On dynamics of quadratic stochastic operators: a survey
We discuss the notion of Volterra, l-Volterra and separable quadratic stochastic operators defined on (m-1)-dimensional simplex, where l∈{0,1,...,m}. The l-Volterra operator is a Volterra operator if and only if l=m. We study the structure of the set of all Volterra and l-Volterra operators and desc...
Ausführliche Beschreibung
Autor*in: |
Akbar Zada [verfasserIn] Syed Omar Shah [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Französisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Surveys in Mathematics and its Applications - University Constantin Brancusi of Targu-Jiu, 2008, 12 (2017)(2017), Seite 117-164 |
---|---|
Übergeordnetes Werk: |
volume:12 (2017) ; year:2017 ; pages:117-164 |
Links: |
---|
Katalog-ID: |
DOAJ024354228 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ024354228 | ||
003 | DE-627 | ||
005 | 20230502065434.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2017 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ024354228 | ||
035 | |a (DE-599)DOAJd267c9a4f50a4a078ac1ae8e3c566fdf | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a fre | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Akbar Zada |e verfasserin |4 aut | |
245 | 1 | 0 | |a On dynamics of quadratic stochastic operators: a survey |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We discuss the notion of Volterra, l-Volterra and separable quadratic stochastic operators defined on (m-1)-dimensional simplex, where l∈{0,1,...,m}. The l-Volterra operator is a Volterra operator if and only if l=m. We study the structure of the set of all Volterra and l-Volterra operators and describe their several fixed and periodic points. For m=2 and m=3 we describe behavior of trajectories of (m-1)-Volterra operators. We also mention many remarks with comparisons of l-Volterra operators and Volterra ones. Also we discuss the dynamics of separable quadratic stochastic operators. | ||
650 | 4 | |a Quadratic stochastic operator | |
650 | 4 | |a fixed point | |
650 | 4 | |a trajectory | |
650 | 4 | |a Volterra and non-Volterra operators | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Syed Omar Shah |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Surveys in Mathematics and its Applications |d University Constantin Brancusi of Targu-Jiu, 2008 |g 12 (2017)(2017), Seite 117-164 |w (DE-627)560173032 |w (DE-600)2415088-5 |x 18426298 |7 nnns |
773 | 1 | 8 | |g volume:12 (2017) |g year:2017 |g pages:117-164 |
856 | 4 | 0 | |u https://doaj.org/article/d267c9a4f50a4a078ac1ae8e3c566fdf |z kostenfrei |
856 | 4 | 0 | |u http://www.utgjiu.ro/math/sma/v12/p12_11.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1843-7265 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1842-6298 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 (2017) |j 2017 |h 117-164 |
author_variant |
a z az s o s sos |
---|---|
matchkey_str |
article:18426298:2017----::nyaisfudaisohsio |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
QA |
publishDate |
2017 |
allfields |
(DE-627)DOAJ024354228 (DE-599)DOAJd267c9a4f50a4a078ac1ae8e3c566fdf DE-627 ger DE-627 rakwb eng fre QA1-939 Akbar Zada verfasserin aut On dynamics of quadratic stochastic operators: a survey 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We discuss the notion of Volterra, l-Volterra and separable quadratic stochastic operators defined on (m-1)-dimensional simplex, where l∈{0,1,...,m}. The l-Volterra operator is a Volterra operator if and only if l=m. We study the structure of the set of all Volterra and l-Volterra operators and describe their several fixed and periodic points. For m=2 and m=3 we describe behavior of trajectories of (m-1)-Volterra operators. We also mention many remarks with comparisons of l-Volterra operators and Volterra ones. Also we discuss the dynamics of separable quadratic stochastic operators. Quadratic stochastic operator fixed point trajectory Volterra and non-Volterra operators Mathematics Syed Omar Shah verfasserin aut In Surveys in Mathematics and its Applications University Constantin Brancusi of Targu-Jiu, 2008 12 (2017)(2017), Seite 117-164 (DE-627)560173032 (DE-600)2415088-5 18426298 nnns volume:12 (2017) year:2017 pages:117-164 https://doaj.org/article/d267c9a4f50a4a078ac1ae8e3c566fdf kostenfrei http://www.utgjiu.ro/math/sma/v12/p12_11.pdf kostenfrei https://doaj.org/toc/1843-7265 Journal toc kostenfrei https://doaj.org/toc/1842-6298 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 (2017) 2017 117-164 |
spelling |
