Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine
As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in droug...
Ausführliche Beschreibung
Autor*in: |
Xiaoyang Zhao [verfasserIn] Haoming Xia [verfasserIn] Baoying Liu [verfasserIn] Wenzhe Jiao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 14(2022), 7, p 1570 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:7, p 1570 |
Links: |
---|
DOI / URN: |
10.3390/rs14071570 |
---|
Katalog-ID: |
DOAJ02478608X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ02478608X | ||
003 | DE-627 | ||
005 | 20240414120248.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs14071570 |2 doi | |
035 | |a (DE-627)DOAJ02478608X | ||
035 | |a (DE-599)DOAJ8c18d0f72c9a44e1a7fe758ae105e170 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Xiaoyang Zhao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in drought monitoring of Northwest China in recent decades. To further understand the causes of changes in drought in Northwest China, we chose Shaanxi, Gansu, and Ningxia provinces (SGN) as our study area. We compared the spatiotemporal characteristics of drought intensity and frequency in Northwest China from 2003 to 2020 showed by the Standardized Precipitation Index (SPI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Vegetation Supply Water Index (NVSWI), Soil Moisture Condition Index (SMCI), and Soil Moisture Agricultural Drought Index (SMADI). All of these indices showed a wetting trend in the SGN area from 2003 to 2020. The wetting trend of the VCI characterization is the most obvious (R<sup<2</sup< = 0.9606, <i<p</i< < 0.05): During the period 2003–2020, the annual average value of the VCI in the SGN region increased from 28.33 to 71.61, with a growth rate of 153.57%. The TCI showed the weakest trend of wetting (R<sup<2</sup< = 0.0087), with little change in the annual average value in the SGN region. The results of the Mann–Kendall trend test of the TCI indicated that the SGN region experienced a non-significant (<i<p</i< < 0.05) wetting trend between 2003 and 2020. To explore the effectiveness of different drought indices, we analyzed the Pearson correlation between each drought index and the Palmer Drought Severity Index (PDSI). The PDSI can not only consider the current water supply and demand situation but also consider the impact of the previous dry and wet conditions and their duration on the current drought situation. Using the PDSI as a reference, we can effectively verify the performance of each drought index. SPI-12 showed the best correlation with PDSI, with R values greater than 0.6 in almost all regions and <i<p</i< values less than 0.05 within one-half of the study area. SMADI had the weakest correlation with PDSI, with R values ranging −0.4~−0.2 and <i<p</i< values greater than 0.05 in almost all regions. The results of this study clarified the wetting trend in the SGN region from 2003 to 2020 and effectively analyzed the differences in each drought index. The frequency, duration, and severity of drought are continuously reduced; this helps us to have a more comprehensive understanding of the changes in recent decades and is of significance for the in-depth study of drought disasters in the future. | ||
650 | 4 | |a drought | |
650 | 4 | |a spatiotemporal characteristics | |
650 | 4 | |a compare | |
650 | 4 | |a wetting | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Haoming Xia |e verfasserin |4 aut | |
700 | 0 | |a Baoying Liu |e verfasserin |4 aut | |
700 | 0 | |a Wenzhe Jiao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 14(2022), 7, p 1570 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:7, p 1570 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs14071570 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8c18d0f72c9a44e1a7fe758ae105e170 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/14/7/1570 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 7, p 1570 |
author_variant |
x z xz h x hx b l bl w j wj |
---|---|
matchkey_str |
article:20724292:2022----::ptoeprloprsnfruhisaniasnnxarm03o00snvrosru |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/rs14071570 doi (DE-627)DOAJ02478608X (DE-599)DOAJ8c18d0f72c9a44e1a7fe758ae105e170 DE-627 ger DE-627 rakwb eng Xiaoyang Zhao verfasserin aut Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in drought monitoring of Northwest China in recent decades. To further understand the causes of changes in drought in Northwest China, we chose Shaanxi, Gansu, and Ningxia provinces (SGN) as our study area. We compared the spatiotemporal characteristics of drought intensity and frequency in Northwest China from 2003 to 2020 showed by the Standardized Precipitation Index (SPI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Vegetation Supply Water Index (NVSWI), Soil Moisture Condition Index (SMCI), and Soil Moisture Agricultural Drought Index (SMADI). All of these indices showed a wetting trend in the SGN area from 2003 to 2020. The wetting trend of the VCI characterization is the most obvious (R<sup<2</sup< = 0.9606, <i<p</i< < 0.05): During the period 2003–2020, the annual average value of the VCI in the SGN region increased from 28.33 to 71.61, with a growth rate of 153.57%. The TCI