Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater
In this study, a new type of hydrophobic cationic polyacrylamide P (AM-DMC-DABC) (PADD) was synthesized by ultrasonic (US)-initiated polymerization, which is used for the separation and removal of coal mine wastewater. The acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and a...
Ausführliche Beschreibung
Autor*in: |
Xin Qi [verfasserIn] Junling Liu [verfasserIn] Cheng Wang [verfasserIn] Shiyao Li [verfasserIn] Xiang Li [verfasserIn] Yicong Liang [verfasserIn] Khan Sarfaraz [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Processes - MDPI AG, 2013, 8(2020), 1, p 62 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; number:1, p 62 |
Links: |
---|
DOI / URN: |
10.3390/pr8010062 |
---|
Katalog-ID: |
DOAJ025466976 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ025466976 | ||
003 | DE-627 | ||
005 | 20230307085606.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/pr8010062 |2 doi | |
035 | |a (DE-627)DOAJ025466976 | ||
035 | |a (DE-599)DOAJ75830828dc4740f6b3fb05a620f65c60 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Xin Qi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this study, a new type of hydrophobic cationic polyacrylamide P (AM-DMC-DABC) (PADD) was synthesized by ultrasonic (US)-initiated polymerization, which is used for the separation and removal of coal mine wastewater. The acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and acryloyloxyethyl dimethylbenzyl ammonium chloride (DABC) were used as monomers to prepare). The factors that affecting the US initiated polymerization of PADD were analyzed. Fourier transform infrared spectroscopy (FT-IR), <sup<1</sup<H nuclear magnetic resonance (<sup<1</sup<H NMR) and scanning electron microscopy (SEM) were used to characterize the chemical structure, thermal decomposition performance and surface morphology of the polymers. FT-IR and <sup<1</sup<H NMR results showed that PADD was successfully synthesized. In addition, irregular porous surface morphology of PADD were observed by SEM analysis. Under the optimum conditions (pH = 7.0, flocculant dosage = 16.0 mg/L), the excellent flocculation performance (turbidity removal rate (TR) = 98.8%), floc size d<sub<50</sub< = 513.467 μm, fractal dimension (D<sub<f</sub<) = 1.61, flocculation kinetics (K<sub<N0</sub<) = 27.24 × 10<sup<−3</sup<·s<sup<−1</sup<) was obtained by using high-efficiency flocculant PADD. Zeta potential analysis was used to further explore the possible flocculation mechanism of removal. The zeta potential and flocculation analytical results displayed that the flocculation removal process of coal mine wastewater mainly included hydrophobic effect, adsorption, bridging and charge neutralization, and electric patching when PADD was used. The PADD showed more excellent coal mine wastewater flocculation performance than PAD, commercial cationic polyacrylamide (CPAM) CCPAM and PAM. Thus PADD, with its good flocculation effect on coal mine wastewater under relatively wide pH range, had bright practical application value. | ||
650 | 4 | |a coal mine wastewater | |
650 | 4 | |a cationic polyacrylamide | |
650 | 4 | |a ultrasonic initiation | |
650 | 4 | |a flocculation | |
650 | 4 | |a floc characteristics | |
650 | 4 | |a turbidity removal | |
653 | 0 | |a Chemical technology | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Junling Liu |e verfasserin |4 aut | |
700 | 0 | |a Cheng Wang |e verfasserin |4 aut | |
700 | 0 | |a Shiyao Li |e verfasserin |4 aut | |
700 | 0 | |a Xiang Li |e verfasserin |4 aut | |
700 | 0 | |a Yicong Liang |e verfasserin |4 aut | |
700 | 0 | |a Khan Sarfaraz |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Processes |d MDPI AG, 2013 |g 8(2020), 1, p 62 |w (DE-627)750371439 |w (DE-600)2720994-5 |x 22279717 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g number:1, p 62 |
856 | 4 | 0 | |u https://doi.org/10.3390/pr8010062 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/75830828dc4740f6b3fb05a620f65c60 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9717/8/1/62 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9717 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |e 1, p 62 |
author_variant |
x q xq j l jl c w cw s l sl x l xl y l yl k s ks |
---|---|
matchkey_str |
article:22279717:2020----::yteioteyrpoictoiplarlmdpdiiitdylrsncnislcuain |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TP |
