Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study
Seismic hazards are typical mining hazards causing dynamic failure of coal and rock mass, which greatly threatens the safety of personnel and equipment. At present, various seismic analysis methods are used to assess seismic risks but their accuracy is significantly limited by the incompleteness of...
Ausführliche Beschreibung
Autor*in: |
Hui Li [verfasserIn] Anye Cao [verfasserIn] Siyuan Gong [verfasserIn] Changbin Wang [verfasserIn] Rupei Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 22(2022), 10, p 3682 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2022 ; number:10, p 3682 |
Links: |
---|
DOI / URN: |
10.3390/s22103682 |
---|
Katalog-ID: |
DOAJ025546279 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ025546279 | ||
003 | DE-627 | ||
005 | 20240414214610.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s22103682 |2 doi | |
035 | |a (DE-627)DOAJ025546279 | ||
035 | |a (DE-599)DOAJ667cd8d4b3224c90ae992363d9c0d709 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Hui Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Seismic hazards are typical mining hazards causing dynamic failure of coal and rock mass, which greatly threatens the safety of personnel and equipment. At present, various seismic analysis methods are used to assess seismic risks but their accuracy is significantly limited by the incompleteness of seismic data. The probability of detecting earthquakes (<i<PDE</i<) method has been proven as a powerful means for retrieving missed seismic events and enhancing the seismic data integrity in mines. However, to date, the reliability of the results of the <i<PDE</i< method has not been assessed and the highly integrated seismic data have not been linked with the actual hazard potential. To fill these gaps, this paper investigated the impacts of the seismic data volume used for calculation and the modification of the layout of sensors on the reliability and robustness of the <i<PDE</i< method. The event counts and seismic energy were compensated using the <i<PDE</i< method, correlated with strong seismic events. The results indicated that the compensated seismic data presented higher accuracy in locating future hazardous events than before. This research provides references on enhancing the performance of seismic analysing methods for seismic risk assessments. | ||
650 | 4 | |a coal burst | |
650 | 4 | |a rockbursts | |
650 | 4 | |a detection probability | |
650 | 4 | |a seismic monitoring | |
650 | 4 | |a magnitude of completeness | |
650 | 4 | |a seismic data integrity | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Anye Cao |e verfasserin |4 aut | |
700 | 0 | |a Siyuan Gong |e verfasserin |4 aut | |
700 | 0 | |a Changbin Wang |e verfasserin |4 aut | |
700 | 0 | |a Rupei Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 22(2022), 10, p 3682 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2022 |g number:10, p 3682 |
856 | 4 | 0 | |u https://doi.org/10.3390/s22103682 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/667cd8d4b3224c90ae992363d9c0d709 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/22/10/3682 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2022 |e 10, p 3682 |
author_variant |
h l hl a c ac s g sg c w cw r z rz |
---|---|
matchkey_str |
article:14248220:2022----::vltocaatrsisfesidtcinrbbltiudrrudieadtapiaino |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TP |
publishDate |
2022 |
allfields |
10.3390/s22103682 doi (DE-627)DOAJ025546279 (DE-599)DOAJ667cd8d4b3224c90ae992363d9c0d709 DE-627 ger DE-627 rakwb eng TP1-1185 Hui Li verfasserin aut Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Seismic hazards are typical mining hazards causing dynamic failure of coal and rock mass, which greatly threatens the safety of personnel and equipment. At present, various seismic analysis methods are used to assess seismic risks but their accuracy is significantly limited by the incompleteness of seismic data. The probability of detecting earthquakes (<i<PDE</i<) method has been proven as a powerful means for retrieving missed seismic events and enhancing the seismic data integrity in mines. However, to date, the reliability of the results of the <i<PDE</i< method has not been assessed and the highly integrated seismic data have not been linked with the actual hazard potential. To fill these gaps, this paper investigated the impacts of the seismic data volume used for calculation and the modification of the layout