Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter
This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. Th...
Ausführliche Beschreibung
Autor*in: |
Sufyan Ali Memon [verfasserIn] Min-Seuk Park [verfasserIn] Imran Memon [verfasserIn] Wan-Gu Kim [verfasserIn] Sajid Khan [verfasserIn] Yifang Shi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 22(2022), 13, p 4759 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2022 ; number:13, p 4759 |
Links: |
---|
DOI / URN: |
10.3390/s22134759 |
---|
Katalog-ID: |
DOAJ025261258 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ025261258 | ||
003 | DE-627 | ||
005 | 20240414072917.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s22134759 |2 doi | |
035 | |a (DE-627)DOAJ025261258 | ||
035 | |a (DE-599)DOAJ32c9dc23f94349ebbbf28c55d883f566 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Sufyan Ali Memon |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms. | ||
650 | 4 | |a component existence probabilities | |
650 | 4 | |a false-track discrimination | |
650 | 4 | |a multi-maneuvering-targets | |
650 | 4 | |a smoothing | |
650 | 4 | |a target existence probabilities | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Min-Seuk Park |e verfasserin |4 aut | |
700 | 0 | |a Imran Memon |e verfasserin |4 aut | |
700 | 0 | |a Wan-Gu Kim |e verfasserin |4 aut | |
700 | 0 | |a Sajid Khan |e verfasserin |4 aut | |
700 | 0 | |a Yifang Shi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 22(2022), 13, p 4759 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2022 |g number:13, p 4759 |
856 | 4 | 0 | |u https://doi.org/10.3390/s22134759 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/32c9dc23f94349ebbbf28c55d883f566 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/22/13/4759 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2022 |e 13, p 4759 |
author_variant |
s a m sam m s p msp i m im w g k wgk s k sk y s ys |
---|---|
matchkey_str |
article:14248220:2022----::oiidmohnagrtmotaknmlilmnuei |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TP |
publishDate |
2022 |
allfields |
10.3390/s22134759 doi (DE-627)DOAJ025261258 (DE-599)DOAJ32c9dc23f94349ebbbf28c55d883f566 DE-627 ger DE-627 rakwb eng TP1-1185 Sufyan Ali Memon verfasserin aut Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms. component existence probabilities false-track discrimination multi-maneuvering-targets smoothing target existence probabilities Chemical technology Min-Seuk Park verfasserin aut Imran Memon verfasserin aut Wan-Gu Kim verfasserin aut Sajid Khan verfasserin aut Yifang Shi verfasserin aut In Sensors MDPI AG, 2003 22(2022), 13, p 4759 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:13, p 4759 https://doi.org/10.3390/s22134759 kostenfrei https://doaj.org/article/32c9dc23f94349ebbbf28c55d883f566 kostenfrei https://www.mdpi.com/1424-8220/22/13/4759 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 13, p 4759 |
spelling |
10.3390/s22134759 doi (DE-627)DOAJ025261258 (DE-599)DOAJ32c9dc23f94349ebbbf28c55d883f566 DE-627 ger DE-627 rakwb eng TP1-1185 Sufyan Ali Memon verfasserin aut Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms. component existence probabilities false-track discrimination multi-maneuvering-targets smoothing target existence probabilities Chemical technology Min-Seuk Park verfasserin aut Imran Memon verfasserin aut Wan-Gu Kim verfasserin aut Sajid Khan verfasserin aut Yifang Shi verfasserin aut In Sensors MDPI AG, 2003 22(2022), 13, p 4759 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:13, p 4759 https://doi.org/10.3390/s22134759 kostenfrei https://doaj.org/article/32c9dc23f94349ebbbf28c55d883f566 kostenfrei https://www.mdpi.com/1424-8220/22/13/4759 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 13, p 4759 |
allfields_unstemmed |
10.3390/s22134759 doi (DE-627)DOAJ025261258 (DE-599)DOAJ32c9dc23f94349ebbbf28c55d883f566 DE-627 ger DE-627 rakwb eng TP1-1185 Sufyan Ali Memon verfasserin aut Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms. component existence probabilities false-track discrimination multi-maneuvering-targets smoothing target existence probabilities Chemical technology Min-Seuk Park verfasserin aut Imran Memon verfasserin aut Wan-Gu Kim verfasserin aut Sajid Khan verfasserin aut Yifang Shi verfasserin aut In Sensors MDPI AG, 2003 22(2022), 13, p 4759 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:13, p 4759 https://doi.org/10.3390/s22134759 kostenfrei https://doaj.org/article/32c9dc23f94349ebbbf28c55d883f566 kostenfrei https://www.mdpi.com/1424-8220/22/13/4759 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 13, p 4759 |
allfieldsGer |
10.3390/s22134759 doi (DE-627)DOAJ025261258 (DE-599)DOAJ32c9dc23f94349ebbbf28c55d883f566 DE-627 ger DE-627 rakwb eng TP1-1185 Sufyan Ali Memon verfasserin aut Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms. component existence probabilities false-track discrimination multi-maneuvering-targets smoothing target existence probabilities Chemical technology Min-Seuk Park verfasserin aut Imran Memon verfasserin aut Wan-Gu Kim verfasserin aut Sajid Khan verfasserin aut Yifang Shi verfasserin aut In Sensors MDPI AG, 2003 22(2022), 13, p 4759 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:13, p 4759 https://doi.org/10.3390/s22134759 kostenfrei https://doaj.org/article/32c9dc23f94349ebbbf28c55d883f566 kostenfrei https://www.mdpi.com/1424-8220/22/13/4759 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 13, p 4759 |
allfieldsSound |
10.3390/s22134759 doi (DE-627)DOAJ025261258 (DE-599)DOAJ32c9dc23f94349ebbbf28c55d883f566 DE-627 ger DE-627 rakwb eng TP1-1185 Sufyan Ali Memon verfasserin aut Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms. component existence probabilities false-track discrimination multi-maneuvering-targets smoothing target existence probabilities Chemical technology Min-Seuk Park verfasserin aut Imran Memon verfasserin aut Wan-Gu Kim verfasserin aut Sajid Khan verfasserin aut Yifang Shi verfasserin aut In Sensors MDPI AG, 2003 22(2022), 13, p 4759 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:13, p 4759 https://doi.org/10.3390/s22134759 kostenfrei https://doaj.org/article/32c9dc23f94349ebbbf28c55d883f566 kostenfrei https://www.mdpi.com/1424-8220/22/13/4759 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 13, p 4759 |
language |
English |