publishDate |
2020 |
allfields |
10.3390/pr8010062 doi (DE-627)DOAJ025466976 (DE-599)DOAJ75830828dc4740f6b3fb05a620f65c60 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Xin Qi verfasserin aut Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, a new type of hydrophobic cationic polyacrylamide P (AM-DMC-DABC) (PADD) was synthesized by ultrasonic (US)-initiated polymerization, which is used for the separation and removal of coal mine wastewater. The acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and acryloyloxyethyl dimethylbenzyl ammonium chloride (DABC) were used as monomers to prepare). The factors that affecting the US initiated polymerization of PADD were analyzed. Fourier transform infrared spectroscopy (FT-IR), <sup<1</sup<H nuclear magnetic resonance (<sup<1</sup<H NMR) and scanning electron microscopy (SEM) were used to characterize the chemical structure, thermal decomposition performance and surface morphology of the polymers. FT-IR and <sup<1</sup<H NMR results showed that PADD was successfully synthesized. In addition, irregular porous surface morphology of PADD were observed by SEM analysis. Under the optimum conditions (pH = 7.0, flocculant dosage = 16.0 mg/L), the excellent flocculation performance (turbidity removal rate (TR) = 98.8%), floc size d<sub<50</sub< = 513.467 μm, fractal dimension (D<sub<f</sub<) = 1.61, flocculation kinetics (K<sub<N0</sub<) = 27.24 × 10<sup<−3</sup<·s<sup<−1</sup<) was obtained by using high-efficiency flocculant PADD. Zeta potential analysis was used to further explore the possible flocculation mechanism of removal. The zeta potential and flocculation analytical results displayed that the flocculation removal process of coal mine wastewater mainly included hydrophobic effect, adsorption, bridging and charge neutralization, and electric patching when PADD was used. The PADD showed more excellent coal mine wastewater flocculation performance than PAD, commercial cationic polyacrylamide (CPAM) CCPAM and PAM. Thus PADD, with its good flocculation effect on coal mine wastewater under relatively wide pH range, had bright practical application value. coal mine wastewater cationic polyacrylamide ultrasonic initiation flocculation floc characteristics turbidity removal Chemical technology Chemistry Junling Liu verfasserin aut Cheng Wang verfasserin aut Shiyao Li verfasserin aut Xiang Li verfasserin aut Yicong Liang verfasserin aut Khan Sarfaraz verfasserin aut In Processes MDPI AG, 2013 8(2020), 1, p 62 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:8 year:2020 number:1, p 62 https://doi.org/10.3390/pr8010062 kostenfrei https://doaj.org/article/75830828dc4740f6b3fb05a620f65c60 kostenfrei https://www.mdpi.com/2227-9717/8/1/62 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 1, p 62 |
spelling |
10.3390/pr8010062 doi (DE-627)DOAJ025466976 (DE-599)DOAJ75830828dc4740f6b3fb05a620f65c60 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Xin Qi verfasserin aut Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, a new type of hydrophobic cationic polyacrylamide P (AM-DMC-DABC) (PADD) was synthesized by ultrasonic (US)-initiated polymerization, which is used for the separation and removal of coal mine wastewater. The acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and acryloyloxyethyl dimethylbenzyl ammonium chloride (DABC) were used as monomers to prepare). The factors that affecting the US initiated polymerization of PADD were analyzed. Fourier transform infrared spectroscopy (FT-IR), <sup<1</sup<H nuclear magnetic resonance (<sup<1</sup<H NMR) and scanning electron microscopy (SEM) were used to characterize the chemical structure, thermal decomposition performance and surface morphology of the polymers. FT-IR and <sup<1</sup<H NMR results showed that PADD was successfully synthesized. In addition, irregular porous surface morphology of PADD were observed by SEM analysis. Under the optimum conditions (pH = 7.0, flocculant dosage = 16.0 mg/L), the excellent flocculation performance (turbidity removal rate (TR) = 98.8%), floc size d<sub<50</sub< = 513.467 μm, fractal dimension (D<sub<f</sub<) = 1.61, flocculation kinetics (K<sub<N0</sub<) = 27.24 × 10<sup<−3</sup<·s<sup<−1</sup<) was obtained by using high-efficiency flocculant PADD. Zeta potential analysis was used to further explore the possible flocculation