Korovkin-type convergence results for multivariate Shepard formulae
We present a new convergence proof for classic multivariate Shepard formulae within the context of Korovkin-type convergence results for positive operators on spaces of continuous real valued functions.
Autor*in: |
Oliver Nowak [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Numerical Analysis and Approximation Theory - Publishing House of the Romanian Academy, 2022, 38(2009), 2 |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:2009 ; number:2 |
Links: |
---|
Katalog-ID: |
DOAJ024891924 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ024891924 | ||
003 | DE-627 | ||
005 | 20230502064836.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2009 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ024891924 | ||
035 | |a (DE-599)DOAJ9bd33175eda64e9a97c58900e64fff17 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Oliver Nowak |e verfasserin |4 aut | |
245 | 1 | 0 | |a Korovkin-type convergence results for multivariate Shepard formulae |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We present a new convergence proof for classic multivariate Shepard formulae within the context of Korovkin-type convergence results for positive operators on spaces of continuous real valued functions. | ||
650 | 4 | |a Shepard formula | |
650 | 4 | |a Shepard interpolation | |
650 | 4 | |a multivariate scattered data interpolation | |
650 | 4 | |a approximation by positive operators | |
653 | 0 | |a Mathematics | |
773 | 0 | 8 | |i In |t Journal of Numerical Analysis and Approximation Theory |d Publishing House of the Romanian Academy, 2022 |g 38(2009), 2 |w (DE-627)685454525 |w (DE-600)2650004-8 |x 2501059X |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:2009 |g number:2 |
856 | 4 | 0 | |u https://doaj.org/article/9bd33175eda64e9a97c58900e64fff17 |z kostenfrei |
856 | 4 | 0 | |u https://ictp.acad.ro/jnaat/journal/article/view/912 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2457-6794 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2501-059X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 38 |j 2009 |e 2 |
author_variant |
o n on |
---|---|
matchkey_str |
article:2501059X:2009----::ooknyeovrecrslsomliait |
hierarchy_sort_str |
2009 |
callnumber-subject-code |
QA |
publishDate |
2009 |
allfields |
(DE-627)DOAJ024891924 (DE-599)DOAJ9bd33175eda64e9a97c58900e64fff17 DE-627 ger DE-627 rakwb eng QA1-939 Oliver Nowak verfasserin aut Korovkin-type convergence results for multivariate Shepard formulae 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a new convergence proof for classic multivariate Shepard formulae within the context of Korovkin-type convergence results for positive operators on spaces of continuous real valued functions. Shepard formula Shepard interpolation multivariate scattered data interpolation approximation by positive operators Mathematics In Journal of Numerical Analysis and Approximation Theory Publishing House of the Romanian Academy, 2022 38(2009), 2 (DE-627)685454525 (DE-600)2650004-8 2501059X nnns volume:38 year:2009 number:2 https://doaj.org/article/9bd33175eda64e9a97c58900e64fff17 kostenfrei https://ictp.acad.ro/jnaat/journal/article/view/912 kostenfrei https://doaj.org/toc/2457-6794 Journal toc kostenfrei https://doaj.org/toc/2501-059X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2009 2 |
spelling |
(DE-627)DOAJ024891924 (DE-599)DOAJ9bd33175eda64e9a97c58900e64fff17 DE-627 ger DE-627 rakwb eng QA1-939 Oliver Nowak verfasserin aut Korovkin-type convergence results for multivariate Shepard formulae 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a new convergence proof for classic multivariate Shepard formulae within the context of Korovkin-type convergence results for positive operators on spaces of continuous real valued functions. Shepard formula Shepard interpolation multivariate scattered data interpolation approximation by positive operators Mathematics In Journal of Numerical Analysis and Approximation Theory Publishing House of the Romanian Academy, 2022 38(2009), 2 (DE-627)685454525 (DE-600)2650004-8 2501059X nnns volume:38 year:2009 number:2 https://doaj.org/article/9bd33175eda64e9a97c58900e64fff17 kostenfrei https://ictp.acad.ro/jnaat/journal/article/view/912 kostenfrei https://doaj.org/toc/2457-6794 Journal toc kostenfrei https://doaj.org/toc/2501-059X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2009 2 |
allfields_unstemmed |
(DE-627)DOAJ024891924 (DE-599)DOAJ9bd33175eda64e9a97c58900e64fff17 DE-627 ger DE-627 rakwb eng QA1-939 Oliver Nowak verfasserin aut Korovkin-type convergence results for multivariate Shepard formulae 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a new convergence proof for classic multivariate Shepard formulae within the context of Korovkin-type convergence results for positive operators on spaces of continuous real valued functions. Shepard formula Shepard interpolation multivariate scattered data interpolation approximation by positive operators Mathematics In Journal of Numerical Analysis and Approximation Theory Publishing House of the Romanian Academy, 2022 38(2009), 2 (DE-627)685454525 (DE-600)2650004-8 2501059X nnns volume:38 year:2009 number:2 https://doaj.org/article/9bd33175eda64e9a97c58900e64fff17 kostenfrei https://ictp.acad.ro/jnaat/journal/article/view/912 kostenfrei https://doaj.org/toc/2457-6794 Journal toc kostenfrei https://doaj.org/toc/2501-059X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2009 2 |