(DE-627)DOAJ024354228 (DE-599)DOAJd267c9a4f50a4a078ac1ae8e3c566fdf DE-627 ger DE-627 rakwb eng fre QA1-939 Akbar Zada verfasserin aut On dynamics of quadratic stochastic operators: a survey 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We discuss the notion of Volterra, l-Volterra and separable quadratic stochastic operators defined on (m-1)-dimensional simplex, where l∈{0,1,...,m}. The l-Volterra operator is a Volterra operator if and only if l=m. We study the structure of the set of all Volterra and l-Volterra operators and describe their several fixed and periodic points. For m=2 and m=3 we describe behavior of trajectories of (m-1)-Volterra operators. We also mention many remarks with comparisons of l-Volterra operators and Volterra ones. Also we discuss the dynamics of separable quadratic stochastic operators. Quadratic stochastic operator fixed point trajectory Volterra and non-Volterra operators Mathematics Syed Omar Shah verfasserin aut In Surveys in Mathematics and its Applications University Constantin Brancusi of Targu-Jiu, 2008 12 (2017)(2017), Seite 117-164 (DE-627)560173032 (DE-600)2415088-5 18426298 nnns volume:12 (2017) year:2017 pages:117-164 https://doaj.org/article/d267c9a4f50a4a078ac1ae8e3c566fdf kostenfrei http://www.utgjiu.ro/math/sma/v12/p12_11.pdf kostenfrei https://doaj.org/toc/1843-7265 Journal toc kostenfrei https://doaj.org/toc/1842-6298 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 (2017) 2017 117-164 |
allfields_unstemmed |
(DE-627)DOAJ024354228 (DE-599)DOAJd267c9a4f50a4a078ac1ae8e3c566fdf DE-627 ger DE-627 rakwb eng fre QA1-939 Akbar Zada verfasserin aut On dynamics of quadratic stochastic operators: a survey 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We discuss the notion of Volterra, l-Volterra and separable quadratic stochastic operators defined on (m-1)-dimensional simplex, where l∈{0,1,...,m}. The l-Volterra operator is a Volterra operator if and only if l=m. We study the structure of the set of all Volterra and l-Volterra operators and describe their several fixed and periodic points. For m=2 and m=3 we describe behavior of trajectories of (m-1)-Volterra operators. We also mention many remarks with comparisons of l-Volterra operators and Volterra ones. Also we discuss the dynamics of separable quadratic stochastic operators. Quadratic stochastic operator fixed point trajectory Volterra and non-Volterra operators Mathematics Syed Omar Shah verfasserin aut In Surveys in Mathematics and its Applications University Constantin Brancusi of Targu-Jiu, 2008 12 (2017)(2017), Seite 117-164 (DE-627)560173032 (DE-600)2415088-5 18426298 nnns volume:12 (2017) year:2017 pages:117-164 https://doaj.org/article/d267c9a4f50a4a078ac1ae8e3c566fdf kostenfrei http://www.utgjiu.ro/math/sma/v12/p12_11.pdf kostenfrei https://doaj.org/toc/1843-7265 Journal toc kostenfrei https://doaj.org/toc/1842-6298 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 (2017) 2017 117-164 |
allfieldsGer |
(DE-627)DOAJ024354228 (DE-599)DOAJd267c9a4f50a4a078ac1ae8e3c566fdf DE-627 ger DE-627 rakwb eng fre QA1-939 Akbar Zada verfasserin aut On dynamics of quadratic stochastic operators: a survey 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We discuss the notion of Volterra, l-Volterra and separable quadratic stochastic operators defined on (m-1)-dimensional simplex, where l∈{0,1,...,m}. The l-Volterra operator is a Volterra operator if and only if l=m. We study the structure of the set of all Volterra and l-Volterra operators and describe their several fixed and periodic points. For m=2 and m=3 we describe behavior of trajectories of (m-1)-Volterra operators. We also mention many remarks with comparisons of l-Volterra operators and Volterra ones. Also we discuss the dynamics of separable quadratic stochastic operators. Quadratic stochastic operator fixed point trajectory Volterra and non-Volterra operators Mathematics Syed Omar Shah verfasserin aut In Surveys in Mathematics and its Applications University Constantin Brancusi of Targu-Jiu, 2008 12 (2017)(2017), Seite 117-164 (DE-627)560173032 (DE-600)2415088-5 18426298 nnns volume:12 (2017) year:2017 pages:117-164 https://doaj.org/article/d267c9a4f50a4a078ac1ae8e3c566fdf kostenfrei http://www.utgjiu.ro/math/sma/v12/p12_11.pdf kostenfrei https://doaj.org/toc/1843-7265 Journal toc kostenfrei https://doaj.org/toc/1842-6298 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 (2017) 2017 117-164 |
allfieldsSound |
(DE-627)DOAJ024354228 (DE-599)DOAJd267c9a4f50a4a078ac1ae8e3c566fdf DE-627 ger DE-627 rakwb eng fre QA1-939 Akbar Zada verfasserin aut On dynamics of quadratic stochastic operators: a survey 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We discuss the notion of Volterra, l-Volterra and separable quadratic stochastic operators defined on (m-1)-dimensional simplex, where l∈{0,1,...,m}. The l-Volterra operator is a Volterra operator if and only if l=m. We study the structure of the set of all Volterra and l-Volterra operators and describe their several fixed and periodic points. For m=2 and m=3 we describe behavior of trajectories of (m-1)-Volterra operators. We also mention many remarks with comparisons of l-Volterra operators and Volterra ones. Also we discuss the dynamics of separable quadratic stochastic operators. Quadratic stochastic operator fixed point trajectory Volterra and non-Volterra operators Mathematics Syed Omar Shah verfasserin aut In Surveys in Mathematics and its Applications University Constantin Brancusi of Targu-Jiu, 2008 12 (2017)(2017), Seite 117-164 (DE-627)560173032 (DE-600)2415088-5 18426298 nnns volume:12 (2017) year:2017 pages:117-164 https://doaj.org/article/d267c9a4f50a4a078ac1ae8e3c566fdf kostenfrei http://www.utgjiu.ro/math/sma/v12/p12_11.pdf kostenfrei https://doaj.org/toc/1843-7265 Journal toc kostenfrei https://doaj.org/toc/1842-6298 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 (2017) 2017 117-164 |
