Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production
The chemical looping steam reforming (CLSR) of bioethanol is an energy-efficient and carbon-neutral approach of hydrogen production. This paper describes the use of a NixMg1−xO solid solution as the oxygen carrier (OC) in the CLSR of bioethanol. Due to the regulation effect of Mg2+ in NixMg1−xO, a t...
Ausführliche Beschreibung
Autor*in: |
Hao Tian [verfasserIn] Chunlei Pei [verfasserIn] Sai Chen [verfasserIn] Yang Wu [verfasserIn] Zhijian Zhao [verfasserIn] Jinlong Gong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Engineering - Elsevier, 2016, 12(2022), Seite 62-69 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; pages:62-69 |
Links: |
---|
DOI / URN: |
10.1016/j.eng.2020.08.029 |
---|
Katalog-ID: |
DOAJ024993840 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ024993840 | ||
003 | DE-627 | ||
005 | 20230307082326.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.eng.2020.08.029 |2 doi | |
035 | |a (DE-627)DOAJ024993840 | ||
035 | |a (DE-599)DOAJ1c6f9c1b1d1f40f19a2f177f5b7ec249 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Hao Tian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The chemical looping steam reforming (CLSR) of bioethanol is an energy-efficient and carbon-neutral approach of hydrogen production. This paper describes the use of a NixMg1−xO solid solution as the oxygen carrier (OC) in the CLSR of bioethanol. Due to the regulation effect of Mg2+ in NixMg1−xO, a three-stage reaction mechanism of the CLSR process is proposed. The surface oxygen of NixMg1−xO initially causes complete oxidation of the ethanol. Subsequently, H2O and bulk oxygen confined by Mg2+ react with ethanol to form CH3COO* followed by H2 over partially reduced NixMg1−xO. Once the bulk oxygen is consumed, the ethanol steam reforming process is promoted by the metallic nickel in the stage III. As a result, Ni0.4Mg0.6O exhibits a high H2 selectivity (4.72 mol H2 per mole ethanol) with a low steam-to-carbon molar ratio of 1, and remains stable over 30 CLSR cycles. The design of this solid-solution OC provides a versatile strategy for manipulating the chemical looping process. | ||
650 | 4 | |a Chemical looping | |
650 | 4 | |a Ethanol steam reforming | |
650 | 4 | |a Nickel | |
650 | 4 | |a Hydrogen production | |
650 | 4 | |a Solid solution | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Chunlei Pei |e verfasserin |4 aut | |
700 | 0 | |a Sai Chen |e verfasserin |4 aut | |
700 | 0 | |a Yang Wu |e verfasserin |4 aut | |
700 | 0 | |a Zhijian Zhao |e verfasserin |4 aut | |
700 | 0 | |a Jinlong Gong |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Engineering |d Elsevier, 2016 |g 12(2022), Seite 62-69 |w (DE-627)88146578X |w (DE-600)2886869-9 |x 20960026 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g pages:62-69 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.eng.2020.08.029 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1c6f9c1b1d1f40f19a2f177f5b7ec249 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2095809922000777 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2095-8099 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |h 62-69 |
author_variant |
h t ht c p cp s c sc y w yw z z zz j g jg |
---|---|
matchkey_str |
article:20960026:2022----::euainfxgnciiyyatccnieetvrim1oaaytfre |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.1016/j.eng.2020.08.029 doi (DE-627)DOAJ024993840 (DE-599)DOAJ1c6f9c1b1d1f40f19a2f177f5b7ec249 DE-627 ger DE-627 rakwb eng TA1-2040 Hao Tian verfasserin aut Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The chemical looping steam reforming (CLSR) of bioethanol is an energy-efficient and carbon-neutral approach of hydrogen production. This paper describes the use of a NixMg1−xO solid solution as the oxygen carrier (OC) in the CLSR of bioethanol. Due to the regulation effect of Mg2+ in NixMg1−xO, a three-stage reaction mechanism of the CLSR process is proposed. The surface oxygen of NixMg1−xO initially causes complete oxidation of the ethanol. Subsequently, H2O and bulk oxygen confined by Mg2+ react with ethanol to form CH3COO* followed by H2 over