Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process
Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial...
Ausführliche Beschreibung
Autor*in: |
Ruyue Wang [verfasserIn] Sai Xu [verfasserIn] Yuxiang Zhu [verfasserIn] Tao Zhang [verfasserIn] Shijian Ge [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Microbiology - Frontiers Media S.A., 2011, 13(2022) |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/fmicb.2022.1074316 |
---|
Katalog-ID: |
DOAJ02471030X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ02471030X | ||
003 | DE-627 | ||
005 | 20230502114320.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fmicb.2022.1074316 |2 doi | |
035 | |a (DE-627)DOAJ02471030X | ||
035 | |a (DE-599)DOAJb7f4923ae934416ca93e6766c3162507 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR1-502 | |
100 | 0 | |a Ruyue Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial communities in river networks of the Taihu Basin were investigated by amplicon sequencing across wet, normal, and dry seasons followed by multiple statistical analyses. Phylogenetic analysis showed that Group B was the major subgroup of DAMO bacteria and significant dynamics for their communities were observed across different seasons (constrained principal coordinate analysis, p = 0.001). Furthermore, the neutral community model and normalized stochasticity ratio model were applied to reveal the underlying assembly process. Stochastic process and deterministic process dominated the assembly process in wet season and normal season, respectively and similar contributions of deterministic and stochastic processes were observed in dry season. Meanwhile, abundant (relative abundance >0.1%) and rare (relative abundance <0.01%) DAMO bacterial communities were found to be shaped via distinct assembly processes. Deterministic and stochastic processes played a considerable role in shaping abundant DAMO bacterial communities, while deterministic process mainly shaped rare DAMO bacterial communities. Results of this study revealed the dynamics of DAMO bacterial communities in river networks and provided a theoretical basis for further understanding of the assembly process. | ||
650 | 4 | |a DAMO bacteria | |
650 | 4 | |a spatiotemporal dynamics | |
650 | 4 | |a river networks | |
650 | 4 | |a community assembly | |
650 | 4 | |a amplicon sequencing | |
653 | 0 | |a Microbiology | |
700 | 0 | |a Sai Xu |e verfasserin |4 aut | |
700 | 0 | |a Yuxiang Zhu |e verfasserin |4 aut | |
700 | 0 | |a Tao Zhang |e verfasserin |4 aut | |
700 | 0 | |a Shijian Ge |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Microbiology |d Frontiers Media S.A., 2011 |g 13(2022) |w (DE-627)642889384 |w (DE-600)2587354-4 |x 1664302X |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/fmicb.2022.1074316 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b7f4923ae934416ca93e6766c3162507 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fmicb.2022.1074316/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1664-302X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2022 |
author_variant |
r w rw s x sx y z yz t z tz s g sg |
---|---|
matchkey_str |
article:1664302X:2022----::eirfigneoimtaexdznbceiirvrewrsfhtiuaicmu |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QR |
publishDate |
2022 |
allfields |
10.3389/fmicb.2022.1074316 doi (DE-627)DOAJ02471030X (DE-599)DOAJb7f4923ae934416ca93e6766c3162507 DE-627 ger DE-627 rakwb eng QR1-502 Ruyue Wang verfasserin aut Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial communities in river networks of the Taihu Basin were investigated by amplicon sequencing across wet, normal, and dry seasons followed by multiple statistical analyses. Phylogenetic analysis showed that Group B was the major subgroup of DAMO bacteria and significant dynamics for their communities were observed across different seasons (constrained principal coordinate analysis, p = 0.001). Furthermore, the neutral community model and normalized stochasticity ratio model were applied to reveal the underlying assembly process. Stochastic process and deterministic process dominated the assembly process in wet season and normal season, respectively and similar contributions of deterministic and stochastic processes were observed in dry season. Meanwhile, abundant (relative abundance >0.1%) and rare (relative abundance <0.01%) DAMO bacterial communities were found to be shaped via distinct assembly processes. Deterministic and stochastic processes played a considerable role in shaping abundant DAMO bacterial communities, while deterministic process mainly shaped rare DAMO bacterial communities. Results of this study revealed the dynamics of DAMO bacterial communities in river networks and provided a theoretical basis for further understanding of the assembly process. DAMO bacteria spatiotemporal dynamics river networks community assembly amplicon sequencing Microbiology Sai Xu verfasserin aut Yuxiang Zhu verfasserin aut Tao Zhang verfasserin aut Shijian Ge verfasserin aut In Frontiers in Microbiology Frontiers Media S.A., 2011 13(2022) (DE-627)642889384 (DE-600)2587354-4 1664302X nnns volume:13 year:2022 https://doi.org/10.3389/fmicb.2022.1074316 kostenfrei https://doaj.org/article/b7f4923ae934416ca93e6766c3162507 kostenfrei https://www.frontiersin.org/articles/10.3389/fmicb.2022.1074316/full kostenfrei https://doaj.org/toc/1664-302X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 |
spelling |
