Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic
In the era of nanoelectronics, multiple faults or failures of function blocks are likely to occur. To withstand these, higher levels of redundancy are suggested to be employed in at least the sensitive portions of a circuit or system. In this context, the N-modular redundancy (NMR) scheme may be use...
Ausführliche Beschreibung
Autor*in: |
Padmanabhan Balasubramanian [verfasserIn] Douglas Maskell [verfasserIn] Nikos Mastorakis [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Electronics - MDPI AG, 2013, 7(2018), 11, p 272 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2018 ; number:11, p 272 |
Links: |
---|
DOI / URN: |
10.3390/electronics7110272 |
---|
Katalog-ID: |
DOAJ025442821 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ025442821 | ||
003 | DE-627 | ||
005 | 20230307085404.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/electronics7110272 |2 doi | |
035 | |a (DE-627)DOAJ025442821 | ||
035 | |a (DE-599)DOAJ38f4e4adfe9547748671cc854e262e0a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
100 | 0 | |a Padmanabhan Balasubramanian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the era of nanoelectronics, multiple faults or failures of function blocks are likely to occur. To withstand these, higher levels of redundancy are suggested to be employed in at least the sensitive portions of a circuit or system. In this context, the N-modular redundancy (NMR) scheme may be used to guard against the multiple faults or failures of function blocks. However, the NMR scheme would exacerbate the weight, cost, and design metrics to implement higher-order redundancy. Hence, as an alternative to the NMR, the majority and minority voted redundancy (MMR) scheme was proposed recently. However, the proposal was restricted to the basic implementation with no provision for indicating the correct or the incorrect operation of the MMR. Hence in this work, we present the MMR scheme with the error/no-error signaling logic (ESL). Example NMR circuits without and with the ESL (NMRESL), and example MMR circuits without and with the proposed ESL (MMRESL) were implemented to achieve similar degrees of fault tolerance using a 32/28-nm CMOS technology. The results show that, on average, the proposed MMRESL circuits have 18.9% less critical path delay, dissipate 64.8% less power, and require 49.5% less silicon area compared to their counterpart NMRESL circuits. | ||
650 | 4 | |a redundancy | |
650 | 4 | |a fault tolerance | |
650 | 4 | |a low power | |
650 | 4 | |a ASIC | |
650 | 4 | |a digital circuits | |
650 | 4 | |a standard cells | |
650 | 4 | |a CMOS | |
653 | 0 | |a Electronics | |
700 | 0 | |a Douglas Maskell |e verfasserin |4 aut | |
700 | 0 | |a Nikos Mastorakis |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronics |d MDPI AG, 2013 |g 7(2018), 11, p 272 |w (DE-627)718626478 |w (DE-600)2662127-7 |x 20799292 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2018 |g number:11, p 272 |
856 | 4 | 0 | |u https://doi.org/10.3390/electronics7110272 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/38f4e4adfe9547748671cc854e262e0a |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9292/7/11/272 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2018 |e 11, p 272 |
author_variant |
p b pb d m dm n m nm |
---|---|
matchkey_str |
article:20799292:2018----::aoiynmnrtvtdeudnyceeosftciiaapiainwt |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TK |
publishDate |
2018 |
allfields |
10.3390/electronics7110272 doi (DE-627)DOAJ025442821 (DE-599)DOAJ38f4e4adfe9547748671cc854e262e0a DE-627 ger DE-627 rakwb eng TK7800-8360 Padmanabhan Balasubramanian verfasserin aut Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the era of nanoelectronics, multiple faults or failures of function blocks are likely to occur. To withstand these, higher levels of redundancy are suggested to be employed in at least the sensitive portions of a circuit or system. In this context, the N-modular redundancy (NMR) scheme may be used to guard against the multiple faults or failures of function blocks. However, the NMR scheme would exacerbate the weight, cost, and design metrics to implement higher-order redundancy. Hence, as an alternative to the NMR, the majority and minority voted redundancy (MMR) scheme was proposed recently. However, the proposal was restricted to the basic implementation with no provision for indicating the correct or the incorrect operation of the MMR. Hence in this work, we present the MMR scheme with the error/no-error signaling logic (ESL). Example NMR circuits without and with the ESL (NMRESL), and example MMR circuits without and with the proposed ESL (MMRESL) were implemented to achieve similar degrees of fault tolerance using a 32/28-nm CMOS technology. The results show that, on average, the proposed MMRESL circuits have 18.9% less critical path delay, dissipate 64.8% less power, and require 49.5% less silicon area compared to their counterpart NMRESL circuits. redundancy fault tolerance low power ASIC digital circuits standard cells CMOS Electronics Douglas Maskell verfasserin aut Nikos Mastorakis verfasserin aut In Electronics MDPI AG, 2013 7(2018), 11, p 272 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:7 year:2018 number:11, p 272 https://doi.org/10.3390/electronics7110272 kostenfrei https://doaj.org/article/38f4e4adfe9547748671cc854e262e0a kostenfrei https://www.mdpi.com/2079-9292/7/11/272 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2018 11, p 272 |
