00099 |2 doi | |
035 | |a (DE-627)DOAJ024134988 | ||
035 | |a (DE-599)DOAJb5943b49889f4a4a809aeb13cef3775c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR1-502 | |
100 | 0 | |a Richard Allan Proctor |e verfasserin |4 aut | |
245 | 1 | 0 | |a Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term survival within the host, including colonization, and the concept of resisting antibiotic therapy even when susceptible in the clinical microbiology laboratory. Over the past two decades, the mechanisms whereby bacteria achieve persistence are slowly being unraveled. S. aureus small colony variants (SCVs) are linked to chronic, recurrent, and antibiotic-resistant infections, and the study of SCVs has contributed significantly to understanding of persistence. In our earlier work, defects in electron transport and thymidylate biosynthesis were linked to the development of the SCV phenotype (reviewed in 2006), thus this work will be discussed only briefly. Since 2006, it has been found that persistent organisms including SCVs are part of the normal life cycle of bacteria, and often they arise in response to harsh conditions, e.g., antibiotics, starvation, host cationic peptides. Many of the changes found in these early SCVs have provided a map for the discovery mechanisms (pathways) for the development of persistent organisms. For example, changes in RNA processing, stringent response, toxin-antitoxin, ribosome protein L6 (RplF), and cold shock protein B (CspB) found in SCVs are also found in other persisters. In addition, many classic persister organisms also show slow growth, hence SCVs. Recent work on S. aureus USA300 has elucidated the impact of aerobic expression of arginine deiminase genes on its ability to chronically colonize the skin and survive in abscesses. S. aureus SCVs also express arginine deiminase genes aerobically as well. Thus, many pathways found activated in electron transport type of SCVs are also increased in persisters that have intact electr | ||
650 | 4 | |a Metabolism | |
650 | 4 | |a RNA Processing, Post-Transcriptional | |
650 | 4 | |a Staphylococcus aureus | |
650 | 4 | |a Persistence | |
650 | 4 | |a small colony variants | |
653 | 0 | |a Microbiology | |
700 | 0 | |a Andre eKriegeskorte |e verfasserin |4 aut | |
700 | 0 | |a Barbara eKahl |e verfasserin |4 aut | |
700 | 0 | |a Karsten eBecker |e verfasserin |4 aut | |
700 | 0 | |a Bettina eLöffler |e verfasserin |4 aut | |
700 | 0 | |a Georg ePeters |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Cellular and Infection Microbiology |d Frontiers Media S.A., 2016 |g 4(2014) |w (DE-627)664968554 |w (DE-600)2619676-1 |x 22352988 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2014 |
856 | 4 | 0 | |u https://doi.org/10.3389/fcimb.2014.00099 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b5943b49889f4a4a809aeb13cef3775c |z kostenfrei |
856 | 4 | 0 | |u http://journal.frontiersin.org/Journal/10.3389/fcimb.2014.00099/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2235-2988 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2014 |
author_variant |
r a p rap a e ae b e be k e ke b e be g e ge |
---|---|
matchkey_str |
article:22352988:2014----::tpyoocsuesmlclnvratsvaodafrhmtblcahasno |
hierarchy_sort_str |
2014 |
callnumber-subject-code |
QR |
publishDate |
2014 |
allfields |
10.3389/fcimb.2014.00099 doi (DE-627)DOAJ024134988 (DE-599)DOAJb5943b49889f4a4a809aeb13cef3775c DE-627 ger DE-627 rakwb eng QR1-502 Richard Allan Proctor verfasserin aut Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term survival within the host, including colonization, and the concept of resisting antibiotic therapy even when susceptible in the clinical microbiology laboratory. Over the past two decades, the mechanisms whereby bacteria achieve persistence are slowly being unraveled. S. aureus small colony variants (SCVs) are linked to chronic, recurrent, and antibiotic-resistant infections, and the study of SCVs has contributed significantly to understanding of persistence. In our earlier work, defects in electron transport and thymidylate biosynthesis were linked to the development of the SCV phenotype (reviewed in 2006), thus this work will be discussed only briefly. Since 2006, it has been found that persistent organisms including SCVs are part of the normal life cycle of bacteria, and often they arise in response to harsh conditions, e.g., antibiotics, starvation, host cationic peptides. Many of the changes found in these early SCVs have provided a map for the discovery mechanisms (pathways) for the development of persistent organisms. For example, changes in RNA processing, stringent response, toxin-antitoxin, ribosome protein L6 (RplF), and cold shock protein B (CspB) found in SCVs are also found in other persisters. In