10.3389/fmicb.2022.1074316 doi (DE-627)DOAJ02471030X (DE-599)DOAJb7f4923ae934416ca93e6766c3162507 DE-627 ger DE-627 rakwb eng QR1-502 Ruyue Wang verfasserin aut Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial communities in river networks of the Taihu Basin were investigated by amplicon sequencing across wet, normal, and dry seasons followed by multiple statistical analyses. Phylogenetic analysis showed that Group B was the major subgroup of DAMO bacteria and significant dynamics for their communities were observed across different seasons (constrained principal coordinate analysis, p = 0.001). Furthermore, the neutral community model and normalized stochasticity ratio model were applied to reveal the underlying assembly process. Stochastic process and deterministic process dominated the assembly process in wet season and normal season, respectively and similar contributions of deterministic and stochastic processes were observed in dry season. Meanwhile, abundant (relative abundance >0.1%) and rare (relative abundance <0.01%) DAMO bacterial communities were found to be shaped via distinct assembly processes. Deterministic and stochastic processes played a considerable role in shaping abundant DAMO bacterial communities, while deterministic process mainly shaped rare DAMO bacterial communities. Results of this study revealed the dynamics of DAMO bacterial communities in river networks and provided a theoretical basis for further understanding of the assembly process. DAMO bacteria spatiotemporal dynamics river networks community assembly amplicon sequencing Microbiology Sai Xu verfasserin aut Yuxiang Zhu verfasserin aut Tao Zhang verfasserin aut Shijian Ge verfasserin aut In Frontiers in Microbiology Frontiers Media S.A., 2011 13(2022) (DE-627)642889384 (DE-600)2587354-4 1664302X nnns volume:13 year:2022 https://doi.org/10.3389/fmicb.2022.1074316 kostenfrei https://doaj.org/article/b7f4923ae934416ca93e6766c3162507 kostenfrei https://www.frontiersin.org/articles/10.3389/fmicb.2022.1074316/full kostenfrei https://doaj.org/toc/1664-302X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 |
allfields_unstemmed |
10.3389/fmicb.2022.1074316 doi (DE-627)DOAJ02471030X (DE-599)DOAJb7f4923ae934416ca93e6766c3162507 DE-627 ger DE-627 rakwb eng QR1-502 Ruyue Wang verfasserin aut Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial communities in river networks of the Taihu Basin were investigated by amplicon sequencing across wet, normal, and dry seasons followed by multiple statistical analyses. Phylogenetic analysis showed that Group B was the major subgroup of DAMO bacteria and significant dynamics for their communities were observed across different seasons (constrained principal coordinate analysis, p = 0.001). Furthermore, the neutral community model and normalized stochasticity ratio model were applied to reveal the underlying assembly process. Stochastic process and deterministic process dominated the assembly process in wet season and normal season, respectively and similar contributions of deterministic and stochastic processes were observed in dry season. Meanwhile, abundant (relative abundance >0.1%) and rare (relative abundance <0.01%) DAMO bacterial communities were found to be shaped via distinct assembly processes. Deterministic and stochastic processes played a considerable role in shaping abundant DAMO bacterial communities, while deterministic process mainly shaped rare DAMO bacterial communities. Results of this study revealed the dynamics of DAMO bacterial communities in river networks and provided a theoretical basis for further understanding of the assembly process. DAMO bacteria spatiotemporal dynamics river networks community assembly amplicon sequencing Microbiology Sai Xu verfasserin aut Yuxiang Zhu verfasserin aut Tao Zhang verfasserin aut Shijian Ge verfasserin aut In Frontiers in Microbiology Frontiers Media S.A., 2011 13(2022) (DE-627)642889384 (DE-600)2587354-4 1664302X nnns volume:13 year:2022 https://doi.org/10.3389/fmicb.2022.1074316 kostenfrei https://doaj.org/article/b7f4923ae934416ca93e6766c3162507 kostenfrei https://www.frontiersin.org/articles/10.3389/fmicb.2022.1074316/full kostenfrei https://doaj.org/toc/1664-302X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 |
allfieldsGer |
10.3389/fmicb.2022.1074316 doi (DE-627)DOAJ02471030X (DE-599)DOAJb7f4923ae934416ca93e6766c3162507 DE-627 ger DE-627 rakwb eng QR1-502 Ruyue Wang verfasserin aut Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial communities in river networks of the Taihu Basin were investigated by amplicon sequencing across wet, normal, and dry seasons followed by multiple statistical analyses. Phylogenetic analysis showed that Group B was the major subgroup of DAMO bacteria and significant dynamics for their communities were observed across different seasons (constrained principal coordinate analysis, p = 0.001). Furthermore, the neutral community model and normalized stochasticity ratio model were applied to reveal the underlying assembly process. Stochastic process and deterministic process dominated the assembly process in wet season and normal season, respectively and similar contributions of deterministic and stochastic processes were observed in dry season. Meanwhile, abundant (relative abundance >0.1%) and rare (relative abundance <0.01%) DAMO bacterial communities were found to be shaped via distinct assembly processes. Deterministic and stochastic processes played a considerable role