partially reduced NixMg1−xO. Once the bulk oxygen is consumed, the ethanol steam reforming process is promoted by the metallic nickel in the stage III. As a result, Ni0.4Mg0.6O exhibits a high H2 selectivity (4.72 mol H2 per mole ethanol) with a low steam-to-carbon molar ratio of 1, and remains stable over 30 CLSR cycles. The design of this solid-solution OC provides a versatile strategy for manipulating the chemical looping process. Chemical looping Ethanol steam reforming Nickel Hydrogen production Solid solution Engineering (General). Civil engineering (General) Chunlei Pei verfasserin aut Sai Chen verfasserin aut Yang Wu verfasserin aut Zhijian Zhao verfasserin aut Jinlong Gong verfasserin aut In Engineering Elsevier, 2016 12(2022), Seite 62-69 (DE-627)88146578X (DE-600)2886869-9 20960026 nnns volume:12 year:2022 pages:62-69 https://doi.org/10.1016/j.eng.2020.08.029 kostenfrei https://doaj.org/article/1c6f9c1b1d1f40f19a2f177f5b7ec249 kostenfrei http://www.sciencedirect.com/science/article/pii/S2095809922000777 kostenfrei https://doaj.org/toc/2095-8099 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 12 2022 62-69 |
spelling |
10.1016/j.eng.2020.08.029 doi (DE-627)DOAJ024993840 (DE-599)DOAJ1c6f9c1b1d1f40f19a2f177f5b7ec249 DE-627 ger DE-627 rakwb eng TA1-2040 Hao Tian verfasserin aut Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The chemical looping steam reforming (CLSR) of bioethanol is an energy-efficient and carbon-neutral approach of hydrogen production. This paper describes the use of a NixMg1−xO solid solution as the oxygen carrier (OC) in the CLSR of bioethanol. Due to the regulation effect of Mg2+ in NixMg1−xO, a three-stage reaction mechanism of the CLSR process is proposed. The surface oxygen of NixMg1−xO initially causes complete oxidation of the ethanol. Subsequently, H2O and bulk oxygen confined by Mg2+ react with ethanol to form CH3COO* followed by H2 over partially reduced NixMg1−xO. Once the bulk oxygen is consumed, the ethanol steam reforming process is promoted by the metallic nickel in the stage III. As a result, Ni0.4Mg0.6O exhibits a high H2 selectivity (4.72 mol H2 per mole ethanol) with a low steam-to-carbon molar ratio of 1, and remains stable over 30 CLSR cycles. The design of this solid-solution OC provides a versatile strategy for manipulating the chemical looping process. Chemical looping Ethanol steam reforming Nickel Hydrogen production Solid solution Engineering (General). Civil engineering (General) Chunlei Pei verfasserin aut Sai Chen verfasserin aut Yang Wu verfasserin aut Zhijian Zhao verfasserin aut Jinlong Gong verfasserin aut In Engineering Elsevier, 2016 12(2022), Seite 62-69 (DE-627)88146578X (DE-600)2886869-9 20960026 nnns volume:12 year:2022 pages:62-69 https://doi.org/10.1016/j.eng.2020.08.029 kostenfrei https://doaj.org/article/1c6f9c1b1d1f40f19a2f177f5b7ec249 kostenfrei http://www.sciencedirect.com/science/article/pii/S2095809922000777 kostenfrei https://doaj.org/toc/2095-8099 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 12 2022 62-69 |
allfields_unstemmed |
10.1016/j.eng.2020.08.029 doi (DE-627)DOAJ024993840 (DE-599)DOAJ1c6f9c1b1d1f40f19a2f177f5b7ec249 DE-627 ger DE-627 rakwb eng TA1-2040 Hao Tian verfasserin aut Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The chemical looping steam reforming (CLSR) of bioethanol is an energy-efficient and carbon-neutral approach of hydrogen production. This paper describes the use of a NixMg1−xO solid solution as the oxygen carrier (OC) in the CLSR of bioethanol. Due to the regulation effect of Mg2+ in NixMg1−xO, a three-stage reaction mechanism of the CLSR process is proposed. The surface oxygen of NixMg1−xO initially causes complete oxidation of the ethanol. Subsequently, H2O and bulk oxygen confined by Mg2+ react with ethanol to form CH3COO* followed by H2 over partially reduced NixMg1−xO. Once the bulk oxygen is consumed, the ethanol steam reforming process is promoted by the metallic nickel in the stage III. As a result, Ni0.4Mg0.6O exhibits a high H2 selectivity (4.72 mol H2 per mole ethanol) with a low steam-to-carbon molar ratio of 1, and remains stable over 30 CLSR cycles. The