addition, many classic persister organisms also show slow growth, hence SCVs. Recent work on S. aureus USA300 has elucidated the impact of aerobic expression of arginine deiminase genes on its ability to chronically colonize the skin and survive in abscesses. S. aureus SCVs also express arginine deiminase genes aerobically as well. Thus, many pathways found activated in electron transport type of SCVs are also increased in persisters that have intact electr Metabolism RNA Processing, Post-Transcriptional Staphylococcus aureus Persistence small colony variants Microbiology Andre eKriegeskorte verfasserin aut Barbara eKahl verfasserin aut Karsten eBecker verfasserin aut Bettina eLöffler verfasserin aut Georg ePeters verfasserin aut In Frontiers in Cellular and Infection Microbiology Frontiers Media S.A., 2016 4(2014) (DE-627)664968554 (DE-600)2619676-1 22352988 nnns volume:4 year:2014 https://doi.org/10.3389/fcimb.2014.00099 kostenfrei https://doaj.org/article/b5943b49889f4a4a809aeb13cef3775c kostenfrei http://journal.frontiersin.org/Journal/10.3389/fcimb.2014.00099/full kostenfrei https://doaj.org/toc/2235-2988 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2014 |
spelling |
10.3389/fcimb.2014.00099 doi (DE-627)DOAJ024134988 (DE-599)DOAJb5943b49889f4a4a809aeb13cef3775c DE-627 ger DE-627 rakwb eng QR1-502 Richard Allan Proctor verfasserin aut Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term survival within the host, including colonization, and the concept of resisting antibiotic therapy even when susceptible in the clinical microbiology laboratory. Over the past two decades, the mechanisms whereby bacteria achieve persistence are slowly being unraveled. S. aureus small colony variants (SCVs) are linked to chronic, recurrent, and antibiotic-resistant infections, and the study of SCVs has contributed significantly to understanding of persistence. In our earlier work, defects in electron transport and thymidylate biosynthesis were linked to the development of the SCV phenotype (reviewed in 2006), thus this work will be discussed only briefly. Since 2006, it has been found that persistent organisms including SCVs are part of the normal life cycle of bacteria, and often they arise in response to harsh conditions, e.g., antibiotics, starvation, host cationic peptides. Many of the changes found in these early SCVs have provided a map for the discovery mechanisms (pathways) for the development of persistent organisms. For example, changes in RNA processing, stringent response, toxin-antitoxin, ribosome protein L6 (RplF), and cold shock protein B (CspB) found in SCVs are also found in other persisters. In addition, many classic persister organisms also show slow growth, hence SCVs. Recent work on S. aureus USA300 has elucidated the impact of aerobic expression of arginine deiminase genes on its ability to chronically colonize the skin and survive in abscesses. S. aureus SCVs also express arginine deiminase genes aerobically as well. Thus, many pathways found activated in electron transport type of SCVs are also increased in persisters that have intact electr Metabolism RNA Processing, Post-Transcriptional Staphylococcus aureus Persistence small colony variants Microbiology Andre eKriegeskorte verfasserin aut Barbara eKahl verfasserin aut Karsten eBecker verfasserin aut Bettina eLöffler verfasserin aut Georg ePeters verfasserin aut In Frontiers in Cellular and Infection Microbiology Frontiers Media S.A., 2016 4(2014) (DE-627)664968554 (DE-600)2619676-1 22352988 nnns volume:4 year:2014 https://doi.org/10.3389/fcimb.2014.00099 kostenfrei https://doaj.org/article/b5943b49889f4a4a809aeb13cef3775c kostenfrei http://journal.frontiersin.org/Journal/10.3389/fcimb.2014.00099/full kostenfrei https://doaj.org/toc/2235-2988 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2014 |
allfields_unstemmed |
10.3389/fcimb.2014.00099 doi (DE-627)DOAJ024134988 (DE-599)DOAJb5943b49889f4a4a809aeb13cef3775c DE-627 ger DE-627 rakwb eng QR1-502 Richard Allan Proctor verfasserin aut Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term survival within the host, including colonization, and the concept of resisting antibiotic therapy even when susceptible in the clinical microbiology laboratory. Over the past two decades, the mechanisms whereby bacteria achieve persistence are slowly being unraveled. S. aureus small colony variants (SCVs) are linked to chronic, recurrent, and antibiotic-resistant infections, and the study of SCVs has contributed significantly to understanding of persistence. In our earlier work, defects in electron transport and thymidylate biosynthesis were linked to the development of the SCV phenotype (reviewed in 2006), thus this work will be discussed only briefly. Since 2006, it has