showed the weakest trend of wetting (R<sup<2</sup< = 0.0087), with little change in the annual average value in the SGN region. The results of the Mann–Kendall trend test of the TCI indicated that the SGN region experienced a non-significant (<i<p</i< < 0.05) wetting trend between 2003 and 2020. To explore the effectiveness of different drought indices, we analyzed the Pearson correlation between each drought index and the Palmer Drought Severity Index (PDSI). The PDSI can not only consider the current water supply and demand situation but also consider the impact of the previous dry and wet conditions and their duration on the current drought situation. Using the PDSI as a reference, we can effectively verify the performance of each drought index. SPI-12 showed the best correlation with PDSI, with R values greater than 0.6 in almost all regions and <i<p</i< values less than 0.05 within one-half of the study area. SMADI had the weakest correlation with PDSI, with R values ranging −0.4~−0.2 and <i<p</i< values greater than 0.05 in almost all regions. The results of this study clarified the wetting trend in the SGN region from 2003 to 2020 and effectively analyzed the differences in each drought index. The frequency, duration, and severity of drought are continuously reduced; this helps us to have a more comprehensive understanding of the changes in recent decades and is of significance for the in-depth study of drought disasters in the future. drought spatiotemporal characteristics compare wetting Science Q Haoming Xia verfasserin aut Baoying Liu verfasserin aut Wenzhe Jiao verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 7, p 1570 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:7, p 1570 https://doi.org/10.3390/rs14071570 kostenfrei https://doaj.org/article/8c18d0f72c9a44e1a7fe758ae105e170 kostenfrei https://www.mdpi.com/2072-4292/14/7/1570 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 7, p 1570 |
spelling |
10.3390/rs14071570 doi (DE-627)DOAJ02478608X (DE-599)DOAJ8c18d0f72c9a44e1a7fe758ae105e170 DE-627 ger DE-627 rakwb eng Xiaoyang Zhao verfasserin aut Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in drought monitoring of Northwest China in recent decades. To further understand the causes of changes in drought in Northwest China, we chose Shaanxi, Gansu, and Ningxia provinces (SGN) as our study area. We compared the spatiotemporal characteristics of drought intensity and frequency in Northwest China from 2003 to 2020 showed by the Standardized Precipitation Index (SPI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Vegetation Supply Water Index (NVSWI), Soil Moisture Condition Index (SMCI), and Soil Moisture Agricultural Drought Index (SMADI). All of these indices showed a wetting trend in the SGN area from 2003 to 2020. The wetting trend of the VCI characterization is the most obvious (R<sup<2</sup< = 0.9606, <i<p</i< < 0.05): During the period 2003–2020, the annual average value of the VCI in the SGN region increased from 28.33 to 71.61, with a growth rate of 153.57%. The TCI showed the weakest trend of wetting (R<sup<2</sup< = 0.0087), with little change in the annual average value in the SGN region. The results of the Mann–Kendall trend test of the TCI indicated that the SGN region experienced a non-significant (<i<p</i< < 0.05) wetting trend between 2003 and 2020. To explore the effectiveness of different drought indices, we analyzed the Pearson correlation between each drought index and the Palmer Drought Severity Index (PDSI). The PDSI can not only consider the current water supply and demand situation but also consider the impact of the previous dry and wet conditions and their duration on the current drought situation. Using the PDSI as a reference, we can effectively verify the performance of each drought index. SPI-12 showed the best correlation with PDSI, with R values greater than 0.6 in almost all regions and <i<p</i< values less than 0.05 within one-half of the study area. SMADI had the weakest correlation with PDSI, with R values ranging −0.4~−0.2 and <i<p</i< values greater than 0.05 in almost all regions. The results of this study clarified the wetting trend in the SGN region from 2003 to 2020 and effectively analyzed the differences in each drought index. The frequency, duration, and severity of drought are continuously reduced; this helps us to have a more comprehensive understanding of the changes in recent decades and is of significance for the in-depth study of drought disasters in the future. drought spatiotemporal characteristics compare wetting Science Q Haoming Xia verfasserin aut Baoying Liu verfasserin aut Wenzhe Jiao verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 7, p 1570 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:7, p 1570 https://doi.org/10.3390/rs14071570 kostenfrei https://doaj.org/article/8c18d0f72c9a44e1a7fe758ae105e170 kostenfrei https://www.mdpi.com/2072-4292/14/7/1570 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 7, p 1570 |
allfields_unstemmed |
