Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film
An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin fil...
Ausführliche Beschreibung
Autor*in: |
Sani Y. Harouna-Mayer [verfasserIn] Songsheng Tao [verfasserIn] ZiZhou Gong [verfasserIn] Martin v. Zimmermann [verfasserIn] Dorota Koziej [verfasserIn] Ann-Christin Dippel [verfasserIn] Simon J. L. Billinge [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IUCrJ - International Union of Crystallography, 2014, 9(2022), 5, Seite 594-603 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 ; number:5 ; pages:594-603 |
Links: |
---|
DOI / URN: |
10.1107/S2052252522006674 |
---|
Katalog-ID: |
DOAJ025429116 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ025429116 | ||
003 | DE-627 | ||
005 | 20230307085307.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1107/S2052252522006674 |2 doi | |
035 | |a (DE-627)DOAJ025429116 | ||
035 | |a (DE-599)DOAJ950592e528bf48b194e54a6ceef07bf0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD901-999 | |
100 | 0 | |a Sani Y. Harouna-Mayer |e verfasserin |4 aut | |
245 | 1 | 0 | |a Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general. | ||
650 | 4 | |a materials modeling | |
650 | 4 | |a nanostructure | |
650 | 4 | |a texture | |
650 | 4 | |a 3d pair distribution functions | |
650 | 4 | |a real-space pole figures | |
650 | 4 | |a real-space fiber plots | |
650 | 4 | |a fourigui | |
653 | 0 | |a Crystallography | |
700 | 0 | |a Songsheng Tao |e verfasserin |4 aut | |
700 | 0 | |a ZiZhou Gong |e verfasserin |4 aut | |
700 | 0 | |a Martin v. Zimmermann |e verfasserin |4 aut | |
700 | 0 | |a Dorota Koziej |e verfasserin |4 aut | |
700 | 0 | |a Ann-Christin Dippel |e verfasserin |4 aut | |
700 | 0 | |a Simon J. L. Billinge |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IUCrJ |d International Union of Crystallography, 2014 |g 9(2022), 5, Seite 594-603 |w (DE-627)777782758 |w (DE-600)2754953-7 |x 20522525 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |g number:5 |g pages:594-603 |
856 | 4 | 0 | |u https://doi.org/10.1107/S2052252522006674 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/950592e528bf48b194e54a6ceef07bf0 |z kostenfrei |
856 | 4 | 0 | |u http://scripts.iucr.org/cgi-bin/paper?S2052252522006674 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2052-2525 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |e 5 |h 594-603 |
author_variant |
s y h m syhm s t st z g zg m v z mvz d k dk a c d acd s j l b sjlb |
---|---|
matchkey_str |
article:20522525:2022----::elpctxuenplfgraayiuigh3pidsrbtofn |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QD |
publishDate |
2022 |
allfields |
10.1107/S2052252522006674 doi (DE-627)DOAJ025429116 (DE-599)DOAJ950592e528bf48b194e54a6ceef07bf0 DE-627 ger DE-627 rakwb eng QD901-999 Sani Y. Harouna-Mayer verfasserin aut Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general. materials modeling nanostructure texture 3d pair distribution functions real-space pole figures real-space fiber plots fourigui Crystallography Songsheng Tao verfasserin aut ZiZhou Gong verfasserin aut Martin v. Zimmermann verfasserin aut Dorota Koziej verfasserin aut Ann-Christin Dippel verfasserin aut Simon J. L. Billinge verfasserin aut In IUCrJ International Union of Crystallography, 2014 9(2022), 5, Seite 594-603 (DE-627)777782758 (DE-600)2754953-7 20522525 nnns volume:9 year:2022 number:5 pages:594-603 https://doi.org/10.1107/S2052252522006674 kostenfrei https://doaj.org/article/950592e528bf48b194e54a6ceef07bf0 kostenfrei http://scripts.iucr.org/cgi-bin/paper?S2052252522006674 kostenfrei https://doaj.org/toc/2052-2525 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 5 594-603 |
spelling |
10.1107/S2052252522006674 doi (DE-627)DOAJ025429116 (DE-599)DOAJ950592e528bf48b194e54a6ceef07bf0 DE-627 ger DE-627 rakwb eng QD901-999 Sani Y. Harouna-Mayer verfasserin aut Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general. materials modeling nanostructure texture 3d pair distribution functions real-space pole figures real-space fiber plots fourigui Crystallography Songsheng Tao verfasserin aut ZiZhou Gong verfasserin aut Martin v. Zimmermann verfasserin aut Dorota Koziej verfasserin aut Ann-Christin Dippel verfasserin aut Simon J. L. Billinge verfasserin aut In IUCrJ International Union of Crystallography, 2014 9(2022), 5, Seite 594-603 (DE-627)777782758 (DE-600)2754953-7 20522525 nnns volume:9 year:2022 number:5 pages:594-603 https://doi.org/10.1107/S2052252522006674 kostenfrei https://doaj.org/article/950592e528bf48b194e54a6ceef07bf0 kostenfrei http://scripts.iucr.org/cgi-bin/paper?S2052252522006674 kostenfrei https://doaj.org/toc/2052-2525 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 5 594-603 |