been found that persistent organisms including SCVs are part of the normal life cycle of bacteria, and often they arise in response to harsh conditions, e.g., antibiotics, starvation, host cationic peptides. Many of the changes found in these early SCVs have provided a map for the discovery mechanisms (pathways) for the development of persistent organisms. For example, changes in RNA processing, stringent response, toxin-antitoxin, ribosome protein L6 (RplF), and cold shock protein B (CspB) found in SCVs are also found in other persisters. In addition, many classic persister organisms also show slow growth, hence SCVs. Recent work on S. aureus USA300 has elucidated the impact of aerobic expression of arginine deiminase genes on its ability to chronically colonize the skin and survive in abscesses. S. aureus SCVs also express arginine deiminase genes aerobically as well. Thus, many pathways found activated in electron transport type of SCVs are also increased in persisters that have intact electr Metabolism RNA Processing, Post-Transcriptional Staphylococcus aureus Persistence small colony variants Microbiology Andre eKriegeskorte verfasserin aut Barbara eKahl verfasserin aut Karsten eBecker verfasserin aut Bettina eLöffler verfasserin aut Georg ePeters verfasserin aut In Frontiers in Cellular and Infection Microbiology Frontiers Media S.A., 2016 4(2014) (DE-627)664968554 (DE-600)2619676-1 22352988 nnns volume:4 year:2014 https://doi.org/10.3389/fcimb.2014.00099 kostenfrei https://doaj.org/article/b5943b49889f4a4a809aeb13cef3775c kostenfrei http://journal.frontiersin.org/Journal/10.3389/fcimb.2014.00099/full kostenfrei https://doaj.org/toc/2235-2988 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2014 |
allfieldsGer |
10.3389/fcimb.2014.00099 doi (DE-627)DOAJ024134988 (DE-599)DOAJb5943b49889f4a4a809aeb13cef3775c DE-627 ger DE-627 rakwb eng QR1-502 Richard Allan Proctor verfasserin aut Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term survival within the host, including colonization, and the concept of resisting antibiotic therapy even when susceptible in the clinical microbiology laboratory. Over the past two decades, the mechanisms whereby bacteria achieve persistence are slowly being unraveled. S. aureus small colony variants (SCVs) are linked to chronic, recurrent, and antibiotic-resistant infections, and the study of SCVs has contributed significantly to understanding of persistence. In our earlier work, defects in electron transport and thymidylate biosynthesis were linked to the development of the SCV phenotype (reviewed in 2006), thus this work will be discussed only briefly. Since 2006, it has been found that persistent organisms including SCVs are part of the normal life cycle of bacteria, and often they arise in response to harsh conditions, e.g., antibiotics, starvation, host cationic peptides. Many of the changes found in these early SCVs have provided a map for the discovery mechanisms (pathways) for the development of persistent organisms. For example, changes in RNA processing, stringent response, toxin-antitoxin, ribosome protein L6 (RplF), and cold shock protein B (CspB) found in SCVs are also found in other persisters. In addition, many classic persister organisms also show slow growth, hence SCVs. Recent work on S. aureus USA300 has elucidated the impact of aerobic expression of arginine deiminase genes on its ability to chronically colonize the skin and survive in abscesses. S. aureus SCVs also express arginine deiminase genes aerobically as well. Thus, many pathways found activated in electron transport type of SCVs are also increased in persisters that have intact electr Metabolism RNA Processing, Post-Transcriptional Staphylococcus aureus Persistence small colony variants Microbiology Andre eKriegeskorte verfasserin aut Barbara eKahl verfasserin aut Karsten eBecker verfasserin aut Bettina eLöffler verfasserin aut Georg ePeters verfasserin aut In Frontiers in Cellular and Infection Microbiology Frontiers Media S.A., 2016 4(2014) (DE-627)664968554 (DE-600)2619676-1 22352988 nnns volume:4 year:2014 https://doi.org/10.3389/fcimb.2014.00099 kostenfrei https://doaj.org/article/b5943b49889f4a4a809aeb13cef3775c kostenfrei http://journal.frontiersin.org/Journal/10.3389/fcimb.2014.00099/full kostenfrei https://doaj.org/toc/2235-2988 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2014 |
allfieldsSound |