spelling |
10.3390/electronics7110272 doi (DE-627)DOAJ025442821 (DE-599)DOAJ38f4e4adfe9547748671cc854e262e0a DE-627 ger DE-627 rakwb eng TK7800-8360 Padmanabhan Balasubramanian verfasserin aut Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the era of nanoelectronics, multiple faults or failures of function blocks are likely to occur. To withstand these, higher levels of redundancy are suggested to be employed in at least the sensitive portions of a circuit or system. In this context, the N-modular redundancy (NMR) scheme may be used to guard against the multiple faults or failures of function blocks. However, the NMR scheme would exacerbate the weight, cost, and design metrics to implement higher-order redundancy. Hence, as an alternative to the NMR, the majority and minority voted redundancy (MMR) scheme was proposed recently. However, the proposal was restricted to the basic implementation with no provision for indicating the correct or the incorrect operation of the MMR. Hence in this work, we present the MMR scheme with the error/no-error signaling logic (ESL). Example NMR circuits without and with the ESL (NMRESL), and example MMR circuits without and with the proposed ESL (MMRESL) were implemented to achieve similar degrees of fault tolerance using a 32/28-nm CMOS technology. The results show that, on average, the proposed MMRESL circuits have 18.9% less critical path delay, dissipate 64.8% less power, and require 49.5% less silicon area compared to their counterpart NMRESL circuits. redundancy fault tolerance low power ASIC digital circuits standard cells CMOS Electronics Douglas Maskell verfasserin aut Nikos Mastorakis verfasserin aut In Electronics MDPI AG, 2013 7(2018), 11, p 272 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:7 year:2018 number:11, p 272 https://doi.org/10.3390/electronics7110272 kostenfrei https://doaj.org/article/38f4e4adfe9547748671cc854e262e0a kostenfrei https://www.mdpi.com/2079-9292/7/11/272 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2018 11, p 272 |
allfields_unstemmed |
10.3390/electronics7110272 doi (DE-627)DOAJ025442821 (DE-599)DOAJ38f4e4adfe9547748671cc854e262e0a DE-627 ger DE-627 rakwb eng TK7800-8360 Padmanabhan Balasubramanian verfasserin aut Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the era of nanoelectronics, multiple faults or failures of function blocks are likely to occur. To withstand these, higher levels of redundancy are suggested to be employed in at least the sensitive portions of a circuit or system. In this context, the N-modular redundancy (NMR) scheme may be used to guard against the multiple faults or failures of function blocks. However, the NMR scheme would exacerbate the weight, cost, and design metrics to implement higher-order redundancy. Hence, as an alternative to the NMR, the majority and minority voted redundancy (MMR) scheme was proposed recently. However, the proposal was restricted to the basic implementation with no provision for indicating the correct or the incorrect operation of the MMR. Hence in this work, we present the MMR scheme with the error/no-error signaling logic (ESL). Example NMR circuits without and with the ESL (NMRESL), and example MMR circuits without and with the proposed ESL (MMRESL) were implemented to achieve similar degrees of fault tolerance using a 32/28-nm CMOS technology. The results show that, on average, the proposed MMRESL circuits have 18.9% less critical path delay, dissipate 64.8% less power, and require 49.5% less silicon area compared to their counterpart NMRESL circuits. redundancy fault tolerance low power ASIC digital circuits standard cells CMOS Electronics Douglas Maskell verfasserin aut Nikos Mastorakis verfasserin aut In Electronics MDPI AG, 2013 7(2018), 11, p 272 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:7 year:2018 number:11, p 272 https://doi.org/10.3390/electronics7110272 kostenfrei https://doaj.org/article/38f4e4adfe9547748671cc854e262e0a kostenfrei https://www.mdpi.com/2079-9292/7/11/272 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2018 11, p 272 |
allfieldsGer |
10.3390/electronics7110272 doi (DE-627)DOAJ025442821 (DE-599)DOAJ38f4e4adfe9547748671cc854e262e0a DE-627 ger DE-627 rakwb eng TK7800-8360 Padmanabhan Balasubramanian verfasserin aut Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the era of nanoelectronics, multiple faults or failures of function blocks are likely to occur. To withstand these, higher levels of redundancy are suggested to be employed in at least the sensitive portions of a circuit or system. In this context, the N-modular redundancy (NMR) scheme may be used to guard against the multiple faults or failures of function blocks. However, the NMR scheme would exacerbate the weight, cost, and design metrics to implement higher-order redundancy. Hence, as an alternative to the NMR, the majority and minority voted redundancy (MMR) scheme was proposed recently. However, the proposal was restricted to the basic implementation with no provision for indicating the correct or the incorrect