in shaping abundant DAMO bacterial communities, while deterministic process mainly shaped rare DAMO bacterial communities. Results of this study revealed the dynamics of DAMO bacterial communities in river networks and provided a theoretical basis for further understanding of the assembly process. DAMO bacteria spatiotemporal dynamics river networks community assembly amplicon sequencing Microbiology Sai Xu verfasserin aut Yuxiang Zhu verfasserin aut Tao Zhang verfasserin aut Shijian Ge verfasserin aut In Frontiers in Microbiology Frontiers Media S.A., 2011 13(2022) (DE-627)642889384 (DE-600)2587354-4 1664302X nnns volume:13 year:2022 https://doi.org/10.3389/fmicb.2022.1074316 kostenfrei https://doaj.org/article/b7f4923ae934416ca93e6766c3162507 kostenfrei https://www.frontiersin.org/articles/10.3389/fmicb.2022.1074316/full kostenfrei https://doaj.org/toc/1664-302X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 |
allfieldsSound |
10.3389/fmicb.2022.1074316 doi (DE-627)DOAJ02471030X (DE-599)DOAJb7f4923ae934416ca93e6766c3162507 DE-627 ger DE-627 rakwb eng QR1-502 Ruyue Wang verfasserin aut Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial communities in river networks of the Taihu Basin were investigated by amplicon sequencing across wet, normal, and dry seasons followed by multiple statistical analyses. Phylogenetic analysis showed that Group B was the major subgroup of DAMO bacteria and significant dynamics for their communities were observed across different seasons (constrained principal coordinate analysis, p = 0.001). Furthermore, the neutral community model and normalized stochasticity ratio model were applied to reveal the underlying assembly process. Stochastic process and deterministic process dominated the assembly process in wet season and normal season, respectively and similar contributions of deterministic and stochastic processes were observed in dry season. Meanwhile, abundant (relative abundance >0.1%) and rare (relative abundance <0.01%) DAMO bacterial communities were found to be shaped via distinct assembly processes. Deterministic and stochastic processes played a considerable role in shaping abundant DAMO bacterial communities, while deterministic process mainly shaped rare DAMO bacterial communities. Results of this study revealed the dynamics of DAMO bacterial communities in river networks and provided a theoretical basis for further understanding of the assembly process. DAMO bacteria spatiotemporal dynamics river networks community assembly amplicon sequencing Microbiology Sai Xu verfasserin aut Yuxiang Zhu verfasserin aut Tao Zhang verfasserin aut Shijian Ge verfasserin aut In Frontiers in Microbiology Frontiers Media S.A., 2011 13(2022) (DE-627)642889384 (DE-600)2587354-4 1664302X nnns volume:13 year:2022 https://doi.org/10.3389/fmicb.2022.1074316 kostenfrei https://doaj.org/article/b7f4923ae934416ca93e6766c3162507 kostenfrei https://www.frontiersin.org/articles/10.3389/fmicb.2022.1074316/full kostenfrei https://doaj.org/toc/1664-302X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 |
language |
English |
source |
In Frontiers in Microbiology 13(2022) volume:13 year:2022 |
sourceStr |
In Frontiers in Microbiology 13(2022) volume:13 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DAMO bacteria spatiotemporal dynamics river networks community assembly amplicon sequencing Microbiology |
isfreeaccess_bool |
true |
container_title |
Frontiers in Microbiology |
authorswithroles_txt_mv |
Ruyue Wang @@aut@@ Sai Xu @@aut@@ Yuxiang Zhu @@aut@@ Tao Zhang @@aut@@ Shijian Ge @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
642889384 |
id |
DOAJ02471030X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02471030X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114320.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fmicb.2022.1074316</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02471030X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb7f4923ae934416ca93e6766c3162507</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ruyue Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial communities in river networks of the Taihu Basin were investigated by amplicon sequencing across wet, normal, and dry seasons followed by multiple statistical analyses. Phylogenetic analysis showed that Group B was the major subgroup of DAMO bacteria and significant dynamics for their communities were observed across different seasons (constrained principal coordinate analysis, p = 0.001). Furthermore, the neutral community model and normalized stochasticity ratio model were applied to reveal the underlying assembly process. Stochastic process and deterministic process dominated the assembly process in wet season and normal season, respectively and similar contributions of deterministic and stochastic processes were observed in dry season. Meanwhile, abundant (relative abundance &gt;0.1%) and rare (relative abundance &lt;0.01%) DAMO bacterial communities were found to be shaped via distinct assembly processes. Deterministic and stochastic processes played a considerable role in shaping abundant DAMO bacterial communities, while deterministic process mainly shaped rare DAMO bacterial communities. Results of this study revealed the dynamics of DAMO bacterial communities in river networks and provided a theoretical basis for further understanding of the assembly process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DAMO bacteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatiotemporal dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">river networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">community assembly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">amplicon sequencing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sai Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuxiang Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shijian Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Microbiology</subfield><subfield code="d">Frontiers Media S.A., 2011</subfield><subfield code="g">13(2022)</subfield><subfield code="w">(DE-627)642889384</subfield><subfield code="w">(DE-600)2587354-4</subfield><subfield code="x">1664302X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fmicb.2022.1074316</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b7f4923ae934416ca93e6766c3162507</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fmicb.2022.1074316/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-302X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Ruyue Wang |
spellingShingle |
Ruyue Wang misc QR1-502 misc DAMO bacteria misc spatiotemporal dynamics misc river networks misc community assembly misc amplicon sequencing misc Microbiology Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process |
authorStr |
Ruyue Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)642889384 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
1664302X |
topic_title |
QR1-502 Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process DAMO bacteria spatiotemporal dynamics river networks community assembly amplicon sequencing |
topic |
misc QR1-502 misc DAMO bacteria misc spatiotemporal dynamics misc river networks misc community assembly misc amplicon sequencing misc Microbiology |
topic_unstemmed |
misc QR1-502 misc DAMO bacteria misc spatiotemporal dynamics misc river networks misc community assembly misc amplicon sequencing misc Microbiology |
topic_browse |
misc QR1-502 misc DAMO bacteria misc spatiotemporal dynamics misc river networks misc community assembly misc amplicon sequencing misc Microbiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Microbiology |
hierarchy_parent_id |
642889384 |
hierarchy_top_title |
Frontiers in Microbiology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)642889384 (DE-600)2587354-4 |
title |
Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process |
ctrlnum |
(DE-627)DOAJ02471030X (DE-599)DOAJb7f4923ae934416ca93e6766c3162507 |
title_full |
Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process |
author_sort |
Ruyue Wang |
journal |
Frontiers in Microbiology |
journalStr |
Frontiers in Microbiology |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Ruyue Wang Sai Xu Yuxiang Zhu Tao Zhang Shijian Ge |
container_volume |
13 |
class |
QR1-502 |
format_se |
Elektronische Aufsätze |
author-letter |
Ruyue Wang |
doi_str_mv |
10.3389/fmicb.2022.1074316 |
author2-role |
verfasserin |
title_sort |
denitrifying anaerobic methane-oxidizing bacteria in river networks of the taihu basin: community dynamics and assembly process |
callnumber |
QR1-502 |
title_auth |
Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process |
abstract |
Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial communities in river networks of the Taihu Basin were investigated by amplicon sequencing across wet, normal, and dry seasons followed by multiple statistical analyses. Phylogenetic analysis showed that Group B was the major subgroup of DAMO bacteria and significant dynamics for their communities were observed across different seasons (constrained principal coordinate analysis, p = 0.001). Furthermore, the neutral community model and normalized stochasticity ratio model were applied to reveal the underlying assembly process. Stochastic process and deterministic process dominated the assembly process in wet season and normal season, respectively and similar contributions of deterministic and stochastic processes were observed in dry season. Meanwhile, abundant (relative abundance >0.1%) and rare (relative abundance <0.01%) DAMO bacterial communities were found to be shaped via distinct assembly processes. Deterministic and stochastic processes played a considerable role in shaping abundant DAMO bacterial communities, while deterministic process mainly shaped rare DAMO bacterial communities. Results of this study revealed the dynamics of DAMO bacterial communities in river networks and provided a theoretical basis for further understanding of the assembly process. |
abstractGer |
Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial communities in river networks of the Taihu Basin were investigated by amplicon sequencing across wet, normal, and dry seasons followed by multiple statistical analyses. Phylogenetic analysis showed that Group B was the major subgroup of DAMO bacteria and significant dynamics for their communities were observed across different seasons (constrained principal coordinate analysis, p = 0.001). Furthermore, the neutral community model and normalized stochasticity ratio model were applied to reveal the underlying assembly process. Stochastic process and deterministic process dominated the assembly process in wet season and normal season, respectively and similar contributions of deterministic and stochastic processes were observed in dry season. Meanwhile, abundant (relative abundance >0.1%) and rare (relative abundance <0.01%) DAMO bacterial communities were found to be shaped via distinct assembly processes. Deterministic and stochastic processes played a considerable role in shaping abundant DAMO bacterial communities, while deterministic process mainly shaped rare DAMO bacterial communities. Results of this study revealed the dynamics of DAMO bacterial communities in river networks and provided a theoretical basis for further understanding of the assembly process. |