allfields_unstemmed |
10.1107/S2052252522006674 doi (DE-627)DOAJ025429116 (DE-599)DOAJ950592e528bf48b194e54a6ceef07bf0 DE-627 ger DE-627 rakwb eng QD901-999 Sani Y. Harouna-Mayer verfasserin aut Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general. materials modeling nanostructure texture 3d pair distribution functions real-space pole figures real-space fiber plots fourigui Crystallography Songsheng Tao verfasserin aut ZiZhou Gong verfasserin aut Martin v. Zimmermann verfasserin aut Dorota Koziej verfasserin aut Ann-Christin Dippel verfasserin aut Simon J. L. Billinge verfasserin aut In IUCrJ International Union of Crystallography, 2014 9(2022), 5, Seite 594-603 (DE-627)777782758 (DE-600)2754953-7 20522525 nnns volume:9 year:2022 number:5 pages:594-603 https://doi.org/10.1107/S2052252522006674 kostenfrei https://doaj.org/article/950592e528bf48b194e54a6ceef07bf0 kostenfrei http://scripts.iucr.org/cgi-bin/paper?S2052252522006674 kostenfrei https://doaj.org/toc/2052-2525 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 5 594-603 |
allfieldsGer |
10.1107/S2052252522006674 doi (DE-627)DOAJ025429116 (DE-599)DOAJ950592e528bf48b194e54a6ceef07bf0 DE-627 ger DE-627 rakwb eng QD901-999 Sani Y. Harouna-Mayer verfasserin aut Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general. materials modeling nanostructure texture 3d pair distribution functions real-space pole figures real-space fiber plots fourigui Crystallography Songsheng Tao verfasserin aut ZiZhou Gong verfasserin aut Martin v. Zimmermann verfasserin aut Dorota Koziej verfasserin aut Ann-Christin Dippel verfasserin aut Simon J. L. Billinge verfasserin aut In IUCrJ International Union of Crystallography, 2014 9(2022), 5, Seite 594-603 (DE-627)777782758 (DE-600)2754953-7 20522525 nnns volume:9 year:2022 number:5 pages:594-603 https://doi.org/10.1107/S2052252522006674 kostenfrei https://doaj.org/article/950592e528bf48b194e54a6ceef07bf0 kostenfrei http://scripts.iucr.org/cgi-bin/paper?S2052252522006674 kostenfrei https://doaj.org/toc/2052-2525 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 5 594-603 |
allfieldsSound |
10.1107/S2052252522006674 doi (DE-627)DOAJ025429116 (DE-599)DOAJ950592e528bf48b194e54a6ceef07bf0 DE-627 ger DE-627 rakwb eng QD901-999 Sani Y. Harouna-Mayer verfasserin aut Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general. materials modeling nanostructure texture 3d pair distribution functions real-space pole figures real-space fiber plots fourigui Crystallography Songsheng Tao verfasserin aut ZiZhou Gong verfasserin aut Martin v. Zimmermann verfasserin aut Dorota Koziej verfasserin aut Ann-Christin Dippel verfasserin aut Simon J. L. Billinge verfasserin aut In IUCrJ International Union of Crystallography, 2014 9(2022), 5, Seite 594-603 (DE-627)777782758 (DE-600)2754953-7 20522525 nnns volume:9 year:2022 number:5 pages:594-603 https://doi.org/10.1107/S2052252522006674 kostenfrei https://doaj.org/article/950592e528bf48b194e54a6ceef07bf0 kostenfrei http://scripts.iucr.org/cgi-bin/paper?S2052252522006674 kostenfrei https://doaj.org/toc/2052-2525 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 5 594-603 |
language |
English |
source |
In IUCrJ 9(2022), 5, Seite 594-603 volume:9 year:2022 number:5 pages:594-603 |
sourceStr |
In IUCrJ 9(2022), 5, Seite 594-603 volume:9 year:2022 number:5 pages:594-603 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
materials modeling nanostructure texture 3d pair distribution functions real-space pole figures real-space fiber plots fourigui Crystallography |
isfreeaccess_bool |
true |
container_title |
IUCrJ |
authorswithroles_txt_mv |
Sani Y. Harouna-Mayer @@aut@@ Songsheng Tao @@aut@@ ZiZhou Gong @@aut@@ Martin v. Zimmermann @@aut@@ Dorota Koziej @@aut@@ Ann-Christin Dippel @@aut@@ Simon J. L. Billinge @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
777782758 |
id |