mechanism of removal. The zeta potential and flocculation analytical results displayed that the flocculation removal process of coal mine wastewater mainly included hydrophobic effect, adsorption, bridging and charge neutralization, and electric patching when PADD was used. The PADD showed more excellent coal mine wastewater flocculation performance than PAD, commercial cationic polyacrylamide (CPAM) CCPAM and PAM. Thus PADD, with its good flocculation effect on coal mine wastewater under relatively wide pH range, had bright practical application value. coal mine wastewater cationic polyacrylamide ultrasonic initiation flocculation floc characteristics turbidity removal Chemical technology Chemistry Junling Liu verfasserin aut Cheng Wang verfasserin aut Shiyao Li verfasserin aut Xiang Li verfasserin aut Yicong Liang verfasserin aut Khan Sarfaraz verfasserin aut In Processes MDPI AG, 2013 8(2020), 1, p 62 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:8 year:2020 number:1, p 62 https://doi.org/10.3390/pr8010062 kostenfrei https://doaj.org/article/75830828dc4740f6b3fb05a620f65c60 kostenfrei https://www.mdpi.com/2227-9717/8/1/62 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 1, p 62 |
allfields_unstemmed |
10.3390/pr8010062 doi (DE-627)DOAJ025466976 (DE-599)DOAJ75830828dc4740f6b3fb05a620f65c60 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Xin Qi verfasserin aut Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, a new type of hydrophobic cationic polyacrylamide P (AM-DMC-DABC) (PADD) was synthesized by ultrasonic (US)-initiated polymerization, which is used for the separation and removal of coal mine wastewater. The acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and acryloyloxyethyl dimethylbenzyl ammonium chloride (DABC) were used as monomers to prepare). The factors that affecting the US initiated polymerization of PADD were analyzed. Fourier transform infrared spectroscopy (FT-IR), <sup<1</sup<H nuclear magnetic resonance (<sup<1</sup<H NMR) and scanning electron microscopy (SEM) were used to characterize the chemical structure, thermal decomposition performance and surface morphology of the polymers. FT-IR and <sup<1</sup<H NMR results showed that PADD was successfully synthesized. In addition, irregular porous surface morphology of PADD were observed by SEM analysis. Under the optimum conditions (pH = 7.0, flocculant dosage = 16.0 mg/L), the excellent flocculation performance (turbidity removal rate (TR) = 98.8%), floc size d<sub<50</sub< = 513.467 μm, fractal dimension (D<sub<f</sub<) = 1.61, flocculation kinetics (K<sub<N0</sub<) = 27.24 × 10<sup<−3</sup<·s<sup<−1</sup<) was obtained by using high-efficiency flocculant PADD. Zeta potential analysis was used to further explore the possible flocculation mechanism of removal. The zeta potential and flocculation analytical results displayed that the flocculation removal process of coal mine wastewater mainly included hydrophobic effect, adsorption, bridging and charge neutralization, and electric patching when PADD was used. The PADD showed more excellent coal mine wastewater flocculation performance than PAD, commercial cationic polyacrylamide (CPAM) CCPAM and PAM. Thus PADD, with its good flocculation effect on coal mine wastewater under relatively wide pH range, had bright practical application value. coal mine wastewater cationic polyacrylamide ultrasonic initiation flocculation floc characteristics turbidity removal Chemical technology Chemistry Junling Liu verfasserin aut Cheng Wang verfasserin aut Shiyao Li verfasserin aut Xiang Li verfasserin aut Yicong Liang verfasserin aut Khan Sarfaraz verfasserin aut In Processes MDPI AG, 2013 8(2020), 1, p 62 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:8 year:2020 number:1, p 62 https://doi.org/10.3390/pr8010062 kostenfrei https://doaj.org/article/75830828dc4740f6b3fb05a620f65c60 kostenfrei https://www.mdpi.com/2227-9717/8/1/62 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 1, p 62 |
allfieldsGer |
