Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane
Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromopho...
Ausführliche Beschreibung
Autor*in: |
Yuka eJinno [verfasserIn] Keiko eShoda [verfasserIn] Emiliano eRial-Verde [verfasserIn] Rafael eYuste [verfasserIn] Miyawaki eAtsushi [verfasserIn] Hidekazu eTsutsui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Molecular Neuroscience - Frontiers Media S.A., 2008, 7(2014) |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2014 |
Links: |
---|
DOI / URN: |
10.3389/fnmol.2014.00093 |
---|
Katalog-ID: |
DOAJ02541240X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ02541240X | ||
003 | DE-627 | ||
005 | 20230503102640.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fnmol.2014.00093 |2 doi | |
035 | |a (DE-627)DOAJ02541240X | ||
035 | |a (DE-599)DOAJbebbce596950480ab5c13ff7f70006d7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC321-571 | |
100 | 0 | |a Yuka eJinno |e verfasserin |4 aut | |
245 | 1 | 0 | |a Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its -barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3º) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential. | ||
650 | 4 | |a Mutagenesis | |
650 | 4 | |a electrostatic potential | |
650 | 4 | |a second harmonic generation | |
650 | 4 | |a fluoresence protein | |
650 | 4 | |a Kras4B | |
653 | 0 | |a Neurosciences. Biological psychiatry. Neuropsychiatry | |
700 | 0 | |a Keiko eShoda |e verfasserin |4 aut | |
700 | 0 | |a Emiliano eRial-Verde |e verfasserin |4 aut | |
700 | 0 | |a Rafael eYuste |e verfasserin |4 aut | |
700 | 0 | |a Miyawaki eAtsushi |e verfasserin |4 aut | |
700 | 0 | |a Hidekazu eTsutsui |e verfasserin |4 aut | |
700 | 0 | |a Hidekazu eTsutsui |e verfasserin |4 aut | |
700 | 0 | |a Hidekazu eTsutsui |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Molecular Neuroscience |d Frontiers Media S.A., 2008 |g 7(2014) |w (DE-627)579826449 |w (DE-600)2452967-9 |x 16625099 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2014 |
856 | 4 | 0 | |u https://doi.org/10.3389/fnmol.2014.00093 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/bebbce596950480ab5c13ff7f70006d7 |z kostenfrei |
856 | 4 | 0 | |u http://journal.frontiersin.org/Journal/10.3389/fnmol.2014.00093/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1662-5099 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2014 |
author_variant |
y e ye k e ke e e v eev r e re m e me h e he h e he h e he |
---|---|
matchkey_str |
article:16625099:2014----::niernaeeialecddhcrmpoeylcrsait |
hierarchy_sort_str |
2014 |
callnumber-subject-code |
RC |
publishDate |
2014 |
allfields |
10.3389/fnmol.2014.00093 doi (DE-627)DOAJ02541240X (DE-599)DOAJbebbce596950480ab5c13ff7f70006d7 DE-627 ger DE-627 rakwb eng RC321-571 Yuka eJinno verfasserin aut Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its -barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3º) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential. Mutagenesis electrostatic potential second harmonic generation fluoresence protein Kras4B Neurosciences. Biological psychiatry. Neuropsychiatry Keiko eShoda verfasserin aut Emiliano eRial-Verde verfasserin aut Rafael eYuste verfasserin aut Miyawaki eAtsushi verfasserin aut Hidekazu eTsutsui verfasserin aut Hidekazu eTsutsui verfasserin aut Hidekazu eTsutsui verfasserin aut In Frontiers in Molecular Neuroscience Frontiers Media S.A., 2008 7(2014) (DE-627)579826449 (DE-600)2452967-9 16625099 nnns volume:7 year:2014 https://doi.org/10.3389/fnmol.2014.00093 kostenfrei https://doaj.org/article/bebbce596950480ab5c13ff7f70006d7 kostenfrei http://journal.frontiersin.org/Journal/10.3389/fnmol.2014.00093/full kostenfrei https://doaj.org/toc/1662-5099 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 |
spelling |
10.3389/fnmol.2014.00093 doi (DE-627)DOAJ02541240X (DE-599)DOAJbebbce596950480ab5c13ff7f70006d7 DE-627 ger DE-627 rakwb eng RC321-571 Yuka eJinno verfasserin aut Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its -barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3º) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential. Mutagenesis electrostatic potential second harmonic generation fluoresence protein Kras4B Neurosciences. Biological psychiatry. Neuropsychiatry Keiko eShoda verfasserin aut Emiliano eRial-Verde verfasserin aut Rafael eYuste verfasserin aut Miyawaki eAtsushi verfasserin aut Hidekazu eTsutsui verfasserin aut Hidekazu eTsutsui verfasserin aut Hidekazu eTsutsui verfasserin aut In Frontiers in Molecular Neuroscience Frontiers Media S.A., 2008 7(2014) (DE-627)579826449 (DE-600)2452967-9 16625099 nnns volume:7 year:2014 https://doi.org/10.3389/fnmol.2014.00093 kostenfrei https://doaj.org/article/bebbce596950480ab5c13ff7f70006d7 kostenfrei http://journal.frontiersin.org/Journal/10.3389/fnmol.2014.00093/full kostenfrei https://doaj.org/toc/1662-5099 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 |
allfields_unstemmed |
10.3389/fnmol.2014.00093 doi (DE-627)DOAJ02541240X (DE-599)DOAJbebbce596950480ab5c13ff7f70006d7 DE-627 ger DE-627 rakwb eng RC321-571 Yuka eJinno verfasserin aut Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its -barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3º) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential. Mutagenesis electrostatic potential second harmonic generation fluoresence protein Kras4B Neurosciences. Biological psychiatry. Neuropsychiatry Keiko eShoda verfasserin aut Emiliano eRial-Verde verfasserin aut Rafael eYuste verfasserin aut Miyawaki eAtsushi verfasserin aut Hidekazu eTsutsui verfasserin aut Hidekazu eTsutsui verfasserin aut Hidekazu eTsutsui verfasserin aut In Frontiers in Molecular Neuroscience Frontiers Media S.A., 2008 7(2014) (DE-627)579826449 (DE-600)2452967-9 16625099 nnns volume:7 year:2014 https://doi.org/10.3389/fnmol.2014.00093 kostenfrei https://doaj.org/article/bebbce596950480ab5c13ff7f70006d7 kostenfrei http://journal.frontiersin.org/Journal/10.3389/fnmol.2014.00093/full kostenfrei https://doaj.org/toc/1662-5099 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 |