DOAJ025429116 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025429116</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307085307.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1107/S2052252522006674</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025429116</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ950592e528bf48b194e54a6ceef07bf0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD901-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sani Y. Harouna-Mayer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">materials modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanostructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3d pair distribution functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">real-space pole figures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">real-space fiber plots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fourigui</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Crystallography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Songsheng Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">ZiZhou Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin v. Zimmermann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dorota Koziej</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ann-Christin Dippel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon J. L. Billinge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IUCrJ</subfield><subfield code="d">International Union of Crystallography, 2014</subfield><subfield code="g">9(2022), 5, Seite 594-603</subfield><subfield code="w">(DE-627)777782758</subfield><subfield code="w">(DE-600)2754953-7</subfield><subfield code="x">20522525</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:594-603</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1107/S2052252522006674</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/950592e528bf48b194e54a6ceef07bf0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://scripts.iucr.org/cgi-bin/paper?S2052252522006674</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2052-2525</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="h">594-603</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Sani Y. Harouna-Mayer |
spellingShingle |
Sani Y. Harouna-Mayer misc QD901-999 misc materials modeling misc nanostructure misc texture misc 3d pair distribution functions misc real-space pole figures misc real-space fiber plots misc fourigui misc Crystallography Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film |
authorStr |
Sani Y. Harouna-Mayer |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)777782758 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD901-999 |
illustrated |
Not Illustrated |
issn |
20522525 |
topic_title |
QD901-999 Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film materials modeling nanostructure texture 3d pair distribution functions real-space pole figures real-space fiber plots fourigui |
topic |
misc QD901-999 misc materials modeling misc nanostructure misc texture misc 3d pair distribution functions misc real-space pole figures misc real-space fiber plots misc fourigui misc Crystallography |
topic_unstemmed |
misc QD901-999 misc materials modeling misc nanostructure misc texture misc 3d pair distribution functions misc real-space pole figures misc real-space fiber plots misc fourigui misc Crystallography |
topic_browse |
misc QD901-999 misc materials modeling misc nanostructure misc texture misc 3d pair distribution functions misc real-space pole figures misc real-space fiber plots misc fourigui misc Crystallography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IUCrJ |
hierarchy_parent_id |
777782758 |
hierarchy_top_title |
IUCrJ |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)777782758 (DE-600)2754953-7 |
title |
Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film |
ctrlnum |
(DE-627)DOAJ025429116 (DE-599)DOAJ950592e528bf48b194e54a6ceef07bf0 |
title_full |
Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film |
author_sort |
Sani Y. Harouna-Mayer |
journal |
IUCrJ |
journalStr |
IUCrJ |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
594 |
author_browse |
Sani Y. Harouna-Mayer Songsheng Tao ZiZhou Gong Martin v. Zimmermann Dorota Koziej Ann-Christin Dippel Simon J. L. Billinge |
container_volume |
9 |
class |
QD901-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Sani Y. Harouna-Mayer |
doi_str_mv |
10.1107/S2052252522006674 |
author2-role |
verfasserin |
title_sort |
real-space texture and pole-figure analysis using the 3d pair distribution function on a platinum thin film |
callnumber |
QD901-999 |
title_auth |
Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film |
abstract |
An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general. |
abstractGer |
An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general. |
abstract_unstemmed |