10.3390/pr8010062 doi (DE-627)DOAJ025466976 (DE-599)DOAJ75830828dc4740f6b3fb05a620f65c60 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Xin Qi verfasserin aut Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, a new type of hydrophobic cationic polyacrylamide P (AM-DMC-DABC) (PADD) was synthesized by ultrasonic (US)-initiated polymerization, which is used for the separation and removal of coal mine wastewater. The acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and acryloyloxyethyl dimethylbenzyl ammonium chloride (DABC) were used as monomers to prepare). The factors that affecting the US initiated polymerization of PADD were analyzed. Fourier transform infrared spectroscopy (FT-IR), <sup<1</sup<H nuclear magnetic resonance (<sup<1</sup<H NMR) and scanning electron microscopy (SEM) were used to characterize the chemical structure, thermal decomposition performance and surface morphology of the polymers. FT-IR and <sup<1</sup<H NMR results showed that PADD was successfully synthesized. In addition, irregular porous surface morphology of PADD were observed by SEM analysis. Under the optimum conditions (pH = 7.0, flocculant dosage = 16.0 mg/L), the excellent flocculation performance (turbidity removal rate (TR) = 98.8%), floc size d<sub<50</sub< = 513.467 μm, fractal dimension (D<sub<f</sub<) = 1.61, flocculation kinetics (K<sub<N0</sub<) = 27.24 × 10<sup<−3</sup<·s<sup<−1</sup<) was obtained by using high-efficiency flocculant PADD. Zeta potential analysis was used to further explore the possible flocculation mechanism of removal. The zeta potential and flocculation analytical results displayed that the flocculation removal process of coal mine wastewater mainly included hydrophobic effect, adsorption, bridging and charge neutralization, and electric patching when PADD was used. The PADD showed more excellent coal mine wastewater flocculation performance than PAD, commercial cationic polyacrylamide (CPAM) CCPAM and PAM. Thus PADD, with its good flocculation effect on coal mine wastewater under relatively wide pH range, had bright practical application value. coal mine wastewater cationic polyacrylamide ultrasonic initiation flocculation floc characteristics turbidity removal Chemical technology Chemistry Junling Liu verfasserin aut Cheng Wang verfasserin aut Shiyao Li verfasserin aut Xiang Li verfasserin aut Yicong Liang verfasserin aut Khan Sarfaraz verfasserin aut In Processes MDPI AG, 2013 8(2020), 1, p 62 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:8 year:2020 number:1, p 62 https://doi.org/10.3390/pr8010062 kostenfrei https://doaj.org/article/75830828dc4740f6b3fb05a620f65c60 kostenfrei https://www.mdpi.com/2227-9717/8/1/62 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 1, p 62 |
allfieldsSound |
10.3390/pr8010062 doi (DE-627)DOAJ025466976 (DE-599)DOAJ75830828dc4740f6b3fb05a620f65c60 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Xin Qi verfasserin aut Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, a new type of hydrophobic cationic polyacrylamide P (AM-DMC-DABC) (PADD) was synthesized by ultrasonic (US)-initiated polymerization, which is used for the separation and removal of coal mine wastewater. The acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and acryloyloxyethyl dimethylbenzyl ammonium chloride (DABC) were used as monomers to prepare). The factors that affecting the US initiated polymerization of PADD were analyzed. Fourier transform infrared spectroscopy (FT-IR), <sup<1</sup<H nuclear magnetic resonance (<sup<1</sup<H NMR) and scanning electron microscopy (SEM) were used to characterize the chemical structure, thermal decomposition performance and surface morphology of the polymers. FT-IR and <sup<1</sup<H NMR results showed that PADD was successfully synthesized. In addition, irregular porous surface morphology of PADD were observed by SEM analysis. Under the optimum conditions (pH = 7.0, flocculant dosage = 16.0 mg/L), the excellent flocculation performance (turbidity removal rate (TR) = 98.8%), floc size d<sub<50</sub< = 513.467 μm, fractal dimension (D<sub<f</sub<) = 1.61, flocculation kinetics (K<sub<N0</sub<) = 27.24 × 10<sup<−3</sup<·s<sup<−1</sup<) was obtained by using high-efficiency flocculant PADD. Zeta potential analysis was used to further explore the possible flocculation mechanism of removal. The zeta potential and flocculation analytical results displayed that the flocculation removal process of coal mine wastewater mainly included hydrophobic effect, adsorption, bridging and charge neutralization, and electric patching when PADD was used. The PADD showed more excellent coal mine wastewater flocculation performance than PAD, commercial cationic polyacrylamide (CPAM) CCPAM and PAM. Thus PADD, with