Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis
This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four fact...
Ausführliche Beschreibung
Autor*in: |
Jinsu Park [verfasserIn] Hyunsuk Lee [verfasserIn] Taewoo Tak [verfasserIn] Ho Cheol Shin [verfasserIn] Deokjung Lee [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nuclear Engineering and Technology - Elsevier, 2016, 49(2017), 1, Seite 6-16 |
---|---|
Übergeordnetes Werk: |
volume:49 ; year:2017 ; number:1 ; pages:6-16 |
Links: |
---|
DOI / URN: |
10.1016/j.net.2016.07.003 |
---|
Katalog-ID: |
DOAJ024227692 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ024227692 | ||
003 | DE-627 | ||
005 | 20230307073153.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.net.2016.07.003 |2 doi | |
035 | |a (DE-627)DOAJ024227692 | ||
035 | |a (DE-599)DOAJ887e5836f3f24e248459bbd9eced807f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK9001-9401 | |
100 | 0 | |a Jinsu Park |e verfasserin |4 aut | |
245 | 1 | 0 | |a Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 × 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case. | ||
650 | 4 | |a Advanced Canada Deuterium Uranium Reactor-700 | |
650 | 4 | |a Canada Deuterium Uranium-6 | |
650 | 4 | |a Coolant Void Reactivity | |
650 | 4 | |a Sensitivity Study | |
650 | 4 | |a Single Bundle and Checkerboard Voiding | |
653 | 0 | |a Nuclear engineering. Atomic power | |
700 | 0 | |a Hyunsuk Lee |e verfasserin |4 aut | |
700 | 0 | |a Taewoo Tak |e verfasserin |4 aut | |
700 | 0 | |a Ho Cheol Shin |e verfasserin |4 aut | |
700 | 0 | |a Deokjung Lee |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nuclear Engineering and Technology |d Elsevier, 2016 |g 49(2017), 1, Seite 6-16 |w (DE-627)63243855X |w (DE-600)2566624-1 |x 17385733 |7 nnns |
773 | 1 | 8 | |g volume:49 |g year:2017 |g number:1 |g pages:6-16 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.net.2016.07.003 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/887e5836f3f24e248459bbd9eced807f |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1738573316301048 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1738-5733 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 49 |j 2017 |e 1 |h 6-16 |
author_variant |
j p jp h l hl t t tt h c s hcs d l dl |
---|---|
matchkey_str |
article:17385733:2017----::hscsuyfaaaetruuaimatcwtcoato |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
TK |
publishDate |
2017 |
allfields |
10.1016/j.net.2016.07.003 doi (DE-627)DOAJ024227692 (DE-599)DOAJ887e5836f3f24e248459bbd9eced807f DE-627 ger DE-627 rakwb eng TK9001-9401 Jinsu Park verfasserin aut Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 × 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case. Advanced Canada Deuterium Uranium Reactor-700 Canada Deuterium Uranium-6 Coolant Void Reactivity Sensitivity Study Single Bundle and Checkerboard Voiding Nuclear engineering. Atomic power Hyunsuk Lee verfasserin aut Taewoo Tak verfasserin aut Ho Cheol Shin verfasserin aut Deokjung Lee verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 49(2017), 1, Seite 6-16 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:49 year:2017 number:1 pages:6-16 https://doi.org/10.1016/j.net.2016.07.003 kostenfrei https://doaj.org/article/887e5836f3f24e248459bbd9eced807f kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573316301048 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2017 1 6-16 |
spelling |
10.1016/j.net.2016.07.003 doi (DE-627)DOAJ024227692 (DE-599)DOAJ887e5836f3f24e248459bbd9eced807f DE-627 ger DE-627 rakwb eng TK9001-9401 Jinsu Park verfasserin aut Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 × 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case. Advanced Canada Deuterium Uranium Reactor-700 Canada Deuterium Uranium-6 Coolant Void Reactivity Sensitivity Study Single Bundle and Checkerboard Voiding Nuclear engineering. Atomic power Hyunsuk Lee verfasserin aut Taewoo Tak verfasserin aut Ho Cheol Shin verfasserin aut Deokjung Lee verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 49(2017), 1, Seite 6-16 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:49 year:2017 number:1 pages:6-16 https://doi.org/10.1016/j.net.2016.07.003 kostenfrei https://doaj.org/article/887e5836f3f24e248459bbd9eced807f kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573316301048 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2017 1 6-16 |
allfields_unstemmed |
10.1016/j.net.2016.07.003 doi (DE-627)DOAJ024227692 (DE-599)DOAJ887e5836f3f24e248459bbd9eced807f DE-627 ger DE-627 rakwb eng TK9001-9401 Jinsu Park verfasserin aut Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 × 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case. Advanced Canada Deuterium Uranium Reactor-700 Canada Deuterium Uranium-6 Coolant Void Reactivity Sensitivity Study Single Bundle and Checkerboard Voiding Nuclear engineering. Atomic power Hyunsuk Lee verfasserin aut Taewoo Tak verfasserin aut Ho Cheol Shin verfasserin aut Deokjung Lee verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 49(2017), 1, Seite 6-16 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:49 year:2017 number:1 pages:6-16 https://doi.org/10.1016/j.net.2016.07.003 kostenfrei https://doaj.org/article/887e5836f3f24e248459bbd9eced807f kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573316301048 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2017 1 6-16 |