10.3389/fcimb.2014.00099 doi (DE-627)DOAJ024134988 (DE-599)DOAJb5943b49889f4a4a809aeb13cef3775c DE-627 ger DE-627 rakwb eng QR1-502 Richard Allan Proctor verfasserin aut Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term survival within the host, including colonization, and the concept of resisting antibiotic therapy even when susceptible in the clinical microbiology laboratory. Over the past two decades, the mechanisms whereby bacteria achieve persistence are slowly being unraveled. S. aureus small colony variants (SCVs) are linked to chronic, recurrent, and antibiotic-resistant infections, and the study of SCVs has contributed significantly to understanding of persistence. In our earlier work, defects in electron transport and thymidylate biosynthesis were linked to the development of the SCV phenotype (reviewed in 2006), thus this work will be discussed only briefly. Since 2006, it has been found that persistent organisms including SCVs are part of the normal life cycle of bacteria, and often they arise in response to harsh conditions, e.g., antibiotics, starvation, host cationic peptides. Many of the changes found in these early SCVs have provided a map for the discovery mechanisms (pathways) for the development of persistent organisms. For example, changes in RNA processing, stringent response, toxin-antitoxin, ribosome protein L6 (RplF), and cold shock protein B (CspB) found in SCVs are also found in other persisters. In addition, many classic persister organisms also show slow growth, hence SCVs. Recent work on S. aureus USA300 has elucidated the impact of aerobic expression of arginine deiminase genes on its ability to chronically colonize the skin and survive in abscesses. S. aureus SCVs also express arginine deiminase genes aerobically as well. Thus, many pathways found activated in electron transport type of SCVs are also increased in persisters that have intact electr Metabolism RNA Processing, Post-Transcriptional Staphylococcus aureus Persistence small colony variants Microbiology Andre eKriegeskorte verfasserin aut Barbara eKahl verfasserin aut Karsten eBecker verfasserin aut Bettina eLöffler verfasserin aut Georg ePeters verfasserin aut In Frontiers in Cellular and Infection Microbiology Frontiers Media S.A., 2016 4(2014) (DE-627)664968554 (DE-600)2619676-1 22352988 nnns volume:4 year:2014 https://doi.org/10.3389/fcimb.2014.00099 kostenfrei https://doaj.org/article/b5943b49889f4a4a809aeb13cef3775c kostenfrei http://journal.frontiersin.org/Journal/10.3389/fcimb.2014.00099/full kostenfrei https://doaj.org/toc/2235-2988 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2014 |
language |
English |
source |
In Frontiers in Cellular and Infection Microbiology 4(2014) volume:4 year:2014 |
sourceStr |
In Frontiers in Cellular and Infection Microbiology 4(2014) volume:4 year:2014 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Metabolism RNA Processing, Post-Transcriptional Staphylococcus aureus Persistence small colony variants Microbiology |
isfreeaccess_bool |
true |
container_title |
Frontiers in Cellular and Infection Microbiology |
authorswithroles_txt_mv |
Richard Allan Proctor @@aut@@ Andre eKriegeskorte @@aut@@ Barbara eKahl @@aut@@ Karsten eBecker @@aut@@ Bettina eLöffler @@aut@@ Georg ePeters @@aut@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
664968554 |
id |
DOAJ024134988 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024134988</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307072712.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fcimb.2014.00099</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024134988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb5943b49889f4a4a809aeb13cef3775c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Richard Allan Proctor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term survival within the host, including colonization, and the concept of resisting antibiotic therapy even when susceptible in the clinical microbiology laboratory. Over the past two decades, the mechanisms whereby bacteria achieve persistence are slowly being unraveled. S. aureus small colony variants (SCVs) are linked to chronic, recurrent, and antibiotic-resistant infections, and the study of SCVs has contributed significantly to understanding of persistence. In our earlier work, defects in electron transport and thymidylate biosynthesis were linked to the development of the SCV phenotype (reviewed in 2006), thus this work will be discussed only briefly. Since 2006, it has been found that persistent organisms including SCVs are part of the normal life cycle of bacteria, and often they arise in response to harsh conditions, e.g., antibiotics, starvation, host cationic peptides. Many of the changes found in these early SCVs have provided a map for the discovery mechanisms (pathways) for the development of persistent organisms. For example, changes in RNA processing, stringent response, toxin-antitoxin, ribosome protein L6 (RplF), and cold shock protein B (CspB) found in SCVs are also found in other persisters. In addition, many classic persister organisms also show slow growth, hence