10.3390/rs14071570 doi (DE-627)DOAJ02478608X (DE-599)DOAJ8c18d0f72c9a44e1a7fe758ae105e170 DE-627 ger DE-627 rakwb eng Xiaoyang Zhao verfasserin aut Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in drought monitoring of Northwest China in recent decades. To further understand the causes of changes in drought in Northwest China, we chose Shaanxi, Gansu, and Ningxia provinces (SGN) as our study area. We compared the spatiotemporal characteristics of drought intensity and frequency in Northwest China from 2003 to 2020 showed by the Standardized Precipitation Index (SPI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Vegetation Supply Water Index (NVSWI), Soil Moisture Condition Index (SMCI), and Soil Moisture Agricultural Drought Index (SMADI). All of these indices showed a wetting trend in the SGN area from 2003 to 2020. The wetting trend of the VCI characterization is the most obvious (R<sup<2</sup< = 0.9606, <i<p</i< < 0.05): During the period 2003–2020, the annual average value of the VCI in the SGN region increased from 28.33 to 71.61, with a growth rate of 153.57%. The TCI showed the weakest trend of wetting (R<sup<2</sup< = 0.0087), with little change in the annual average value in the SGN region. The results of the Mann–Kendall trend test of the TCI indicated that the SGN region experienced a non-significant (<i<p</i< < 0.05) wetting trend between 2003 and 2020. To explore the effectiveness of different drought indices, we analyzed the Pearson correlation between each drought index and the Palmer Drought Severity Index (PDSI). The PDSI can not only consider the current water supply and demand situation but also consider the impact of the previous dry and wet conditions and their duration on the current drought situation. Using the PDSI as a reference, we can effectively verify the performance of each drought index. SPI-12 showed the best correlation with PDSI, with R values greater than 0.6 in almost all regions and <i<p</i< values less than 0.05 within one-half of the study area. SMADI had the weakest correlation with PDSI, with R values ranging −0.4~−0.2 and <i<p</i< values greater than 0.05 in almost all regions. The results of this study clarified the wetting trend in the SGN region from 2003 to 2020 and effectively analyzed the differences in each drought index. The frequency, duration, and severity of drought are continuously reduced; this helps us to have a more comprehensive understanding of the changes in recent decades and is of significance for the in-depth study of drought disasters in the future. drought spatiotemporal characteristics compare wetting Science Q Haoming Xia verfasserin aut Baoying Liu verfasserin aut Wenzhe Jiao verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 7, p 1570 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:7, p 1570 https://doi.org/10.3390/rs14071570 kostenfrei https://doaj.org/article/8c18d0f72c9a44e1a7fe758ae105e170 kostenfrei https://www.mdpi.com/2072-4292/14/7/1570 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 7, p 1570 |
allfieldsGer |
10.3390/rs14071570 doi (DE-627)DOAJ02478608X (DE-599)DOAJ8c18d0f72c9a44e1a7fe758ae105e170 DE-627 ger DE-627 rakwb eng Xiaoyang Zhao verfasserin aut Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in drought monitoring of Northwest China in recent decades. To further understand the causes of changes in drought in Northwest China, we chose Shaanxi, Gansu, and Ningxia provinces (SGN) as our study area. We compared the spatiotemporal characteristics of drought intensity and frequency in Northwest China from 2003 to 2020 showed by the Standardized Precipitation Index (SPI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Vegetation Supply Water Index (NVSWI), Soil Moisture Condition Index (SMCI), and Soil Moisture Agricultural Drought Index (SMADI). All of these indices showed a wetting trend in the SGN area from 2003 to 2020. The wetting trend of the VCI characterization is the most obvious (R<sup<2</sup< = 0.9606, <i<p</i< < 0.05): During the period 2003–2020, the annual average value of the VCI in the SGN region increased from 28.33 to 71.61, with a growth rate of 153.57%. The TCI showed the weakest trend of wetting (R<sup<2</sup< = 0.0087), with little change in the annual average value in the SGN region. The results of the Mann–Kendall trend test of the TCI indicated that the SGN region experienced a non-significant (<i<p</i< < 0.05) wetting trend between 2003 and 2020. To explore the effectiveness of different drought indices, we analyzed the Pearson correlation between each drought index and the Palmer Drought Severity Index (PDSI). The PDSI can not only consider the current water supply and demand situation but also consider the impact of the previous dry and wet conditions and their duration on the current drought situation. Using the PDSI as a reference, we can effectively verify the performance of each drought index. SPI-12 showed the best correlation with PDSI, with R values greater than 0.6 in almost all regions and <i<p</i< values less than 0.05 within one-half of the study area. SMADI had the weakest correlation with PDSI, with R values ranging −0.4~−0.2 and <i<p</i< values greater than 0.05 in almost all regions. The results of this study clarified the wetting trend in the SGN region from 2003 to 2020 and effectively analyzed the differences in each drought index. The frequency, duration, and severity of drought are continuously reduced; this helps us to have a more comprehensive understanding of the changes in recent decades and is of significance for the in-depth study of drought disasters in the future. drought spatiotemporal characteristics compare wetting Science Q Haoming Xia verfasserin aut Baoying Liu verfasserin aut Wenzhe Jiao verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 7, p 1570 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:7, p 1570 https://doi.org/10.3390/rs14071570 kostenfrei https://doaj.org/article/8c18d0f72c9a44e1a7fe758ae105e170 kostenfrei https://www.mdpi.com/2072-4292/14/7/1570 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 7, p 1570 |