its good flocculation effect on coal mine wastewater under relatively wide pH range, had bright practical application value. coal mine wastewater cationic polyacrylamide ultrasonic initiation flocculation floc characteristics turbidity removal Chemical technology Chemistry Junling Liu verfasserin aut Cheng Wang verfasserin aut Shiyao Li verfasserin aut Xiang Li verfasserin aut Yicong Liang verfasserin aut Khan Sarfaraz verfasserin aut In Processes MDPI AG, 2013 8(2020), 1, p 62 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:8 year:2020 number:1, p 62 https://doi.org/10.3390/pr8010062 kostenfrei https://doaj.org/article/75830828dc4740f6b3fb05a620f65c60 kostenfrei https://www.mdpi.com/2227-9717/8/1/62 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 1, p 62 |
language |
English |
source |
In Processes 8(2020), 1, p 62 volume:8 year:2020 number:1, p 62 |
sourceStr |
In Processes 8(2020), 1, p 62 volume:8 year:2020 number:1, p 62 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
coal mine wastewater cationic polyacrylamide ultrasonic initiation flocculation floc characteristics turbidity removal Chemical technology Chemistry |
isfreeaccess_bool |
true |
container_title |
Processes |
authorswithroles_txt_mv |
Xin Qi @@aut@@ Junling Liu @@aut@@ Cheng Wang @@aut@@ Shiyao Li @@aut@@ Xiang Li @@aut@@ Yicong Liang @@aut@@ Khan Sarfaraz @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
750371439 |
id |
DOAJ025466976 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025466976</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307085606.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr8010062</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025466976</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ75830828dc4740f6b3fb05a620f65c60</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xin Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, a new type of hydrophobic cationic polyacrylamide P (AM-DMC-DABC) (PADD) was synthesized by ultrasonic (US)-initiated polymerization, which is used for the separation and removal of coal mine wastewater. The acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and acryloyloxyethyl dimethylbenzyl ammonium chloride (DABC) were used as monomers to prepare). The factors that affecting the US initiated polymerization of PADD were analyzed. Fourier transform infrared spectroscopy (FT-IR), <sup<1</sup<H nuclear magnetic resonance (<sup<1</sup<H NMR) and scanning electron microscopy (SEM) were used to characterize the chemical structure, thermal decomposition performance and surface morphology of the polymers. FT-IR and <sup<1</sup<H NMR results showed that PADD was successfully synthesized. In addition, irregular porous surface morphology of PADD were observed by SEM analysis. Under the optimum conditions (pH = 7.0, flocculant dosage = 16.0 mg/L), the excellent flocculation performance (turbidity removal rate (TR) = 98.8%), floc size d<sub<50</sub< = 513.467 μm, fractal dimension (D<sub<f</sub<) = 1.61, flocculation kinetics (K<sub<N0</sub<) = 27.24 × 10<sup<−3</sup<·s<sup<−1</sup<) was obtained by using high-efficiency flocculant PADD. Zeta potential analysis was used to further explore the possible flocculation mechanism of removal. The zeta potential and flocculation analytical results displayed that the flocculation removal process of coal mine wastewater mainly included hydrophobic effect, adsorption, bridging and charge neutralization, and electric patching when PADD was used. The PADD showed more excellent coal mine wastewater flocculation performance than PAD, commercial cationic polyacrylamide (CPAM) CCPAM and PAM. Thus PADD, with its good flocculation effect on coal mine wastewater under relatively wide pH range, had bright practical application value.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coal mine wastewater</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cationic polyacrylamide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrasonic initiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flocculation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">floc characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">turbidity removal</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junling Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cheng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiyao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yicong Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Khan Sarfaraz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">8(2020), 1, p 62</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1, p 62</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr8010062</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/75830828dc4740f6b3fb05a620f65c60</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/8/1/62</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">1, p 62</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xin Qi |