design of this solid-solution OC provides a versatile strategy for manipulating the chemical looping process. Chemical looping Ethanol steam reforming Nickel Hydrogen production Solid solution Engineering (General). Civil engineering (General) Chunlei Pei verfasserin aut Sai Chen verfasserin aut Yang Wu verfasserin aut Zhijian Zhao verfasserin aut Jinlong Gong verfasserin aut In Engineering Elsevier, 2016 12(2022), Seite 62-69 (DE-627)88146578X (DE-600)2886869-9 20960026 nnns volume:12 year:2022 pages:62-69 https://doi.org/10.1016/j.eng.2020.08.029 kostenfrei https://doaj.org/article/1c6f9c1b1d1f40f19a2f177f5b7ec249 kostenfrei http://www.sciencedirect.com/science/article/pii/S2095809922000777 kostenfrei https://doaj.org/toc/2095-8099 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 12 2022 62-69 |
allfieldsGer |
10.1016/j.eng.2020.08.029 doi (DE-627)DOAJ024993840 (DE-599)DOAJ1c6f9c1b1d1f40f19a2f177f5b7ec249 DE-627 ger DE-627 rakwb eng TA1-2040 Hao Tian verfasserin aut Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The chemical looping steam reforming (CLSR) of bioethanol is an energy-efficient and carbon-neutral approach of hydrogen production. This paper describes the use of a NixMg1−xO solid solution as the oxygen carrier (OC) in the CLSR of bioethanol. Due to the regulation effect of Mg2+ in NixMg1−xO, a three-stage reaction mechanism of the CLSR process is proposed. The surface oxygen of NixMg1−xO initially causes complete oxidation of the ethanol. Subsequently, H2O and bulk oxygen confined by Mg2+ react with ethanol to form CH3COO* followed by H2 over partially reduced NixMg1−xO. Once the bulk oxygen is consumed, the ethanol steam reforming process is promoted by the metallic nickel in the stage III. As a result, Ni0.4Mg0.6O exhibits a high H2 selectivity (4.72 mol H2 per mole ethanol) with a low steam-to-carbon molar ratio of 1, and remains stable over 30 CLSR cycles. The design of this solid-solution OC provides a versatile strategy for manipulating the chemical looping process. Chemical looping Ethanol steam reforming Nickel Hydrogen production Solid solution Engineering (General). Civil engineering (General) Chunlei Pei verfasserin aut Sai Chen verfasserin aut Yang Wu verfasserin aut Zhijian Zhao verfasserin aut Jinlong Gong verfasserin aut In Engineering Elsevier, 2016 12(2022), Seite 62-69 (DE-627)88146578X (DE-600)2886869-9 20960026 nnns volume:12 year:2022 pages:62-69 https://doi.org/10.1016/j.eng.2020.08.029 kostenfrei https://doaj.org/article/1c6f9c1b1d1f40f19a2f177f5b7ec249 kostenfrei http://www.sciencedirect.com/science/article/pii/S2095809922000777 kostenfrei https://doaj.org/toc/2095-8099 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 12 2022 62-69 |
allfieldsSound |
10.1016/j.eng.2020.08.029 doi (DE-627)DOAJ024993840 (DE-599)DOAJ1c6f9c1b1d1f40f19a2f177f5b7ec249 DE-627 ger DE-627 rakwb eng TA1-2040 Hao Tian verfasserin aut Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The chemical looping steam reforming (CLSR) of bioethanol is an energy-efficient and carbon-neutral approach of hydrogen production. This paper describes the use of a NixMg1−xO solid solution as the oxygen carrier (OC) in the CLSR of bioethanol. Due to the regulation effect of Mg2+ in NixMg1−xO, a three-stage reaction mechanism of the CLSR process is proposed. The surface oxygen of NixMg1−xO initially causes complete oxidation of the ethanol. Subsequently, H2O and bulk oxygen confined by Mg2+ react with ethanol to form CH3COO* followed by H2 over partially reduced NixMg1−xO. Once the bulk oxygen is consumed, the ethanol steam reforming process is promoted by the metallic nickel in the stage III. As a result, Ni0.4Mg0.6O exhibits a high H2 selectivity (4.72 mol H2 per mole ethanol) with a low steam-to-carbon molar ratio of 1, and remains stable over 30 CLSR cycles. The design of this solid-solution OC provides a versatile strategy for manipulating the chemical looping process. Chemical looping Ethanol steam reforming Nickel Hydrogen production Solid solution Engineering (General). Civil engineering (General) Chunlei Pei verfasserin aut Sai Chen verfasserin aut Yang Wu verfasserin aut Zhijian Zhao verfasserin aut Jinlong Gong verfasserin aut In Engineering Elsevier, 2016 12(2022), Seite 62-69 (DE-627)88146578X (DE-600)2886869-9 20960026 nnns volume:12 year:2022 pages:62-69 https://doi.org/10.1016/j.eng.2020.08.029 kostenfrei https://doaj.org/article/1c6f9c1b1d1f40f19a2f177f5b7ec249 kostenfrei http://www.sciencedirect.com/science/article/pii/S2095809922000777 kostenfrei https://doaj.org/toc/2095-8099 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 12 2022 62-69 |