allfieldsSound |
10.3390/rs14071570 doi (DE-627)DOAJ02478608X (DE-599)DOAJ8c18d0f72c9a44e1a7fe758ae105e170 DE-627 ger DE-627 rakwb eng Xiaoyang Zhao verfasserin aut Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in drought monitoring of Northwest China in recent decades. To further understand the causes of changes in drought in Northwest China, we chose Shaanxi, Gansu, and Ningxia provinces (SGN) as our study area. We compared the spatiotemporal characteristics of drought intensity and frequency in Northwest China from 2003 to 2020 showed by the Standardized Precipitation Index (SPI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Vegetation Supply Water Index (NVSWI), Soil Moisture Condition Index (SMCI), and Soil Moisture Agricultural Drought Index (SMADI). All of these indices showed a wetting trend in the SGN area from 2003 to 2020. The wetting trend of the VCI characterization is the most obvious (R<sup<2</sup< = 0.9606, <i<p</i< < 0.05): During the period 2003–2020, the annual average value of the VCI in the SGN region increased from 28.33 to 71.61, with a growth rate of 153.57%. The TCI showed the weakest trend of wetting (R<sup<2</sup< = 0.0087), with little change in the annual average value in the SGN region. The results of the Mann–Kendall trend test of the TCI indicated that the SGN region experienced a non-significant (<i<p</i< < 0.05) wetting trend between 2003 and 2020. To explore the effectiveness of different drought indices, we analyzed the Pearson correlation between each drought index and the Palmer Drought Severity Index (PDSI). The PDSI can not only consider the current water supply and demand situation but also consider the impact of the previous dry and wet conditions and their duration on the current drought situation. Using the PDSI as a reference, we can effectively verify the performance of each drought index. SPI-12 showed the best correlation with PDSI, with R values greater than 0.6 in almost all regions and <i<p</i< values less than 0.05 within one-half of the study area. SMADI had the weakest correlation with PDSI, with R values ranging −0.4~−0.2 and <i<p</i< values greater than 0.05 in almost all regions. The results of this study clarified the wetting trend in the SGN region from 2003 to 2020 and effectively analyzed the differences in each drought index. The frequency, duration, and severity of drought are continuously reduced; this helps us to have a more comprehensive understanding of the changes in recent decades and is of significance for the in-depth study of drought disasters in the future. drought spatiotemporal characteristics compare wetting Science Q Haoming Xia verfasserin aut Baoying Liu verfasserin aut Wenzhe Jiao verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 7, p 1570 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:7, p 1570 https://doi.org/10.3390/rs14071570 kostenfrei https://doaj.org/article/8c18d0f72c9a44e1a7fe758ae105e170 kostenfrei https://www.mdpi.com/2072-4292/14/7/1570 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 7, p 1570 |
language |
English |
source |
In Remote Sensing 14(2022), 7, p 1570 volume:14 year:2022 number:7, p 1570 |
sourceStr |
In Remote Sensing 14(2022), 7, p 1570 volume:14 year:2022 number:7, p 1570 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
drought spatiotemporal characteristics compare wetting Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Xiaoyang Zhao @@aut@@ Haoming Xia @@aut@@ Baoying Liu @@aut@@ Wenzhe Jiao @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ02478608X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02478608X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414120248.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs14071570</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02478608X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8c18d0f72c9a44e1a7fe758ae105e170</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaoyang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in drought monitoring of Northwest China in recent decades. To further understand the causes of changes in drought in Northwest China, we chose Shaanxi, Gansu, and Ningxia provinces (SGN) as our study area. We compared the spatiotemporal characteristics of drought intensity and frequency in Northwest China from 2003 to 2020 showed by the Standardized Precipitation Index (SPI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Vegetation Supply Water Index (NVSWI), Soil Moisture Condition Index (SMCI), and Soil