spellingShingle |
Xin Qi misc TP1-1185 misc QD1-999 misc coal mine wastewater misc cationic polyacrylamide misc ultrasonic initiation misc flocculation misc floc characteristics misc turbidity removal misc Chemical technology misc Chemistry Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater |
authorStr |
Xin Qi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750371439 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
22279717 |
topic_title |
TP1-1185 QD1-999 Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater coal mine wastewater cationic polyacrylamide ultrasonic initiation flocculation floc characteristics turbidity removal |
topic |
misc TP1-1185 misc QD1-999 misc coal mine wastewater misc cationic polyacrylamide misc ultrasonic initiation misc flocculation misc floc characteristics misc turbidity removal misc Chemical technology misc Chemistry |
topic_unstemmed |
misc TP1-1185 misc QD1-999 misc coal mine wastewater misc cationic polyacrylamide misc ultrasonic initiation misc flocculation misc floc characteristics misc turbidity removal misc Chemical technology misc Chemistry |
topic_browse |
misc TP1-1185 misc QD1-999 misc coal mine wastewater misc cationic polyacrylamide misc ultrasonic initiation misc flocculation misc floc characteristics misc turbidity removal misc Chemical technology misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Processes |
hierarchy_parent_id |
750371439 |
hierarchy_top_title |
Processes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750371439 (DE-600)2720994-5 |
title |
Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater |
ctrlnum |
(DE-627)DOAJ025466976 (DE-599)DOAJ75830828dc4740f6b3fb05a620f65c60 |
title_full |
Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater |
author_sort |
Xin Qi |
journal |
Processes |
journalStr |
Processes |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Xin Qi Junling Liu Cheng Wang Shiyao Li Xiang Li Yicong Liang Khan Sarfaraz |
container_volume |
8 |
class |
TP1-1185 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Xin Qi |
doi_str_mv |
10.3390/pr8010062 |
author2-role |
verfasserin |
title_sort |
synthesis of the hydrophobic cationic polyacrylamide (padd) initiated by ultrasonic and its flocculation and treatment of coal mine wastewater |
callnumber |
TP1-1185 |
title_auth |
Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater |
abstract |
In this study, a new type of hydrophobic cationic polyacrylamide P (AM-DMC-DABC) (PADD) was synthesized by ultrasonic (US)-initiated polymerization, which is used for the separation and removal of coal mine wastewater. The acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and acryloyloxyethyl dimethylbenzyl ammonium chloride (DABC) were used as monomers to prepare). The factors that affecting the US initiated polymerization of PADD were analyzed. Fourier transform infrared spectroscopy (FT-IR), <sup<1</sup<H nuclear magnetic resonance (<sup<1</sup<H NMR) and scanning electron microscopy (SEM) were used to characterize the chemical structure, thermal decomposition performance and surface morphology of the polymers. FT-IR and <sup<1</sup<H NMR results showed that PADD was successfully synthesized. In addition, irregular porous surface morphology of PADD were observed by SEM analysis. Under the optimum conditions (pH = 7.0, flocculant dosage = 16.0 mg/L), the excellent flocculation performance (turbidity removal rate (TR) = 98.8%), floc size d<sub<50</sub< = 513.467 μm, fractal dimension (D<sub<f</sub<) = 1.61, flocculation kinetics (K<sub<N0</sub<) = 27.24 × 10<sup<−3</sup<·s<sup<−1</sup<) was obtained by using high-efficiency flocculant PADD. Zeta potential analysis was used to further explore the possible flocculation mechanism of removal. The zeta potential and flocculation analytical results displayed that the flocculation removal process of coal mine wastewater mainly included hydrophobic effect, adsorption, bridging and charge neutralization, and electric patching when PADD was used. The PADD showed more excellent coal mine wastewater flocculation performance than PAD, commercial cationic polyacrylamide (CPAM) CCPAM and PAM. Thus PADD, with its good flocculation effect on coal mine wastewater under relatively wide pH range, had bright practical application value. |