allfieldsGer |
10.1016/j.net.2016.07.003 doi (DE-627)DOAJ024227692 (DE-599)DOAJ887e5836f3f24e248459bbd9eced807f DE-627 ger DE-627 rakwb eng TK9001-9401 Jinsu Park verfasserin aut Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 × 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case. Advanced Canada Deuterium Uranium Reactor-700 Canada Deuterium Uranium-6 Coolant Void Reactivity Sensitivity Study Single Bundle and Checkerboard Voiding Nuclear engineering. Atomic power Hyunsuk Lee verfasserin aut Taewoo Tak verfasserin aut Ho Cheol Shin verfasserin aut Deokjung Lee verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 49(2017), 1, Seite 6-16 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:49 year:2017 number:1 pages:6-16 https://doi.org/10.1016/j.net.2016.07.003 kostenfrei https://doaj.org/article/887e5836f3f24e248459bbd9eced807f kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573316301048 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2017 1 6-16 |
allfieldsSound |
10.1016/j.net.2016.07.003 doi (DE-627)DOAJ024227692 (DE-599)DOAJ887e5836f3f24e248459bbd9eced807f DE-627 ger DE-627 rakwb eng TK9001-9401 Jinsu Park verfasserin aut Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 × 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case. Advanced Canada Deuterium Uranium Reactor-700 Canada Deuterium Uranium-6 Coolant Void Reactivity Sensitivity Study Single Bundle and Checkerboard Voiding Nuclear engineering. Atomic power Hyunsuk Lee verfasserin aut Taewoo Tak verfasserin aut Ho Cheol Shin verfasserin aut Deokjung Lee verfasserin aut In Nuclear Engineering and Technology Elsevier, 2016 49(2017), 1, Seite 6-16 (DE-627)63243855X (DE-600)2566624-1 17385733 nnns volume:49 year:2017 number:1 pages:6-16 https://doi.org/10.1016/j.net.2016.07.003 kostenfrei https://doaj.org/article/887e5836f3f24e248459bbd9eced807f kostenfrei http://www.sciencedirect.com/science/article/pii/S1738573316301048 kostenfrei https://doaj.org/toc/1738-5733 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2017 1 6-16 |
language |
English |
source |
In Nuclear Engineering and Technology 49(2017), 1, Seite 6-16 volume:49 year:2017 number:1 pages:6-16 |
sourceStr |
In Nuclear Engineering and Technology 49(2017), 1, Seite 6-16 volume:49 year:2017 number:1 pages:6-16 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Advanced Canada Deuterium Uranium Reactor-700 Canada Deuterium Uranium-6 Coolant Void Reactivity Sensitivity Study Single Bundle and Checkerboard Voiding Nuclear engineering. Atomic power |
isfreeaccess_bool |
true |
container_title |
Nuclear Engineering and Technology |
authorswithroles_txt_mv |
Jinsu Park @@aut@@ Hyunsuk Lee @@aut@@ Taewoo Tak @@aut@@ Ho Cheol Shin @@aut@@ Deokjung Lee @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
63243855X |
id |
DOAJ024227692 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024227692</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307073153.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.net.2016.07.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024227692</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ887e5836f3f24e248459bbd9eced807f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK9001-9401</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jinsu Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 × 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Advanced Canada Deuterium Uranium Reactor-700</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canada Deuterium Uranium-6</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coolant Void Reactivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity Study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single Bundle and Checkerboard Voiding</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear engineering. Atomic power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyunsuk Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taewoo Tak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ho Cheol Shin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deokjung Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nuclear Engineering and Technology</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">49(2017), 1, Seite 6-16</subfield><subfield code="w">(DE-627)63243855X</subfield><subfield code="w">(DE-600)2566624-1</subfield><subfield code="x">17385733</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:6-16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.net.2016.07.003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/887e5836f3f24e248459bbd9eced807f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1738573316301048</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1738-5733</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">6-16</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jinsu Park |
spellingShingle |
Jinsu Park misc TK9001-9401 misc Advanced Canada Deuterium Uranium Reactor-700 misc Canada Deuterium Uranium-6 misc Coolant Void Reactivity misc Sensitivity Study misc Single Bundle and Checkerboard Voiding misc Nuclear engineering. Atomic power Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis |
authorStr |
Jinsu Park |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)63243855X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK9001-9401 |
illustrated |
Not Illustrated |
issn |
17385733 |
topic_title |
TK9001-9401 Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis Advanced Canada Deuterium Uranium Reactor-700 Canada Deuterium Uranium-6 Coolant Void Reactivity Sensitivity Study Single Bundle and Checkerboard Voiding |
topic |
misc TK9001-9401 misc Advanced Canada Deuterium Uranium Reactor-700 misc Canada Deuterium Uranium-6 misc Coolant Void Reactivity misc Sensitivity Study misc Single Bundle and Checkerboard Voiding misc Nuclear engineering. Atomic power |
topic_unstemmed |
misc TK9001-9401 misc Advanced Canada Deuterium Uranium Reactor-700 misc Canada Deuterium Uranium-6 misc Coolant Void Reactivity misc Sensitivity Study misc Single Bundle and Checkerboard Voiding misc Nuclear engineering. Atomic power |
topic_browse |
misc TK9001-9401 misc Advanced Canada Deuterium Uranium Reactor-700 misc Canada Deuterium Uranium-6 misc Coolant Void Reactivity misc Sensitivity Study misc Single Bundle and Checkerboard Voiding misc Nuclear engineering. Atomic power |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nuclear Engineering and Technology |
hierarchy_parent_id |
63243855X |
hierarchy_top_title |
Nuclear Engineering and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)63243855X (DE-600)2566624-1 |
title |
Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis |
ctrlnum |
(DE-627)DOAJ024227692 (DE-599)DOAJ887e5836f3f24e248459bbd9eced807f |
title_full |
Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis |
author_sort |
Jinsu Park |
journal |
Nuclear Engineering and Technology |
journalStr |
Nuclear Engineering and Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
6 |
author_browse |
Jinsu Park Hyunsuk Lee Taewoo Tak Ho Cheol Shin Deokjung Lee |
container_volume |
49 |
class |
TK9001-9401 |
format_se |
Elektronische Aufsätze |
author-letter |
Jinsu Park |
doi_str_mv |
10.1016/j.net.2016.07.003 |
author2-role |
verfasserin |
title_sort |
physics study of canada deuterium uranium lattice with coolant void reactivity analysis |
callnumber |
TK9001-9401 |
title_auth |
Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis |
abstract |
This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 × 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case. |
abstractGer |
This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 × 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case. |
abstract_unstemmed |
This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 × 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis |
url |
https://doi.org/10.1016/j.net.2016.07.003 https://doaj.org/article/887e5836f3f24e248459bbd9eced807f http://www.sciencedirect.com/science/article/pii/S1738573316301048 https://doaj.org/toc/1738-5733 |
remote_bool |
true |
author2 |
Hyunsuk Lee Taewoo Tak Ho Cheol Shin Deokjung Lee |
author2Str |
Hyunsuk Lee Taewoo Tak Ho Cheol Shin Deokjung Lee |
ppnlink |
63243855X |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.net.2016.07.003 |
callnumber-a |
TK9001-9401 |
up_date |
2024-07-03T21:53:38.065Z |
_version_ |
1803596456858222592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024227692</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307073153.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.net.2016.07.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024227692</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ887e5836f3f24e248459bbd9eced807f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK9001-9401</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jinsu Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 × 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Advanced Canada Deuterium Uranium Reactor-700</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canada Deuterium Uranium-6</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coolant Void Reactivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity Study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single Bundle and Checkerboard Voiding</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear engineering. Atomic power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyunsuk Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taewoo Tak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ho Cheol Shin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deokjung Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nuclear Engineering and Technology</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">49(2017), 1, Seite 6-16</subfield><subfield code="w">(DE-627)63243855X</subfield><subfield code="w">(DE-600)2566624-1</subfield><subfield code="x">17385733</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:6-16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.net.2016.07.003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/887e5836f3f24e248459bbd9eced807f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1738573316301048</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1738-5733</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">6-16</subfield></datafield></record></collection>
|
score |
7.402815 |