source |
In Sensors 22(2022), 13, p 4759 volume:22 year:2022 number:13, p 4759 |
sourceStr |
In Sensors 22(2022), 13, p 4759 volume:22 year:2022 number:13, p 4759 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
component existence probabilities false-track discrimination multi-maneuvering-targets smoothing target existence probabilities Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Sufyan Ali Memon @@aut@@ Min-Seuk Park @@aut@@ Imran Memon @@aut@@ Wan-Gu Kim @@aut@@ Sajid Khan @@aut@@ Yifang Shi @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ025261258 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025261258</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414072917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s22134759</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025261258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ32c9dc23f94349ebbbf28c55d883f566</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sufyan Ali Memon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">component existence probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">false-track discrimination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-maneuvering-targets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smoothing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">target existence probabilities</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min-Seuk Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Imran Memon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wan-Gu Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sajid Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yifang Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2022), 13, p 4759</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:13, p 4759</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s22134759</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/32c9dc23f94349ebbbf28c55d883f566</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/22/13/4759</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">13, p 4759</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Sufyan Ali Memon |
spellingShingle |
Sufyan Ali Memon misc TP1-1185 misc component existence probabilities misc false-track discrimination misc multi-maneuvering-targets misc smoothing misc target existence probabilities misc Chemical technology Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter |
authorStr |
Sufyan Ali Memon |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter component existence probabilities false-track discrimination multi-maneuvering-targets smoothing target existence probabilities |
topic |
misc TP1-1185 misc component existence probabilities misc false-track discrimination misc multi-maneuvering-targets misc smoothing misc target existence probabilities misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc component existence probabilities misc false-track discrimination misc multi-maneuvering-targets misc smoothing misc target existence probabilities misc Chemical technology |
topic_browse |
misc TP1-1185 misc component existence probabilities misc false-track discrimination misc multi-maneuvering-targets misc smoothing misc target existence probabilities misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter |
ctrlnum |
(DE-627)DOAJ025261258 (DE-599)DOAJ32c9dc23f94349ebbbf28c55d883f566 |
title_full |
Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter |
author_sort |
Sufyan Ali Memon |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Sufyan Ali Memon Min-Seuk Park Imran Memon Wan-Gu Kim Sajid Khan Yifang Shi |
container_volume |
22 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Sufyan Ali Memon |
doi_str_mv |
10.3390/s22134759 |
author2-role |
verfasserin |
title_sort |
modified smoothing algorithm for tracking multiple maneuvering targets in clutter |
callnumber |
TP1-1185 |
title_auth |
Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter |
abstract |
This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms. |
abstractGer |
This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms. |
abstract_unstemmed |
This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
13, p 4759 |
title_short |
Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter |
url |
https://doi.org/10.3390/s22134759 https://doaj.org/article/32c9dc23f94349ebbbf28c55d883f566 https://www.mdpi.com/1424-8220/22/13/4759 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Min-Seuk Park Imran Memon Wan-Gu Kim Sajid Khan Yifang Shi |
author2Str |
Min-Seuk Park Imran Memon Wan-Gu Kim Sajid Khan Yifang Shi |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s22134759 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T13:57:03.600Z |
_version_ |
1803566473390587904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025261258</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414072917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s22134759</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025261258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ32c9dc23f94349ebbbf28c55d883f566</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sufyan Ali Memon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">component existence probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">false-track discrimination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-maneuvering-targets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smoothing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">target existence probabilities</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min-Seuk Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Imran Memon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wan-Gu Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sajid Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yifang Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2022), 13, p 4759</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:13, p 4759</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s22134759</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/32c9dc23f94349ebbbf28c55d883f566</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/22/13/4759</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">13, p 4759</subfield></datafield></record></collection>
|
score |
7.4018326 |