language |
English French |
source |
In Surveys in Mathematics and its Applications 12 (2017)(2017), Seite 117-164 volume:12 (2017) year:2017 pages:117-164 |
sourceStr |
In Surveys in Mathematics and its Applications 12 (2017)(2017), Seite 117-164 volume:12 (2017) year:2017 pages:117-164 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quadratic stochastic operator fixed point trajectory Volterra and non-Volterra operators Mathematics |
isfreeaccess_bool |
true |
container_title |
Surveys in Mathematics and its Applications |
authorswithroles_txt_mv |
Akbar Zada @@aut@@ Syed Omar Shah @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
560173032 |
id |
DOAJ024354228 |
language_de |
englisch franzoesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024354228</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502065434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024354228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd267c9a4f50a4a078ac1ae8e3c566fdf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Akbar Zada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On dynamics of quadratic stochastic operators: a survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We discuss the notion of Volterra, l-Volterra and separable quadratic stochastic operators defined on (m-1)-dimensional simplex, where l∈{0,1,...,m}. The l-Volterra operator is a Volterra operator if and only if l=m. We study the structure of the set of all Volterra and l-Volterra operators and describe their several fixed and periodic points. For m=2 and m=3 we describe behavior of trajectories of (m-1)-Volterra operators. We also mention many remarks with comparisons of l-Volterra operators and Volterra ones. Also we discuss the dynamics of separable quadratic stochastic operators.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quadratic stochastic operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">trajectory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra and non-Volterra operators</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Syed Omar Shah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Surveys in Mathematics and its Applications</subfield><subfield code="d">University Constantin Brancusi of Targu-Jiu, 2008</subfield><subfield code="g">12 (2017)(2017), Seite 117-164</subfield><subfield code="w">(DE-627)560173032</subfield><subfield code="w">(DE-600)2415088-5</subfield><subfield code="x">18426298</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12 (2017)</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:117-164</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d267c9a4f50a4a078ac1ae8e3c566fdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.utgjiu.ro/math/sma/v12/p12_11.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1843-7265</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1842-6298</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12 (2017)</subfield><subfield code="j">2017</subfield><subfield code="h">117-164</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Akbar Zada |
spellingShingle |
Akbar Zada misc QA1-939 misc Quadratic stochastic operator misc fixed point misc trajectory misc Volterra and non-Volterra operators misc Mathematics On dynamics of quadratic stochastic operators: a survey |
authorStr |
Akbar Zada |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)560173032 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
18426298 |
topic_title |
QA1-939 On dynamics of quadratic stochastic operators: a survey Quadratic stochastic operator fixed point trajectory Volterra and non-Volterra operators |
topic |
misc QA1-939 misc Quadratic stochastic operator misc fixed point misc trajectory misc Volterra and non-Volterra operators misc Mathematics |
topic_unstemmed |
misc QA1-939 misc Quadratic stochastic operator misc fixed point misc trajectory misc Volterra and non-Volterra operators misc Mathematics |
topic_browse |
misc QA1-939 misc Quadratic stochastic operator misc fixed point misc trajectory misc Volterra and non-Volterra operators misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Surveys in Mathematics and its Applications |
hierarchy_parent_id |
560173032 |
hierarchy_top_title |
Surveys in Mathematics and its Applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)560173032 (DE-600)2415088-5 |
title |
On dynamics of quadratic stochastic operators: a survey |
ctrlnum |
(DE-627)DOAJ024354228 (DE-599)DOAJd267c9a4f50a4a078ac1ae8e3c566fdf |
title_full |
On dynamics of quadratic stochastic operators: a survey |
author_sort |
Akbar Zada |
journal |
Surveys in Mathematics and its Applications |
journalStr |
Surveys in Mathematics and its Applications |
callnumber-first-code |
Q |
lang_code |
eng fre |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