language |
English |
source |
In Engineering 12(2022), Seite 62-69 volume:12 year:2022 pages:62-69 |
sourceStr |
In Engineering 12(2022), Seite 62-69 volume:12 year:2022 pages:62-69 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Chemical looping Ethanol steam reforming Nickel Hydrogen production Solid solution Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
Engineering |
authorswithroles_txt_mv |
Hao Tian @@aut@@ Chunlei Pei @@aut@@ Sai Chen @@aut@@ Yang Wu @@aut@@ Zhijian Zhao @@aut@@ Jinlong Gong @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
88146578X |
id |
DOAJ024993840 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024993840</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307082326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eng.2020.08.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024993840</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1c6f9c1b1d1f40f19a2f177f5b7ec249</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hao Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The chemical looping steam reforming (CLSR) of bioethanol is an energy-efficient and carbon-neutral approach of hydrogen production. This paper describes the use of a NixMg1−xO solid solution as the oxygen carrier (OC) in the CLSR of bioethanol. Due to the regulation effect of Mg2+ in NixMg1−xO, a three-stage reaction mechanism of the CLSR process is proposed. The surface oxygen of NixMg1−xO initially causes complete oxidation of the ethanol. Subsequently, H2O and bulk oxygen confined by Mg2+ react with ethanol to form CH3COO* followed by H2 over partially reduced NixMg1−xO. Once the bulk oxygen is consumed, the ethanol steam reforming process is promoted by the metallic nickel in the stage III. As a result, Ni0.4Mg0.6O exhibits a high H2 selectivity (4.72 mol H2 per mole ethanol) with a low steam-to-carbon molar ratio of 1, and remains stable over 30 CLSR cycles. The design of this solid-solution OC provides a versatile strategy for manipulating the chemical looping process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical looping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ethanol steam reforming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nickel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen production</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid solution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunlei Pei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sai Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhijian Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinlong Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Engineering</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">12(2022), Seite 62-69</subfield><subfield code="w">(DE-627)88146578X</subfield><subfield code="w">(DE-600)2886869-9</subfield><subfield code="x">20960026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:62-69</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.eng.2020.08.029</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1c6f9c1b1d1f40f19a2f177f5b7ec249</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2095809922000777</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2095-8099</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="h">62-69</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Hao Tian |
spellingShingle |
Hao Tian misc TA1-2040 misc Chemical looping misc Ethanol steam reforming misc Nickel misc Hydrogen production misc Solid solution misc Engineering (General). Civil engineering (General) Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production |
authorStr |