An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film |
url |
https://doi.org/10.1107/S2052252522006674 https://doaj.org/article/950592e528bf48b194e54a6ceef07bf0 http://scripts.iucr.org/cgi-bin/paper?S2052252522006674 https://doaj.org/toc/2052-2525 |
remote_bool |
true |
author2 |
Songsheng Tao ZiZhou Gong Martin v. Zimmermann Dorota Koziej Ann-Christin Dippel Simon J. L. Billinge |
author2Str |
Songsheng Tao ZiZhou Gong Martin v. Zimmermann Dorota Koziej Ann-Christin Dippel Simon J. L. Billinge |
ppnlink |
777782758 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1107/S2052252522006674 |
callnumber-a |
QD901-999 |
up_date |
2024-07-03T14:56:41.915Z |
_version_ |
1803570225528963072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025429116</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307085307.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1107/S2052252522006674</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025429116</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ950592e528bf48b194e54a6ceef07bf0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD901-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sani Y. Harouna-Mayer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real-space texture and pole-figure analysis using the 3D pair distribution function on a platinum thin film</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An approach is described for studying texture in nanostructured materials. The approach implements the real-space texture pair distribution function (PDF), txPDF, laid out by Gong & Billinge {(2018). arXiv:1805.10342 [cond-mat]}. It is demonstrated on a fiber-textured polycrystalline Pt thin film. The approach uses 3D PDF methods to reconstruct the orientation distribution function of the powder crystallites from a set of diffraction patterns, taken at different tilt angles of the substrate with respect to the incident beam, directly from the 3D PDF of the sample. A real-space equivalent of the reciprocal-space pole figure is defined in terms of interatomic vectors in the PDF and computed for various interatomic vectors in the Pt film. Furthermore, it is shown how a valid isotropic PDF may be obtained from a weighted average over the tilt series, including the measurement conditions for the best approximant to the isotropic PDF from a single exposure, which for the case of the fiber-textured film was in a nearly grazing incidence orientation of ∼10°. Finally, an open-source Python software package, FouriGUI, is described that may be used to help in studies of texture from 3D reciprocal-space data, and indeed for Fourier transforming and visualizing 3D PDF data in general.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">materials modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanostructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">texture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3d pair distribution functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">real-space pole figures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">real-space fiber plots</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fourigui</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Crystallography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Songsheng Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">ZiZhou Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martin v. Zimmermann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dorota Koziej</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ann-Christin Dippel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon J. L. Billinge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IUCrJ</subfield><subfield code="d">International Union of Crystallography, 2014</subfield><subfield code="g">9(2022), 5, Seite 594-603</subfield><subfield code="w">(DE-627)777782758</subfield><subfield code="w">(DE-600)2754953-7</subfield><subfield code="x">20522525</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:594-603</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1107/S2052252522006674</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/950592e528bf48b194e54a6ceef07bf0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://scripts.iucr.org/cgi-bin/paper?S2052252522006674</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2052-2525</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="h">594-603</subfield></datafield></record></collection>
|
score |
7.3995695 |