Moisture Agricultural Drought Index (SMADI). All of these indices showed a wetting trend in the SGN area from 2003 to 2020. The wetting trend of the VCI characterization is the most obvious (R<sup<2</sup< = 0.9606, <i<p</i< < 0.05): During the period 2003–2020, the annual average value of the VCI in the SGN region increased from 28.33 to 71.61, with a growth rate of 153.57%. The TCI showed the weakest trend of wetting (R<sup<2</sup< = 0.0087), with little change in the annual average value in the SGN region. The results of the Mann–Kendall trend test of the TCI indicated that the SGN region experienced a non-significant (<i<p</i< < 0.05) wetting trend between 2003 and 2020. To explore the effectiveness of different drought indices, we analyzed the Pearson correlation between each drought index and the Palmer Drought Severity Index (PDSI). The PDSI can not only consider the current water supply and demand situation but also consider the impact of the previous dry and wet conditions and their duration on the current drought situation. Using the PDSI as a reference, we can effectively verify the performance of each drought index. SPI-12 showed the best correlation with PDSI, with R values greater than 0.6 in almost all regions and <i<p</i< values less than 0.05 within one-half of the study area. SMADI had the weakest correlation with PDSI, with R values ranging −0.4~−0.2 and <i<p</i< values greater than 0.05 in almost all regions. The results of this study clarified the wetting trend in the SGN region from 2003 to 2020 and effectively analyzed the differences in each drought index. The frequency, duration, and severity of drought are continuously reduced; this helps us to have a more comprehensive understanding of the changes in recent decades and is of significance for the in-depth study of drought disasters in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drought</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatiotemporal characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compare</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wetting</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haoming Xia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baoying Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenzhe Jiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 7, p 1570</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7, p 1570</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs14071570</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8c18d0f72c9a44e1a7fe758ae105e170</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/14/7/1570</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">7, p 1570</subfield></datafield></record></collection>
|
author |
Xiaoyang Zhao |
spellingShingle |
Xiaoyang Zhao misc drought misc spatiotemporal characteristics misc compare misc wetting misc Science misc Q Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine |
authorStr |
Xiaoyang Zhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine drought spatiotemporal characteristics compare wetting |
topic |
misc drought misc spatiotemporal characteristics misc compare misc wetting misc Science misc Q |
topic_unstemmed |
misc drought misc spatiotemporal characteristics misc compare misc wetting misc Science misc Q |
topic_browse |
misc drought misc spatiotemporal characteristics misc compare misc wetting misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine |
ctrlnum |
(DE-627)DOAJ02478608X (DE-599)DOAJ8c18d0f72c9a44e1a7fe758ae105e170 |
title_full |
Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine |
author_sort |
Xiaoyang Zhao |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Xiaoyang Zhao Haoming Xia Baoying Liu Wenzhe Jiao |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaoyang Zhao |
doi_str_mv |
10.3390/rs14071570 |
author2-role |
verfasserin |
title_sort |
spatiotemporal comparison of drought in shaanxi–gansu–ningxia from 2003 to 2020 using various drought indices in google earth engine |
title_auth |
Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine |
abstract |
As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in drought monitoring of Northwest China in recent decades. To further understand the causes of changes in drought in Northwest China, we chose Shaanxi, Gansu, and Ningxia provinces (SGN) as our study area. We compared the spatiotemporal characteristics of drought intensity and frequency in Northwest China from 2003 to 2020 showed by the Standardized Precipitation Index (SPI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Vegetation Supply Water Index (NVSWI), Soil Moisture Condition Index (SMCI), and Soil Moisture Agricultural Drought Index (SMADI). All of these indices showed a wetting trend in the SGN area from 2003 to 2020. The wetting trend of the VCI characterization is the most obvious (R<sup<2</sup< = 0.9606, <i<p</i< < 0.05): During the period 2003–2020, the annual average value of the VCI in the SGN region increased from 28.33 to 71.61, with a growth rate of 153.57%. The TCI showed the weakest trend of wetting (R<sup<2</sup< = 0.0087), with little change in the annual average value in the SGN region. The results of the Mann–Kendall trend test