Hao Tian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)88146578X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20960026 |
topic_title |
TA1-2040 Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production Chemical looping Ethanol steam reforming Nickel Hydrogen production Solid solution |
topic |
misc TA1-2040 misc Chemical looping misc Ethanol steam reforming misc Nickel misc Hydrogen production misc Solid solution misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc Chemical looping misc Ethanol steam reforming misc Nickel misc Hydrogen production misc Solid solution misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc Chemical looping misc Ethanol steam reforming misc Nickel misc Hydrogen production misc Solid solution misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering |
hierarchy_parent_id |
88146578X |
hierarchy_top_title |
Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)88146578X (DE-600)2886869-9 |
title |
Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production |
ctrlnum |
(DE-627)DOAJ024993840 (DE-599)DOAJ1c6f9c1b1d1f40f19a2f177f5b7ec249 |
title_full |
Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production |
author_sort |
Hao Tian |
journal |
Engineering |
journalStr |
Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
62 |
author_browse |
Hao Tian Chunlei Pei Sai Chen Yang Wu Zhijian Zhao Jinlong Gong |
container_volume |
12 |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Hao Tian |
doi_str_mv |
10.1016/j.eng.2020.08.029 |
author2-role |
verfasserin |
title_sort |
regulation of oxygen activity by lattice confinement over nixmg1−xo catalysts for renewable hydrogen production |
callnumber |
TA1-2040 |
title_auth |
Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production |
abstract |
The chemical looping steam reforming (CLSR) of bioethanol is an energy-efficient and carbon-neutral approach of hydrogen production. This paper describes the use of a NixMg1−xO solid solution as the oxygen carrier (OC) in the CLSR of bioethanol. Due to the regulation effect of Mg2+ in NixMg1−xO, a three-stage reaction mechanism of the CLSR process is proposed. The surface oxygen of NixMg1−xO initially causes complete oxidation of the ethanol. Subsequently, H2O and bulk oxygen confined by Mg2+ react with ethanol to form CH3COO* followed by H2 over partially reduced NixMg1−xO. Once the bulk oxygen is consumed, the ethanol steam reforming process is promoted by the metallic nickel in the stage III. As a result, Ni0.4Mg0.6O exhibits a high H2 selectivity (4.72 mol H2 per mole ethanol) with a low steam-to-carbon molar ratio of 1, and remains stable over 30 CLSR cycles. The design of this solid-solution OC provides a versatile strategy for manipulating the chemical looping process. |
abstractGer |
The chemical looping steam reforming (CLSR) of bioethanol is an energy-efficient and carbon-neutral approach of hydrogen production. This paper describes the use of a NixMg1−xO solid solution as the oxygen carrier (OC) in the CLSR of bioethanol. Due to the regulation effect of Mg2+ in NixMg1−xO, a three-stage reaction mechanism of the CLSR process is proposed. The surface oxygen of NixMg1−xO initially causes complete oxidation of the ethanol. Subsequently, H2O and bulk oxygen confined by Mg2+ react with ethanol to form CH3COO* followed by H2 over partially reduced NixMg1−xO. Once the bulk oxygen is consumed, the ethanol steam reforming process is promoted by the metallic nickel in the stage III. As a result, Ni0.4Mg0.6O exhibits a high H2 selectivity (4.72 mol H2 per mole ethanol) with a low steam-to-carbon molar ratio of 1, and remains stable over 30 CLSR cycles. The design of this solid-solution OC provides a versatile strategy for manipulating the chemical looping process. |
abstract_unstemmed |