operation of the MMR. Hence in this work, we present the MMR scheme with the error/no-error signaling logic (ESL). Example NMR circuits without and with the ESL (NMRESL), and example MMR circuits without and with the proposed ESL (MMRESL) were implemented to achieve similar degrees of fault tolerance using a 32/28-nm CMOS technology. The results show that, on average, the proposed MMRESL circuits have 18.9% less critical path delay, dissipate 64.8% less power, and require 49.5% less silicon area compared to their counterpart NMRESL circuits. redundancy fault tolerance low power ASIC digital circuits standard cells CMOS Electronics Douglas Maskell verfasserin aut Nikos Mastorakis verfasserin aut In Electronics MDPI AG, 2013 7(2018), 11, p 272 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:7 year:2018 number:11, p 272 https://doi.org/10.3390/electronics7110272 kostenfrei https://doaj.org/article/38f4e4adfe9547748671cc854e262e0a kostenfrei https://www.mdpi.com/2079-9292/7/11/272 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2018 11, p 272 |
allfieldsSound |
10.3390/electronics7110272 doi (DE-627)DOAJ025442821 (DE-599)DOAJ38f4e4adfe9547748671cc854e262e0a DE-627 ger DE-627 rakwb eng TK7800-8360 Padmanabhan Balasubramanian verfasserin aut Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the era of nanoelectronics, multiple faults or failures of function blocks are likely to occur. To withstand these, higher levels of redundancy are suggested to be employed in at least the sensitive portions of a circuit or system. In this context, the N-modular redundancy (NMR) scheme may be used to guard against the multiple faults or failures of function blocks. However, the NMR scheme would exacerbate the weight, cost, and design metrics to implement higher-order redundancy. Hence, as an alternative to the NMR, the majority and minority voted redundancy (MMR) scheme was proposed recently. However, the proposal was restricted to the basic implementation with no provision for indicating the correct or the incorrect operation of the MMR. Hence in this work, we present the MMR scheme with the error/no-error signaling logic (ESL). Example NMR circuits without and with the ESL (NMRESL), and example MMR circuits without and with the proposed ESL (MMRESL) were implemented to achieve similar degrees of fault tolerance using a 32/28-nm CMOS technology. The results show that, on average, the proposed MMRESL circuits have 18.9% less critical path delay, dissipate 64.8% less power, and require 49.5% less silicon area compared to their counterpart NMRESL circuits. redundancy fault tolerance low power ASIC digital circuits standard cells CMOS Electronics Douglas Maskell verfasserin aut Nikos Mastorakis verfasserin aut In Electronics MDPI AG, 2013 7(2018), 11, p 272 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:7 year:2018 number:11, p 272 https://doi.org/10.3390/electronics7110272 kostenfrei https://doaj.org/article/38f4e4adfe9547748671cc854e262e0a kostenfrei https://www.mdpi.com/2079-9292/7/11/272 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2018 11, p 272 |
language |
English |
source |
In Electronics 7(2018), 11, p 272 volume:7 year:2018 number:11, p 272 |
sourceStr |
In Electronics 7(2018), 11, p 272 volume:7 year:2018 number:11, p 272 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
redundancy fault tolerance low power ASIC digital circuits standard cells CMOS Electronics |
isfreeaccess_bool |
true |
container_title |
Electronics |
authorswithroles_txt_mv |
Padmanabhan Balasubramanian @@aut@@ Douglas Maskell @@aut@@ Nikos Mastorakis @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
718626478 |
id |
DOAJ025442821 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025442821</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307085404.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics7110272</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025442821</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ38f4e4adfe9547748671cc854e262e0a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Padmanabhan Balasubramanian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the era of nanoelectronics, multiple faults or failures of function blocks are likely to occur. To withstand these, higher levels of redundancy are suggested to be employed in at least the sensitive portions of a circuit or system. In this context, the N-modular redundancy (NMR) scheme may be used to guard against the multiple faults or failures of function blocks. However, the NMR scheme would exacerbate the weight, cost, and design metrics to implement higher-order redundancy. Hence, as an alternative to the NMR, the majority and minority voted redundancy (MMR) scheme was proposed recently. However, the proposal was restricted to the basic implementation with no provision for indicating the correct or the incorrect operation of the MMR. Hence in this work, we present the MMR scheme with the error/no-error signaling logic (ESL). Example NMR circuits without and with the ESL (NMRESL), and example MMR circuits without and with the proposed ESL (MMRESL) were implemented to achieve similar degrees of fault tolerance using a 32/28-nm CMOS technology. The results show that, on average, the proposed MMRESL circuits have 18.9% less