abstract_unstemmed |
Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial communities in river networks of the Taihu Basin were investigated by amplicon sequencing across wet, normal, and dry seasons followed by multiple statistical analyses. Phylogenetic analysis showed that Group B was the major subgroup of DAMO bacteria and significant dynamics for their communities were observed across different seasons (constrained principal coordinate analysis, p = 0.001). Furthermore, the neutral community model and normalized stochasticity ratio model were applied to reveal the underlying assembly process. Stochastic process and deterministic process dominated the assembly process in wet season and normal season, respectively and similar contributions of deterministic and stochastic processes were observed in dry season. Meanwhile, abundant (relative abundance >0.1%) and rare (relative abundance <0.01%) DAMO bacterial communities were found to be shaped via distinct assembly processes. Deterministic and stochastic processes played a considerable role in shaping abundant DAMO bacterial communities, while deterministic process mainly shaped rare DAMO bacterial communities. Results of this study revealed the dynamics of DAMO bacterial communities in river networks and provided a theoretical basis for further understanding of the assembly process. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process |
url |
https://doi.org/10.3389/fmicb.2022.1074316 https://doaj.org/article/b7f4923ae934416ca93e6766c3162507 https://www.frontiersin.org/articles/10.3389/fmicb.2022.1074316/full https://doaj.org/toc/1664-302X |
remote_bool |
true |
author2 |
Sai Xu Yuxiang Zhu Tao Zhang Shijian Ge |
author2Str |
Sai Xu Yuxiang Zhu Tao Zhang Shijian Ge |
ppnlink |
642889384 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fmicb.2022.1074316 |
callnumber-a |
QR1-502 |
up_date |
2024-07-04T00:05:21.498Z |
_version_ |
1803604744210481152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02471030X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502114320.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fmicb.2022.1074316</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02471030X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb7f4923ae934416ca93e6766c3162507</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ruyue Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Denitrifying anaerobic methane-oxidizing bacteria in river networks of the Taihu Basin: Community dynamics and assembly process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial communities in river networks of the Taihu Basin were investigated by amplicon sequencing across wet, normal, and dry seasons followed by multiple statistical analyses. Phylogenetic analysis showed that Group B was the major subgroup of DAMO bacteria and significant dynamics for their communities were observed across different seasons (constrained principal coordinate analysis, p = 0.001). Furthermore, the neutral community model and normalized stochasticity ratio model were applied to reveal the underlying assembly process. Stochastic process and deterministic process dominated the assembly process in wet season and normal season, respectively and similar contributions of deterministic and stochastic processes were observed in dry season. Meanwhile, abundant (relative abundance &gt;0.1%) and rare (relative abundance &lt;0.01%) DAMO bacterial communities were found to be shaped via distinct assembly processes. Deterministic and stochastic processes played a considerable role in shaping abundant DAMO bacterial communities, while deterministic process mainly shaped rare DAMO bacterial communities. Results of this study revealed the dynamics of DAMO bacterial communities in river networks and provided a theoretical basis for further understanding of the assembly process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DAMO bacteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatiotemporal dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">river networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">community assembly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">amplicon sequencing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sai Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuxiang Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shijian Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Microbiology</subfield><subfield code="d">Frontiers Media S.A., 2011</subfield><subfield code="g">13(2022)</subfield><subfield code="w">(DE-627)642889384</subfield><subfield code="w">(DE-600)2587354-4</subfield><subfield code="x">1664302X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fmicb.2022.1074316</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b7f4923ae934416ca93e6766c3162507</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fmicb.2022.1074316/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-302X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.401573 |