The chemical looping steam reforming (CLSR) of bioethanol is an energy-efficient and carbon-neutral approach of hydrogen production. This paper describes the use of a NixMg1−xO solid solution as the oxygen carrier (OC) in the CLSR of bioethanol. Due to the regulation effect of Mg2+ in NixMg1−xO, a three-stage reaction mechanism of the CLSR process is proposed. The surface oxygen of NixMg1−xO initially causes complete oxidation of the ethanol. Subsequently, H2O and bulk oxygen confined by Mg2+ react with ethanol to form CH3COO* followed by H2 over partially reduced NixMg1−xO. Once the bulk oxygen is consumed, the ethanol steam reforming process is promoted by the metallic nickel in the stage III. As a result, Ni0.4Mg0.6O exhibits a high H2 selectivity (4.72 mol H2 per mole ethanol) with a low steam-to-carbon molar ratio of 1, and remains stable over 30 CLSR cycles. The design of this solid-solution OC provides a versatile strategy for manipulating the chemical looping process. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production |
url |
https://doi.org/10.1016/j.eng.2020.08.029 https://doaj.org/article/1c6f9c1b1d1f40f19a2f177f5b7ec249 http://www.sciencedirect.com/science/article/pii/S2095809922000777 https://doaj.org/toc/2095-8099 |
remote_bool |
true |
author2 |
Chunlei Pei Sai Chen Yang Wu Zhijian Zhao Jinlong Gong |
author2Str |
Chunlei Pei Sai Chen Yang Wu Zhijian Zhao Jinlong Gong |
ppnlink |
88146578X |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.eng.2020.08.029 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-04T01:10:55.154Z |
_version_ |
1803608868945657856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ024993840</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307082326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eng.2020.08.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ024993840</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1c6f9c1b1d1f40f19a2f177f5b7ec249</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hao Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regulation of Oxygen Activity by Lattice Confinement over NixMg1−xO Catalysts for Renewable Hydrogen Production</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The chemical looping steam reforming (CLSR) of bioethanol is an energy-efficient and carbon-neutral approach of hydrogen production. This paper describes the use of a NixMg1−xO solid solution as the oxygen carrier (OC) in the CLSR of bioethanol. Due to the regulation effect of Mg2+ in NixMg1−xO, a three-stage reaction mechanism of the CLSR process is proposed. The surface oxygen of NixMg1−xO initially causes complete oxidation of the ethanol. Subsequently, H2O and bulk oxygen confined by Mg2+ react with ethanol to form CH3COO* followed by H2 over partially reduced NixMg1−xO. Once the bulk oxygen is consumed, the ethanol steam reforming process is promoted by the metallic nickel in the stage III. As a result, Ni0.4Mg0.6O exhibits a high H2 selectivity (4.72 mol H2 per mole ethanol) with a low steam-to-carbon molar ratio of 1, and remains stable over 30 CLSR cycles. The design of this solid-solution OC provides a versatile strategy for manipulating the chemical looping process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical looping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ethanol steam reforming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nickel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen production</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid solution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunlei Pei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sai Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhijian Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinlong Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Engineering</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">12(2022), Seite 62-69</subfield><subfield code="w">(DE-627)88146578X</subfield><subfield code="w">(DE-600)2886869-9</subfield><subfield code="x">20960026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:62-69</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.eng.2020.08.029</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1c6f9c1b1d1f40f19a2f177f5b7ec249</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2095809922000777</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2095-8099</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="h">62-69</subfield></datafield></record></collection>
|
score |
7.399617 |