critical path delay, dissipate 64.8% less power, and require 49.5% less silicon area compared to their counterpart NMRESL circuits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">redundancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault tolerance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ASIC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">standard cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CMOS</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Douglas Maskell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikos Mastorakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">7(2018), 11, p 272</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:11, p 272</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics7110272</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/38f4e4adfe9547748671cc854e262e0a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/7/11/272</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2018</subfield><subfield code="e">11, p 272</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Padmanabhan Balasubramanian |
spellingShingle |
Padmanabhan Balasubramanian misc TK7800-8360 misc redundancy misc fault tolerance misc low power misc ASIC misc digital circuits misc standard cells misc CMOS misc Electronics Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic |
authorStr |
Padmanabhan Balasubramanian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718626478 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
20799292 |
topic_title |
TK7800-8360 Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic redundancy fault tolerance low power ASIC digital circuits standard cells CMOS |
topic |
misc TK7800-8360 misc redundancy misc fault tolerance misc low power misc ASIC misc digital circuits misc standard cells misc CMOS misc Electronics |
topic_unstemmed |
misc TK7800-8360 misc redundancy misc fault tolerance misc low power misc ASIC misc digital circuits misc standard cells misc CMOS misc Electronics |
topic_browse |
misc TK7800-8360 misc redundancy misc fault tolerance misc low power misc ASIC misc digital circuits misc standard cells misc CMOS misc Electronics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronics |
hierarchy_parent_id |
718626478 |
hierarchy_top_title |
Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718626478 (DE-600)2662127-7 |
title |
Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic |
ctrlnum |
(DE-627)DOAJ025442821 (DE-599)DOAJ38f4e4adfe9547748671cc854e262e0a |
title_full |
Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic |
author_sort |
Padmanabhan Balasubramanian |
journal |
Electronics |
journalStr |
Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Padmanabhan Balasubramanian Douglas Maskell Nikos Mastorakis |
container_volume |
7 |
class |
TK7800-8360 |
format_se |
Elektronische Aufsätze |
author-letter |
Padmanabhan Balasubramanian |
doi_str_mv |
10.3390/electronics7110272 |
author2-role |
verfasserin |
title_sort |
majority and minority voted redundancy scheme for safety-critical applications with error/no-error signaling logic |
callnumber |
TK7800-8360 |
title_auth |
Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic |
abstract |
In the era of nanoelectronics, multiple faults or failures of function blocks are likely to occur. To withstand these, higher levels of redundancy are suggested to be employed in at least the sensitive portions of a circuit or system. In this context, the N-modular redundancy (NMR) scheme may be used to guard against the multiple faults or failures of function blocks. However, the NMR scheme would exacerbate the weight, cost, and design metrics to implement higher-order redundancy. Hence, as an alternative to the NMR, the majority and minority voted redundancy (MMR) scheme was proposed recently. However, the proposal was restricted to the basic implementation with no provision for indicating the correct or the incorrect operation of the MMR. Hence in this work, we present the MMR scheme with the error/no-error signaling logic (ESL). Example NMR circuits without and with the ESL (NMRESL), and example MMR circuits without and with the proposed ESL (MMRESL) were implemented to achieve similar degrees of fault tolerance using a 32/28-nm CMOS technology. The results show that, on average, the proposed MMRESL circuits have 18.9% less critical path delay, dissipate 64.8% less power, and require 49.5% less silicon area compared to their counterpart NMRESL circuits. |
abstractGer |
In the era of nanoelectronics, multiple faults or failures of function blocks are likely to occur. To withstand these, higher levels of redundancy are suggested to be employed in at least the sensitive portions of a circuit or system. In this context, the N-modular redundancy (NMR) scheme may be used to guard against the multiple faults or failures of function blocks. However, the NMR scheme would exacerbate the weight, cost, and design metrics to implement higher-order redundancy. Hence, as an alternative to the NMR, the majority and minority voted redundancy (MMR) scheme was proposed recently. However, the proposal was restricted to the basic implementation with no provision for indicating the correct or the incorrect operation of the MMR. Hence in this work, we present the MMR scheme with the error/no-error signaling logic (ESL). Example NMR circuits without and with the ESL (NMRESL), and example MMR circuits without and with the proposed ESL (MMRESL) were implemented to achieve similar degrees of fault tolerance using a 32/28-nm CMOS technology. The results show that, on average, the proposed MMRESL circuits have 18.9% less critical path delay, dissipate 64.8% less power, and require 49.5% less silicon area compared to their counterpart NMRESL circuits. |