abstractGer |
In this study, a new type of hydrophobic cationic polyacrylamide P (AM-DMC-DABC) (PADD) was synthesized by ultrasonic (US)-initiated polymerization, which is used for the separation and removal of coal mine wastewater. The acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and acryloyloxyethyl dimethylbenzyl ammonium chloride (DABC) were used as monomers to prepare). The factors that affecting the US initiated polymerization of PADD were analyzed. Fourier transform infrared spectroscopy (FT-IR), <sup<1</sup<H nuclear magnetic resonance (<sup<1</sup<H NMR) and scanning electron microscopy (SEM) were used to characterize the chemical structure, thermal decomposition performance and surface morphology of the polymers. FT-IR and <sup<1</sup<H NMR results showed that PADD was successfully synthesized. In addition, irregular porous surface morphology of PADD were observed by SEM analysis. Under the optimum conditions (pH = 7.0, flocculant dosage = 16.0 mg/L), the excellent flocculation performance (turbidity removal rate (TR) = 98.8%), floc size d<sub<50</sub< = 513.467 μm, fractal dimension (D<sub<f</sub<) = 1.61, flocculation kinetics (K<sub<N0</sub<) = 27.24 × 10<sup<−3</sup<·s<sup<−1</sup<) was obtained by using high-efficiency flocculant PADD. Zeta potential analysis was used to further explore the possible flocculation mechanism of removal. The zeta potential and flocculation analytical results displayed that the flocculation removal process of coal mine wastewater mainly included hydrophobic effect, adsorption, bridging and charge neutralization, and electric patching when PADD was used. The PADD showed more excellent coal mine wastewater flocculation performance than PAD, commercial cationic polyacrylamide (CPAM) CCPAM and PAM. Thus PADD, with its good flocculation effect on coal mine wastewater under relatively wide pH range, had bright practical application value. |
abstract_unstemmed |
In this study, a new type of hydrophobic cationic polyacrylamide P (AM-DMC-DABC) (PADD) was synthesized by ultrasonic (US)-initiated polymerization, which is used for the separation and removal of coal mine wastewater. The acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and acryloyloxyethyl dimethylbenzyl ammonium chloride (DABC) were used as monomers to prepare). The factors that affecting the US initiated polymerization of PADD were analyzed. Fourier transform infrared spectroscopy (FT-IR), <sup<1</sup<H nuclear magnetic resonance (<sup<1</sup<H NMR) and scanning electron microscopy (SEM) were used to characterize the chemical structure, thermal decomposition performance and surface morphology of the polymers. FT-IR and <sup<1</sup<H NMR results showed that PADD was successfully synthesized. In addition, irregular porous surface morphology of PADD were observed by SEM analysis. Under the optimum conditions (pH = 7.0, flocculant dosage = 16.0 mg/L), the excellent flocculation performance (turbidity removal rate (TR) = 98.8%), floc size d<sub<50</sub< = 513.467 μm, fractal dimension (D<sub<f</sub<) = 1.61, flocculation kinetics (K<sub<N0</sub<) = 27.24 × 10<sup<−3</sup<·s<sup<−1</sup<) was obtained by using high-efficiency flocculant PADD. Zeta potential analysis was used to further explore the possible flocculation mechanism of removal. The zeta potential and flocculation analytical results displayed that the flocculation removal process of coal mine wastewater mainly included hydrophobic effect, adsorption, bridging and charge neutralization, and electric patching when PADD was used. The PADD showed more excellent coal mine wastewater flocculation performance than PAD, commercial cationic polyacrylamide (CPAM) CCPAM and PAM. Thus PADD, with its good flocculation effect on coal mine wastewater under relatively wide pH range, had bright practical application value. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 62 |