117 |
author_browse |
Akbar Zada Syed Omar Shah |
container_volume |
12 (2017) |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Akbar Zada |
author2-role |
verfasserin |
title_sort |
on dynamics of quadratic stochastic operators: a survey |
callnumber |
QA1-939 |
title_auth |
On dynamics of quadratic stochastic operators: a survey |
abstract |
We discuss the notion of Volterra, l-Volterra and separable quadratic stochastic operators defined on (m-1)-dimensional simplex, where l∈{0,1,...,m}. The l-Volterra operator is a Volterra operator if and only if l=m. We study the structure of the set of all Volterra and l-Volterra operators and describe their several fixed and periodic points. For m=2 and m=3 we describe behavior of trajectories of (m-1)-Volterra operators. We also mention many remarks with comparisons of l-Volterra operators and Volterra ones. Also we discuss the dynamics of separable quadratic stochastic operators. |
abstractGer |
We discuss the notion of Volterra, l-Volterra and separable quadratic stochastic operators defined on (m-1)-dimensional simplex, where l∈{0,1,...,m}. The l-Volterra operator is a Volterra operator if and only if l=m. We study the structure of the set of all Volterra and l-Volterra operators and describe their several fixed and periodic points. For m=2 and m=3 we describe behavior of trajectories of (m-1)-Volterra operators. We also mention many remarks with comparisons of l-Volterra operators and Volterra ones. Also we discuss the dynamics of separable quadratic stochastic operators. |
abstract_unstemmed |
We discuss the notion of Volterra, l-Volterra and separable quadratic stochastic operators defined on (m-1)-dimensional simplex, where l∈{0,1,...,m}. The l-Volterra operator is a Volterra operator if and only if l=m. We study the structure of the set of all Volterra and l-Volterra operators and describe their several fixed and periodic points. For m=2 and m=3 we describe behavior of trajectories of (m-1)-Volterra operators. We also mention many remarks with comparisons of l-Volterra operators and Volterra ones. Also we discuss the dynamics of separable quadratic stochastic operators. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
On dynamics of quadratic stochastic operators: a survey |
url |
https://doaj.org/article/d267c9a4f50a4a078ac1ae8e3c566fdf http://www.utgjiu.ro/math/sma/v12/p12_11.pdf https://doaj.org/toc/1843-7265 https://doaj.org/toc/1842-6298 |
remote_bool |
true |
author2 |
Syed Omar Shah |
author2Str |
Syed Omar Shah |
ppnlink |
560173032 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T22:30:59.486Z |
_version_ |
1803598807158489088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024354228</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502065434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024354228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd267c9a4f50a4a078ac1ae8e3c566fdf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Akbar Zada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On dynamics of quadratic stochastic operators: a survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We discuss the notion of Volterra, l-Volterra and separable quadratic stochastic operators defined on (m-1)-dimensional simplex, where l∈{0,1,...,m}. The l-Volterra operator is a Volterra operator if and only if l=m. We study the structure of the set of all Volterra and l-Volterra operators and describe their several fixed and periodic points. For m=2 and m=3 we describe behavior of trajectories of (m-1)-Volterra operators. We also mention many remarks with comparisons of l-Volterra operators and Volterra ones. Also we discuss the dynamics of separable quadratic stochastic operators.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quadratic stochastic operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fixed point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">trajectory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra and non-Volterra operators</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Syed Omar Shah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Surveys in Mathematics and its Applications</subfield><subfield code="d">University Constantin Brancusi of Targu-Jiu, 2008</subfield><subfield code="g">12 (2017)(2017), Seite 117-164</subfield><subfield code="w">(DE-627)560173032</subfield><subfield code="w">(DE-600)2415088-5</subfield><subfield code="x">18426298</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12 (2017)</subfield><subfield code="g">year:2017</subfield><subfield code="g">pages:117-164</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d267c9a4f50a4a078ac1ae8e3c566fdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.utgjiu.ro/math/sma/v12/p12_11.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1843-7265</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1842-6298</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12 (2017)</subfield><subfield code="j">2017</subfield><subfield code="h">117-164</subfield></datafield></record></collection>
|
score |
7.4012566 |