allfieldsGer |
(DE-627)DOAJ024891924 (DE-599)DOAJ9bd33175eda64e9a97c58900e64fff17 DE-627 ger DE-627 rakwb eng QA1-939 Oliver Nowak verfasserin aut Korovkin-type convergence results for multivariate Shepard formulae 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a new convergence proof for classic multivariate Shepard formulae within the context of Korovkin-type convergence results for positive operators on spaces of continuous real valued functions. Shepard formula Shepard interpolation multivariate scattered data interpolation approximation by positive operators Mathematics In Journal of Numerical Analysis and Approximation Theory Publishing House of the Romanian Academy, 2022 38(2009), 2 (DE-627)685454525 (DE-600)2650004-8 2501059X nnns volume:38 year:2009 number:2 https://doaj.org/article/9bd33175eda64e9a97c58900e64fff17 kostenfrei https://ictp.acad.ro/jnaat/journal/article/view/912 kostenfrei https://doaj.org/toc/2457-6794 Journal toc kostenfrei https://doaj.org/toc/2501-059X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2009 2 |
allfieldsSound |
(DE-627)DOAJ024891924 (DE-599)DOAJ9bd33175eda64e9a97c58900e64fff17 DE-627 ger DE-627 rakwb eng QA1-939 Oliver Nowak verfasserin aut Korovkin-type convergence results for multivariate Shepard formulae 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We present a new convergence proof for classic multivariate Shepard formulae within the context of Korovkin-type convergence results for positive operators on spaces of continuous real valued functions. Shepard formula Shepard interpolation multivariate scattered data interpolation approximation by positive operators Mathematics In Journal of Numerical Analysis and Approximation Theory Publishing House of the Romanian Academy, 2022 38(2009), 2 (DE-627)685454525 (DE-600)2650004-8 2501059X nnns volume:38 year:2009 number:2 https://doaj.org/article/9bd33175eda64e9a97c58900e64fff17 kostenfrei https://ictp.acad.ro/jnaat/journal/article/view/912 kostenfrei https://doaj.org/toc/2457-6794 Journal toc kostenfrei https://doaj.org/toc/2501-059X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 38 2009 2 |
language |
English |
source |
In Journal of Numerical Analysis and Approximation Theory 38(2009), 2 volume:38 year:2009 number:2 |
sourceStr |
In Journal of Numerical Analysis and Approximation Theory 38(2009), 2 volume:38 year:2009 number:2 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Shepard formula Shepard interpolation multivariate scattered data interpolation approximation by positive operators Mathematics |
isfreeaccess_bool |
true |
container_title |
Journal of Numerical Analysis and Approximation Theory |
authorswithroles_txt_mv |
Oliver Nowak @@aut@@ |
publishDateDaySort_date |
2009-01-01T00:00:00Z |
hierarchy_top_id |
685454525 |
id |
DOAJ024891924 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024891924</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502064836.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024891924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9bd33175eda64e9a97c58900e64fff17</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Oliver Nowak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Korovkin-type convergence results for multivariate Shepard formulae</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a new convergence proof for classic multivariate Shepard formulae within the context of Korovkin-type convergence results for positive operators on spaces of continuous real valued functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shepard formula</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shepard interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multivariate scattered data interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approximation by positive operators</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Numerical Analysis and Approximation Theory</subfield><subfield code="d">Publishing House of the Romanian Academy, 2022</subfield><subfield code="g">38(2009), 2</subfield><subfield code="w">(DE-627)685454525</subfield><subfield code="w">(DE-600)2650004-8</subfield><subfield code="x">2501059X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9bd33175eda64e9a97c58900e64fff17</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ictp.acad.ro/jnaat/journal/article/view/912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2457-6794</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2501-059X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2009</subfield><subfield code="e">2</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Oliver Nowak |
spellingShingle |