of the TCI indicated that the SGN region experienced a non-significant (<i<p</i< < 0.05) wetting trend between 2003 and 2020. To explore the effectiveness of different drought indices, we analyzed the Pearson correlation between each drought index and the Palmer Drought Severity Index (PDSI). The PDSI can not only consider the current water supply and demand situation but also consider the impact of the previous dry and wet conditions and their duration on the current drought situation. Using the PDSI as a reference, we can effectively verify the performance of each drought index. SPI-12 showed the best correlation with PDSI, with R values greater than 0.6 in almost all regions and <i<p</i< values less than 0.05 within one-half of the study area. SMADI had the weakest correlation with PDSI, with R values ranging −0.4~−0.2 and <i<p</i< values greater than 0.05 in almost all regions. The results of this study clarified the wetting trend in the SGN region from 2003 to 2020 and effectively analyzed the differences in each drought index. The frequency, duration, and severity of drought are continuously reduced; this helps us to have a more comprehensive understanding of the changes in recent decades and is of significance for the in-depth study of drought disasters in the future. |
abstractGer |
As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in drought monitoring of Northwest China in recent decades. To further understand the causes of changes in drought in Northwest China, we chose Shaanxi, Gansu, and Ningxia provinces (SGN) as our study area. We compared the spatiotemporal characteristics of drought intensity and frequency in Northwest China from 2003 to 2020 showed by the Standardized Precipitation Index (SPI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Vegetation Supply Water Index (NVSWI), Soil Moisture Condition Index (SMCI), and Soil Moisture Agricultural Drought Index (SMADI). All of these indices showed a wetting trend in the SGN area from 2003 to 2020. The wetting trend of the VCI characterization is the most obvious (R<sup<2</sup< = 0.9606, <i<p</i< < 0.05): During the period 2003–2020, the annual average value of the VCI in the SGN region increased from 28.33 to 71.61, with a growth rate of 153.57%. The TCI showed the weakest trend of wetting (R<sup<2</sup< = 0.0087), with little change in the annual average value in the SGN region. The results of the Mann–Kendall trend test of the TCI indicated that the SGN region experienced a non-significant (<i<p</i< < 0.05) wetting trend between 2003 and 2020. To explore the effectiveness of different drought indices, we analyzed the Pearson correlation between each drought index and the Palmer Drought Severity Index (PDSI). The PDSI can not only consider the current water supply and demand situation but also consider the impact of the previous dry and wet conditions and their duration on the current drought situation. Using the PDSI as a reference, we can effectively verify the performance of each drought index. SPI-12 showed the best correlation with PDSI, with R values greater than 0.6 in almost all regions and <i<p</i< values less than 0.05 within one-half of the study area. SMADI had the weakest correlation with PDSI, with R values ranging −0.4~−0.2 and <i<p</i< values greater than 0.05 in almost all regions. The results of this study clarified the wetting trend in the SGN region from 2003 to 2020 and effectively analyzed the differences in each drought index. The frequency, duration, and severity of drought are continuously reduced; this helps us to have a more comprehensive understanding of the changes in recent decades and is of significance for the in-depth study of drought disasters in the future. |
abstract_unstemmed |
As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in drought monitoring of Northwest China in recent decades. To further understand the causes of changes in drought in Northwest China, we chose Shaanxi, Gansu, and Ningxia provinces (SGN) as our study area. We compared the spatiotemporal characteristics of drought intensity and frequency in Northwest China from 2003 to 2020 showed by the Standardized Precipitation Index (SPI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Vegetation Supply Water Index (NVSWI), Soil Moisture Condition Index (SMCI), and Soil Moisture Agricultural Drought Index (SMADI). All of these indices showed a wetting trend in the SGN area from 2003 to 2020. The wetting trend of the VCI characterization is the most obvious (R<sup<2</sup< = 0.9606, <i<p</i< < 0.05): During the period 2003–2020, the annual average value of the VCI in the SGN region increased from 28.33 to 71.61, with a growth rate of 153.57%. The TCI showed the weakest trend of wetting (R<sup<2</sup< = 0.0087), with little change in the annual average value in the SGN region. The results of the Mann–Kendall trend test of the TCI indicated that the SGN region experienced a non-significant (<i<p</i< < 0.05) wetting trend between 2003 and 2020. To explore the effectiveness of different drought indices, we analyzed the Pearson correlation between each drought index and the Palmer Drought Severity Index (PDSI). The PDSI can not only consider the current water