allfieldsGer |
10.3389/fnmol.2014.00093 doi (DE-627)DOAJ02541240X (DE-599)DOAJbebbce596950480ab5c13ff7f70006d7 DE-627 ger DE-627 rakwb eng RC321-571 Yuka eJinno verfasserin aut Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its -barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3º) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential. Mutagenesis electrostatic potential second harmonic generation fluoresence protein Kras4B Neurosciences. Biological psychiatry. Neuropsychiatry Keiko eShoda verfasserin aut Emiliano eRial-Verde verfasserin aut Rafael eYuste verfasserin aut Miyawaki eAtsushi verfasserin aut Hidekazu eTsutsui verfasserin aut Hidekazu eTsutsui verfasserin aut Hidekazu eTsutsui verfasserin aut In Frontiers in Molecular Neuroscience Frontiers Media S.A., 2008 7(2014) (DE-627)579826449 (DE-600)2452967-9 16625099 nnns volume:7 year:2014 https://doi.org/10.3389/fnmol.2014.00093 kostenfrei https://doaj.org/article/bebbce596950480ab5c13ff7f70006d7 kostenfrei http://journal.frontiersin.org/Journal/10.3389/fnmol.2014.00093/full kostenfrei https://doaj.org/toc/1662-5099 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 |
allfieldsSound |
10.3389/fnmol.2014.00093 doi (DE-627)DOAJ02541240X (DE-599)DOAJbebbce596950480ab5c13ff7f70006d7 DE-627 ger DE-627 rakwb eng RC321-571 Yuka eJinno verfasserin aut Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its -barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3º) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential. Mutagenesis electrostatic potential second harmonic generation fluoresence protein Kras4B Neurosciences. Biological psychiatry. Neuropsychiatry Keiko eShoda verfasserin aut Emiliano eRial-Verde verfasserin aut Rafael eYuste verfasserin aut Miyawaki eAtsushi verfasserin aut Hidekazu eTsutsui verfasserin aut Hidekazu eTsutsui verfasserin aut Hidekazu eTsutsui verfasserin aut In Frontiers in Molecular Neuroscience Frontiers Media S.A., 2008 7(2014) (DE-627)579826449 (DE-600)2452967-9 16625099 nnns volume:7 year:2014 https://doi.org/10.3389/fnmol.2014.00093 kostenfrei https://doaj.org/article/bebbce596950480ab5c13ff7f70006d7 kostenfrei http://journal.frontiersin.org/Journal/10.3389/fnmol.2014.00093/full kostenfrei https://doaj.org/toc/1662-5099 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2014 |
language |
English |
source |
In Frontiers in Molecular Neuroscience 7(2014) volume:7 year:2014 |
sourceStr |
In Frontiers in Molecular Neuroscience 7(2014) volume:7 year:2014 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mutagenesis electrostatic potential second harmonic generation fluoresence protein Kras4B Neurosciences. Biological psychiatry. Neuropsychiatry |
isfreeaccess_bool |
true |
container_title |
Frontiers in Molecular Neuroscience |
authorswithroles_txt_mv |
Yuka eJinno @@aut@@ Keiko eShoda @@aut@@ Emiliano eRial-Verde @@aut@@ Rafael eYuste @@aut@@ Miyawaki eAtsushi @@aut@@ Hidekazu eTsutsui @@aut@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
579826449 |
id |
DOAJ02541240X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02541240X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503102640.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fnmol.2014.00093</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02541240X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbebbce596950480ab5c13ff7f70006d7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuka eJinno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its -barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3º) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutagenesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrostatic potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">second harmonic generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fluoresence protein</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kras4B</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keiko eShoda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emiliano eRial-Verde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rafael eYuste</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miyawaki eAtsushi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hidekazu eTsutsui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hidekazu eTsutsui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hidekazu eTsutsui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Molecular Neuroscience</subfield><subfield code="d">Frontiers Media S.A., 2008</subfield><subfield code="g">7(2014)</subfield><subfield code="w">(DE-627)579826449</subfield><subfield code="w">(DE-600)2452967-9</subfield><subfield code="x">16625099</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2014</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fnmol.2014.00093</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bebbce596950480ab5c13ff7f70006d7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://journal.frontiersin.org/Journal/10.3389/fnmol.2014.00093/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1662-5099</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2014</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Yuka eJinno |
spellingShingle |
Yuka eJinno misc RC321-571 misc Mutagenesis misc electrostatic potential misc second harmonic generation misc fluoresence protein misc Kras4B misc Neurosciences. Biological psychiatry. Neuropsychiatry Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane |
authorStr |
Yuka eJinno |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)579826449 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC321-571 |
illustrated |
Not Illustrated |
issn |
16625099 |
topic_title |
RC321-571 Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane Mutagenesis electrostatic potential second harmonic generation fluoresence protein Kras4B |
topic |
misc RC321-571 misc Mutagenesis misc electrostatic potential misc second harmonic generation misc fluoresence protein misc Kras4B misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_unstemmed |
misc RC321-571 misc Mutagenesis misc electrostatic potential misc second harmonic generation misc fluoresence protein misc Kras4B misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_browse |
misc RC321-571 misc Mutagenesis misc electrostatic potential misc second harmonic generation misc fluoresence protein misc Kras4B misc Neurosciences. Biological psychiatry. Neuropsychiatry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Molecular Neuroscience |
hierarchy_parent_id |
579826449 |
hierarchy_top_title |
Frontiers in Molecular Neuroscience |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)579826449 (DE-600)2452967-9 |
title |
Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane |
ctrlnum |
(DE-627)DOAJ02541240X (DE-599)DOAJbebbce596950480ab5c13ff7f70006d7 |
title_full |
Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane |
author_sort |
Yuka eJinno |
journal |
Frontiers in Molecular Neuroscience |
journalStr |
Frontiers in Molecular Neuroscience |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Yuka eJinno Keiko eShoda Emiliano eRial-Verde Rafael eYuste Miyawaki eAtsushi Hidekazu eTsutsui |
container_volume |
7 |
class |
RC321-571 |
format_se |
Elektronische Aufsätze |
author-letter |
Yuka eJinno |
doi_str_mv |
10.3389/fnmol.2014.00093 |
author2-role |
verfasserin |
title_sort |
engineering a genetically-encoded shg chromophore by electrostatic targeting to the membrane |
callnumber |
RC321-571 |
title_auth |
Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane |
abstract |
Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its -barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3º) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential. |
abstractGer |
Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its -barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3º) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential. |
abstract_unstemmed |
Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its -barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3º) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane |
url |
https://doi.org/10.3389/fnmol.2014.00093 https://doaj.org/article/bebbce596950480ab5c13ff7f70006d7 http://journal.frontiersin.org/Journal/10.3389/fnmol.2014.00093/full https://doaj.org/toc/1662-5099 |
remote_bool |
true |
author2 |
Keiko eShoda Emiliano eRial-Verde Rafael eYuste Miyawaki eAtsushi Hidekazu eTsutsui |
author2Str |
Keiko eShoda Emiliano eRial-Verde Rafael eYuste Miyawaki eAtsushi Hidekazu eTsutsui |
ppnlink |
579826449 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fnmol.2014.00093 |
callnumber-a |
RC321-571 |
up_date |
2024-07-03T14:50:52.779Z |
_version_ |
1803569859427041280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02541240X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503102640.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fnmol.2014.00093</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02541240X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbebbce596950480ab5c13ff7f70006d7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuka eJinno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although second harmonic generation (SHG) microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its -barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM) was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3º) from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutagenesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrostatic potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">second harmonic generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fluoresence protein</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kras4B</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keiko eShoda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emiliano eRial-Verde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rafael eYuste</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Miyawaki eAtsushi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hidekazu eTsutsui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hidekazu eTsutsui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hidekazu eTsutsui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Molecular Neuroscience</subfield><subfield code="d">Frontiers Media S.A., 2008</subfield><subfield code="g">7(2014)</subfield><subfield code="w">(DE-627)579826449</subfield><subfield code="w">(DE-600)2452967-9</subfield><subfield code="x">16625099</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2014</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fnmol.2014.00093</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bebbce596950480ab5c13ff7f70006d7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://journal.frontiersin.org/Journal/10.3389/fnmol.2014.00093/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1662-5099</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2014</subfield></datafield></record></collection>
|
score |
7.402815 |