title_short |
Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater |
url |
https://doi.org/10.3390/pr8010062 https://doaj.org/article/75830828dc4740f6b3fb05a620f65c60 https://www.mdpi.com/2227-9717/8/1/62 https://doaj.org/toc/2227-9717 |
remote_bool |
true |
author2 |
Junling Liu Cheng Wang Shiyao Li Xiang Li Yicong Liang Khan Sarfaraz |
author2Str |
Junling Liu Cheng Wang Shiyao Li Xiang Li Yicong Liang Khan Sarfaraz |
ppnlink |
750371439 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/pr8010062 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T15:10:11.391Z |
_version_ |
1803571074325020672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025466976</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307085606.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr8010062</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025466976</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ75830828dc4740f6b3fb05a620f65c60</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xin Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synthesis of the Hydrophobic Cationic Polyacrylamide (PADD) Initiated by Ultrasonic and its Flocculation and Treatment of Coal Mine Wastewater</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, a new type of hydrophobic cationic polyacrylamide P (AM-DMC-DABC) (PADD) was synthesized by ultrasonic (US)-initiated polymerization, which is used for the separation and removal of coal mine wastewater. The acrylamide (AM), methacryloyloxyethyl trimethyl ammonium chloride (DMC) and acryloyloxyethyl dimethylbenzyl ammonium chloride (DABC) were used as monomers to prepare). The factors that affecting the US initiated polymerization of PADD were analyzed. Fourier transform infrared spectroscopy (FT-IR), <sup<1</sup<H nuclear magnetic resonance (<sup<1</sup<H NMR) and scanning electron microscopy (SEM) were used to characterize the chemical structure, thermal decomposition performance and surface morphology of the polymers. FT-IR and <sup<1</sup<H NMR results showed that PADD was successfully synthesized. In addition, irregular porous surface morphology of PADD were observed by SEM analysis. Under the optimum conditions (pH = 7.0, flocculant dosage = 16.0 mg/L), the excellent flocculation performance (turbidity removal rate (TR) = 98.8%), floc size d<sub<50</sub< = 513.467 μm, fractal dimension (D<sub<f</sub<) = 1.61, flocculation kinetics (K<sub<N0</sub<) = 27.24 × 10<sup<−3</sup<·s<sup<−1</sup<) was obtained by using high-efficiency flocculant PADD. Zeta potential analysis was used to further explore the possible flocculation mechanism of removal. The zeta potential and flocculation analytical results displayed that the flocculation removal process of coal mine wastewater mainly included hydrophobic effect, adsorption, bridging and charge neutralization, and electric patching when PADD was used. The PADD showed more excellent coal mine wastewater flocculation performance than PAD, commercial cationic polyacrylamide (CPAM) CCPAM and PAM. Thus PADD, with its good flocculation effect on coal mine wastewater under relatively wide pH range, had bright practical application value.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coal mine wastewater</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cationic polyacrylamide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrasonic initiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flocculation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">floc characteristics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">turbidity removal</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junling Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cheng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiyao Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yicong Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Khan Sarfaraz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">8(2020), 1, p 62</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1, p 62</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr8010062</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/75830828dc4740f6b3fb05a620f65c60</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/8/1/62</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">1, p 62</subfield></datafield></record></collection>
|
score |
7.4030848 |