SCVs. Recent work on S. aureus USA300 has elucidated the impact of aerobic expression of arginine deiminase genes on its ability to chronically colonize the skin and survive in abscesses. S. aureus SCVs also express arginine deiminase genes aerobically as well. Thus, many pathways found activated in electron transport type of SCVs are also increased in persisters that have intact electr</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA Processing, Post-Transcriptional</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcus aureus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Persistence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">small colony variants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andre eKriegeskorte</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Barbara eKahl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karsten eBecker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bettina eLöffler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georg ePeters</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Cellular and Infection Microbiology</subfield><subfield code="d">Frontiers Media S.A., 2016</subfield><subfield code="g">4(2014)</subfield><subfield code="w">(DE-627)664968554</subfield><subfield code="w">(DE-600)2619676-1</subfield><subfield code="x">22352988</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2014</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fcimb.2014.00099</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b5943b49889f4a4a809aeb13cef3775c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://journal.frontiersin.org/Journal/10.3389/fcimb.2014.00099/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2235-2988</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2014</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Richard Allan Proctor |
spellingShingle |
Richard Allan Proctor misc QR1-502 misc Metabolism misc RNA Processing, Post-Transcriptional misc Staphylococcus aureus misc Persistence misc small colony variants misc Microbiology Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections |
authorStr |
Richard Allan Proctor |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)664968554 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
22352988 |
topic_title |
QR1-502 Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections Metabolism RNA Processing, Post-Transcriptional Staphylococcus aureus Persistence small colony variants |
topic |
misc QR1-502 misc Metabolism misc RNA Processing, Post-Transcriptional misc Staphylococcus aureus misc Persistence misc small colony variants misc Microbiology |
topic_unstemmed |
misc QR1-502 misc Metabolism misc RNA Processing, Post-Transcriptional misc Staphylococcus aureus misc Persistence misc small colony variants misc Microbiology |
topic_browse |
misc QR1-502 misc Metabolism misc RNA Processing, Post-Transcriptional misc Staphylococcus aureus misc Persistence misc small colony variants misc Microbiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Cellular and Infection Microbiology |
hierarchy_parent_id |
664968554 |
hierarchy_top_title |
Frontiers in Cellular and Infection Microbiology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)664968554 (DE-600)2619676-1 |
title |
Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections |
ctrlnum |
(DE-627)DOAJ024134988 (DE-599)DOAJb5943b49889f4a4a809aeb13cef3775c |
title_full |
Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections |
author_sort |
Richard Allan Proctor |
journal |
Frontiers in Cellular and Infection Microbiology |
journalStr |
Frontiers in Cellular and Infection Microbiology |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Richard Allan Proctor Andre eKriegeskorte Barbara eKahl Karsten eBecker Bettina eLöffler Georg ePeters |
container_volume |
4 |
class |
QR1-502 |
format_se |
Elektronische Aufsätze |
author-letter |
Richard Allan Proctor |
doi_str_mv |
10.3389/fcimb.2014.00099 |
author2-role |
verfasserin |
title_sort |
staphylococcus aureus small colony variants (scvs): a road map for the metabolic pathways involved in persistent infections |
callnumber |
QR1-502 |
title_auth |
Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections |
abstract |
Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term survival within the host, including colonization, and the concept of resisting antibiotic therapy even when susceptible in the clinical microbiology laboratory. Over the past two decades, the mechanisms whereby bacteria achieve persistence are slowly being unraveled. S. aureus small colony variants (SCVs) are linked to chronic, recurrent, and antibiotic-resistant infections, and the study of SCVs has contributed significantly to understanding of persistence. In our earlier work, defects in electron transport and thymidylate biosynthesis were linked to the development of the SCV phenotype (reviewed in 2006), thus this work will be discussed only briefly. Since 2006, it has been found that persistent organisms including SCVs are part of the normal life cycle of bacteria, and often they arise in response to harsh conditions, e.g., antibiotics, starvation, host cationic peptides. Many of the changes found in these early SCVs have provided a map for the discovery mechanisms (pathways) for the development of persistent organisms. For example, changes in RNA processing, stringent response, toxin-antitoxin, ribosome protein L6 (RplF), and cold shock protein B (CspB) found in SCVs are also found in other persisters. In addition, many classic persister organisms also show slow growth, hence SCVs. Recent work on S. aureus USA300 has elucidated the impact of aerobic expression of arginine deiminase genes on its ability to chronically colonize the skin and survive in abscesses. S. aureus SCVs also express arginine deiminase genes aerobically as well. Thus, many pathways found activated in electron transport type of SCVs are also increased in persisters that have intact electr |
abstractGer |
Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term survival within the host, including colonization, and the concept of resisting antibiotic therapy even when susceptible in the clinical microbiology laboratory. Over the past two decades, the mechanisms whereby bacteria achieve persistence are slowly being unraveled. S. aureus small colony variants (SCVs) are linked to chronic, recurrent, and antibiotic-resistant infections, and the study of SCVs has contributed significantly to understanding of persistence. In our earlier work, defects in electron transport and thymidylate biosynthesis were linked to the development of the SCV phenotype (reviewed in 2006), thus this work will be discussed only briefly. Since 2006, it has been found that persistent organisms including SCVs are part of the normal life cycle of bacteria, and often they arise in response to harsh conditions, e.g., antibiotics, starvation, host cationic peptides. Many of the changes found in these early SCVs have provided a map for the discovery mechanisms (pathways) for the development of persistent organisms. For example, changes in RNA processing, stringent response, toxin-antitoxin, ribosome protein L6 (RplF), and cold shock protein B (CspB) found in SCVs are also found in other persisters. In addition, many classic persister organisms also show slow growth, hence SCVs. Recent work on S. aureus USA300 has elucidated the impact of aerobic expression of arginine deiminase genes on its ability to chronically colonize the skin and survive in abscesses. S. aureus SCVs also express arginine deiminase genes aerobically as well. Thus, many pathways found activated in electron transport type of SCVs are also increased in persisters that have intact electr |
abstract_unstemmed |
Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term survival within the host, including colonization, and the concept of resisting antibiotic therapy even when susceptible in the clinical microbiology laboratory. Over the past two decades, the mechanisms whereby bacteria achieve persistence are slowly being unraveled. S. aureus small colony variants (SCVs) are linked to chronic, recurrent, and antibiotic-resistant infections, and the study of SCVs has contributed significantly to understanding of persistence. In our earlier work, defects in electron transport and thymidylate biosynthesis were linked to the development of the SCV phenotype (reviewed in 2006), thus this work will be discussed only briefly. Since 2006, it has been found that persistent organisms including SCVs are part of the normal life cycle of bacteria, and often they arise in response to harsh conditions, e.g., antibiotics, starvation, host cationic peptides. Many of the changes found in these early SCVs have provided a map for the discovery mechanisms (pathways) for the development of persistent organisms. For example, changes in RNA processing, stringent response, toxin-antitoxin, ribosome protein L6 (RplF), and cold shock protein B (CspB) found in SCVs are also found in other persisters. In addition, many classic persister organisms also show slow growth, hence SCVs. Recent work on S. aureus USA300 has elucidated the impact of aerobic expression of arginine deiminase genes on its ability to chronically colonize the skin and survive in abscesses. S. aureus SCVs also express arginine deiminase genes aerobically as well. Thus, many pathways found activated in electron transport type of SCVs are also increased in persisters that have intact electr |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections |
url |
https://doi.org/10.3389/fcimb.2014.00099 https://doaj.org/article/b5943b49889f4a4a809aeb13cef3775c http://journal.frontiersin.org/Journal/10.3389/fcimb.2014.00099/full https://doaj.org/toc/2235-2988 |
remote_bool |
true |
author2 |
Andre eKriegeskorte Barbara eKahl Karsten eBecker Bettina eLöffler Georg ePeters |
author2Str |
Andre eKriegeskorte Barbara eKahl Karsten eBecker Bettina eLöffler Georg ePeters |
ppnlink |
664968554 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fcimb.2014.00099 |
callnumber-a |
QR1-502 |
up_date |
2024-07-03T21:23:36.913Z |
_version_ |
1803594568214511616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024134988</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307072712.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fcimb.2014.00099</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024134988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb5943b49889f4a4a809aeb13cef3775c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Richard Allan Proctor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Staphylococcus aureus Small Colony Variants (SCVs): A Road Map for the Metabolic Pathways Involved in Persistent Infections</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Persistent and relapsing infections, despite apparently adequate antibiotic therapy, occur frequently with many pathogens, but it is an especially prominent problem with Staphylococcus aureus infections. For the purposes of this review, persistence will encompass both of the concepts of long term survival within the host, including colonization, and the concept of resisting antibiotic therapy even when susceptible in the clinical microbiology laboratory. Over the past two decades, the mechanisms whereby bacteria achieve persistence are slowly being unraveled. S. aureus small colony variants (SCVs) are linked to chronic, recurrent, and antibiotic-resistant infections, and the study of SCVs has contributed significantly to understanding of persistence. In our earlier work, defects in electron transport and thymidylate biosynthesis were linked to the development of the SCV phenotype (reviewed in 2006), thus this work will be discussed only briefly. Since 2006, it has been found that persistent organisms including SCVs are part of the normal life cycle of bacteria, and often they arise in response to harsh conditions, e.g., antibiotics, starvation, host cationic peptides. Many of the changes found in these early SCVs have provided a map for the discovery mechanisms (pathways) for the development of persistent organisms. For example, changes in RNA processing, stringent response, toxin-antitoxin, ribosome protein L6 (RplF), and cold shock protein B (CspB) found in SCVs are also found in other persisters. In addition, many classic persister organisms also show slow growth, hence SCVs. Recent work on S. aureus USA300 has elucidated the impact of aerobic expression of arginine deiminase genes on its ability to chronically colonize the skin and survive in abscesses. S. aureus SCVs also express arginine deiminase genes aerobically as well. Thus, many pathways found activated in electron transport type of SCVs are also increased in persisters that have intact electr</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA Processing, Post-Transcriptional</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staphylococcus aureus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Persistence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">small colony variants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andre eKriegeskorte</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Barbara eKahl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karsten eBecker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bettina eLöffler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georg ePeters</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Cellular and Infection Microbiology</subfield><subfield code="d">Frontiers Media S.A., 2016</subfield><subfield code="g">4(2014)</subfield><subfield code="w">(DE-627)664968554</subfield><subfield code="w">(DE-600)2619676-1</subfield><subfield code="x">22352988</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2014</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fcimb.2014.00099</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b5943b49889f4a4a809aeb13cef3775c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://journal.frontiersin.org/Journal/10.3389/fcimb.2014.00099/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2235-2988</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2014</subfield></datafield></record></collection>
|
score |
7.400853 |