supply and demand situation but also consider the impact of the previous dry and wet conditions and their duration on the current drought situation. Using the PDSI as a reference, we can effectively verify the performance of each drought index. SPI-12 showed the best correlation with PDSI, with R values greater than 0.6 in almost all regions and <i<p</i< values less than 0.05 within one-half of the study area. SMADI had the weakest correlation with PDSI, with R values ranging −0.4~−0.2 and <i<p</i< values greater than 0.05 in almost all regions. The results of this study clarified the wetting trend in the SGN region from 2003 to 2020 and effectively analyzed the differences in each drought index. The frequency, duration, and severity of drought are continuously reduced; this helps us to have a more comprehensive understanding of the changes in recent decades and is of significance for the in-depth study of drought disasters in the future. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
7, p 1570 |
title_short |
Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine |
url |
https://doi.org/10.3390/rs14071570 https://doaj.org/article/8c18d0f72c9a44e1a7fe758ae105e170 https://www.mdpi.com/2072-4292/14/7/1570 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Haoming Xia Baoying Liu Wenzhe Jiao |
author2Str |
Haoming Xia Baoying Liu Wenzhe Jiao |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs14071570 |
up_date |
2024-07-04T00:22:44.662Z |
_version_ |
1803605838046167040 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02478608X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414120248.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs14071570</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02478608X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8c18d0f72c9a44e1a7fe758ae105e170</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaoyang Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in drought monitoring of Northwest China in recent decades. To further understand the causes of changes in drought in Northwest China, we chose Shaanxi, Gansu, and Ningxia provinces (SGN) as our study area. We compared the spatiotemporal characteristics of drought intensity and frequency in Northwest China from 2003 to 2020 showed by the Standardized Precipitation Index (SPI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Vegetation Supply Water Index (NVSWI), Soil Moisture Condition Index (SMCI), and Soil Moisture Agricultural Drought Index (SMADI). All of these indices showed a wetting trend in the SGN area from 2003 to 2020. The wetting trend of the VCI characterization is the most obvious (R<sup<2</sup< = 0.9606, <i<p</i< < 0.05): During the period 2003–2020, the annual average value of the VCI in the SGN region increased from 28.33 to 71.61, with a growth rate of 153.57%. The TCI showed the weakest trend of wetting (R<sup<2</sup< = 0.0087), with little change in the annual average value in the SGN region. The results of the Mann–Kendall trend test of the TCI indicated that the SGN region experienced a non-significant (<i<p</i< < 0.05) wetting trend between 2003 and 2020. To explore the effectiveness of different drought indices, we analyzed the Pearson correlation between each drought index and the Palmer Drought Severity Index (PDSI). The PDSI can not only consider the current water supply and demand situation but also consider the impact of the previous dry and wet conditions and their duration on the current drought situation. Using the PDSI as a reference, we can effectively verify the performance of each drought index. SPI-12 showed the best correlation with PDSI, with R values greater than 0.6 in almost all regions and <i<p</i< values less than 0.05 within one-half of the study area. SMADI had the weakest correlation with PDSI, with R values ranging −0.4~−0.2 and <i<p</i< values greater than 0.05 in almost all regions. The results of this study clarified the wetting trend in the SGN region from 2003 to 2020 and effectively analyzed the differences in each drought index. The frequency, duration, and severity of drought are continuously reduced; this helps us to have a more comprehensive understanding of the changes in recent decades and is of significance for the in-depth study of drought disasters in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drought</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatiotemporal characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compare</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wetting</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haoming Xia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baoying Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenzhe Jiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 7, p 1570</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7, p 1570</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs14071570</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8c18d0f72c9a44e1a7fe758ae105e170</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/14/7/1570</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">7, p 1570</subfield></datafield></record></collection>
|
score |
7.4014015 |