Oliver Nowak misc QA1-939 misc Shepard formula misc Shepard interpolation misc multivariate scattered data interpolation misc approximation by positive operators misc Mathematics Korovkin-type convergence results for multivariate Shepard formulae |
authorStr |
Oliver Nowak |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)685454525 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
2501059X |
topic_title |
QA1-939 Korovkin-type convergence results for multivariate Shepard formulae Shepard formula Shepard interpolation multivariate scattered data interpolation approximation by positive operators |
topic |
misc QA1-939 misc Shepard formula misc Shepard interpolation misc multivariate scattered data interpolation misc approximation by positive operators misc Mathematics |
topic_unstemmed |
misc QA1-939 misc Shepard formula misc Shepard interpolation misc multivariate scattered data interpolation misc approximation by positive operators misc Mathematics |
topic_browse |
misc QA1-939 misc Shepard formula misc Shepard interpolation misc multivariate scattered data interpolation misc approximation by positive operators misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Numerical Analysis and Approximation Theory |
hierarchy_parent_id |
685454525 |
hierarchy_top_title |
Journal of Numerical Analysis and Approximation Theory |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)685454525 (DE-600)2650004-8 |
title |
Korovkin-type convergence results for multivariate Shepard formulae |
ctrlnum |
(DE-627)DOAJ024891924 (DE-599)DOAJ9bd33175eda64e9a97c58900e64fff17 |
title_full |
Korovkin-type convergence results for multivariate Shepard formulae |
author_sort |
Oliver Nowak |
journal |
Journal of Numerical Analysis and Approximation Theory |
journalStr |
Journal of Numerical Analysis and Approximation Theory |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
author_browse |
Oliver Nowak |
container_volume |
38 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Oliver Nowak |
title_sort |
korovkin-type convergence results for multivariate shepard formulae |
callnumber |
QA1-939 |
title_auth |
Korovkin-type convergence results for multivariate Shepard formulae |
abstract |
We present a new convergence proof for classic multivariate Shepard formulae within the context of Korovkin-type convergence results for positive operators on spaces of continuous real valued functions. |
abstractGer |
We present a new convergence proof for classic multivariate Shepard formulae within the context of Korovkin-type convergence results for positive operators on spaces of continuous real valued functions. |
abstract_unstemmed |
We present a new convergence proof for classic multivariate Shepard formulae within the context of Korovkin-type convergence results for positive operators on spaces of continuous real valued functions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Korovkin-type convergence results for multivariate Shepard formulae |
url |
https://doaj.org/article/9bd33175eda64e9a97c58900e64fff17 https://ictp.acad.ro/jnaat/journal/article/view/912 https://doaj.org/toc/2457-6794 https://doaj.org/toc/2501-059X |
remote_bool |
true |
ppnlink |
685454525 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QA1-939 |
up_date |
2024-07-04T00:47:22.379Z |
_version_ |
1803607387543699457 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024891924</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502064836.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024891924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9bd33175eda64e9a97c58900e64fff17</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Oliver Nowak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Korovkin-type convergence results for multivariate Shepard formulae</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a new convergence proof for classic multivariate Shepard formulae within the context of Korovkin-type convergence results for positive operators on spaces of continuous real valued functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shepard formula</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shepard interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multivariate scattered data interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approximation by positive operators</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Numerical Analysis and Approximation Theory</subfield><subfield code="d">Publishing House of the Romanian Academy, 2022</subfield><subfield code="g">38(2009), 2</subfield><subfield code="w">(DE-627)685454525</subfield><subfield code="w">(DE-600)2650004-8</subfield><subfield code="x">2501059X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9bd33175eda64e9a97c58900e64fff17</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ictp.acad.ro/jnaat/journal/article/view/912</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2457-6794</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2501-059X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2009</subfield><subfield code="e">2</subfield></datafield></record></collection>
|
score |
7.4020615 |