abstract_unstemmed |
In the era of nanoelectronics, multiple faults or failures of function blocks are likely to occur. To withstand these, higher levels of redundancy are suggested to be employed in at least the sensitive portions of a circuit or system. In this context, the N-modular redundancy (NMR) scheme may be used to guard against the multiple faults or failures of function blocks. However, the NMR scheme would exacerbate the weight, cost, and design metrics to implement higher-order redundancy. Hence, as an alternative to the NMR, the majority and minority voted redundancy (MMR) scheme was proposed recently. However, the proposal was restricted to the basic implementation with no provision for indicating the correct or the incorrect operation of the MMR. Hence in this work, we present the MMR scheme with the error/no-error signaling logic (ESL). Example NMR circuits without and with the ESL (NMRESL), and example MMR circuits without and with the proposed ESL (MMRESL) were implemented to achieve similar degrees of fault tolerance using a 32/28-nm CMOS technology. The results show that, on average, the proposed MMRESL circuits have 18.9% less critical path delay, dissipate 64.8% less power, and require 49.5% less silicon area compared to their counterpart NMRESL circuits. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 272 |
title_short |
Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic |
url |
https://doi.org/10.3390/electronics7110272 https://doaj.org/article/38f4e4adfe9547748671cc854e262e0a https://www.mdpi.com/2079-9292/7/11/272 https://doaj.org/toc/2079-9292 |
remote_bool |
true |
author2 |
Douglas Maskell Nikos Mastorakis |
author2Str |
Douglas Maskell Nikos Mastorakis |
ppnlink |
718626478 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/electronics7110272 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-03T15:01:28.198Z |
_version_ |
1803570525721591808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025442821</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307085404.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics7110272</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025442821</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ38f4e4adfe9547748671cc854e262e0a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Padmanabhan Balasubramanian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Majority and Minority Voted Redundancy Scheme for Safety-Critical Applications with Error/No-Error Signaling Logic</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the era of nanoelectronics, multiple faults or failures of function blocks are likely to occur. To withstand these, higher levels of redundancy are suggested to be employed in at least the sensitive portions of a circuit or system. In this context, the N-modular redundancy (NMR) scheme may be used to guard against the multiple faults or failures of function blocks. However, the NMR scheme would exacerbate the weight, cost, and design metrics to implement higher-order redundancy. Hence, as an alternative to the NMR, the majority and minority voted redundancy (MMR) scheme was proposed recently. However, the proposal was restricted to the basic implementation with no provision for indicating the correct or the incorrect operation of the MMR. Hence in this work, we present the MMR scheme with the error/no-error signaling logic (ESL). Example NMR circuits without and with the ESL (NMRESL), and example MMR circuits without and with the proposed ESL (MMRESL) were implemented to achieve similar degrees of fault tolerance using a 32/28-nm CMOS technology. The results show that, on average, the proposed MMRESL circuits have 18.9% less critical path delay, dissipate 64.8% less power, and require 49.5% less silicon area compared to their counterpart NMRESL circuits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">redundancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault tolerance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ASIC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">standard cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CMOS</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Douglas Maskell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nikos Mastorakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">7(2018), 11, p 272</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:11, p 272</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics7110272</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/38f4e4adfe9547748671cc854e262e0a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/7/11/272</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2018</subfield><subfield code="e">11, p 272</subfield></datafield></record></collection>
|
score |
7.4028378 |