of sensors on the reliability and robustness of the <i<PDE</i< method. The event counts and seismic energy were compensated using the <i<PDE</i< method, correlated with strong seismic events. The results indicated that the compensated seismic data presented higher accuracy in locating future hazardous events than before. This research provides references on enhancing the performance of seismic analysing methods for seismic risk assessments. coal burst rockbursts detection probability seismic monitoring magnitude of completeness seismic data integrity Chemical technology Anye Cao verfasserin aut Siyuan Gong verfasserin aut Changbin Wang verfasserin aut Rupei Zhang verfasserin aut In Sensors MDPI AG, 2003 22(2022), 10, p 3682 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:10, p 3682 https://doi.org/10.3390/s22103682 kostenfrei https://doaj.org/article/667cd8d4b3224c90ae992363d9c0d709 kostenfrei https://www.mdpi.com/1424-8220/22/10/3682 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 10, p 3682 |
spelling |
10.3390/s22103682 doi (DE-627)DOAJ025546279 (DE-599)DOAJ667cd8d4b3224c90ae992363d9c0d709 DE-627 ger DE-627 rakwb eng TP1-1185 Hui Li verfasserin aut Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Seismic hazards are typical mining hazards causing dynamic failure of coal and rock mass, which greatly threatens the safety of personnel and equipment. At present, various seismic analysis methods are used to assess seismic risks but their accuracy is significantly limited by the incompleteness of seismic data. The probability of detecting earthquakes (<i<PDE</i<) method has been proven as a powerful means for retrieving missed seismic events and enhancing the seismic data integrity in mines. However, to date, the reliability of the results of the <i<PDE</i< method has not been assessed and the highly integrated seismic data have not been linked with the actual hazard potential. To fill these gaps, this paper investigated the impacts of the seismic data volume used for calculation and the modification of the layout of sensors on the reliability and robustness of the <i<PDE</i< method. The event counts and seismic energy were compensated using the <i<PDE</i< method, correlated with strong seismic events. The results indicated that the compensated seismic data presented higher accuracy in locating future hazardous events than before. This research provides references on enhancing the performance of seismic analysing methods for seismic risk assessments. coal burst rockbursts detection probability seismic monitoring magnitude of completeness seismic data integrity Chemical technology Anye Cao verfasserin aut Siyuan Gong verfasserin aut Changbin Wang verfasserin aut Rupei Zhang verfasserin aut In Sensors MDPI AG, 2003 22(2022), 10, p 3682 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:10, p 3682 https://doi.org/10.3390/s22103682 kostenfrei https://doaj.org/article/667cd8d4b3224c90ae992363d9c0d709 kostenfrei https://www.mdpi.com/1424-8220/22/10/3682 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 10, p 3682 |
allfields_unstemmed |
10.3390/s22103682 doi (DE-627)DOAJ025546279 (DE-599)DOAJ667cd8d4b3224c90ae992363d9c0d709 DE-627 ger DE-627 rakwb eng TP1-1185 Hui Li verfasserin aut Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Seismic hazards are typical mining hazards causing dynamic failure of coal and rock mass, which greatly threatens the safety of personnel and equipment. At present, various seismic analysis methods are used to assess seismic risks but their accuracy is significantly limited by the incompleteness of seismic data. The probability of detecting earthquakes (<i<PDE</i<) method has been proven as a powerful means for retrieving missed seismic events and enhancing the seismic data integrity in mines. However, to date, the reliability of the results of the <i<PDE</i< method has not been assessed and the highly integrated seismic data have not been linked with the actual hazard potential. To fill these gaps, this paper investigated the impacts of the seismic data volume used for calculation and the modification of the layout of sensors on the reliability and robustness of the <i<PDE</i< method. The event counts and seismic energy were compensated using the <i<PDE</i< method, correlated with strong seismic events. The results indicated that the compensated seismic data presented higher accuracy in locating future hazardous events than before. This research provides references on enhancing the performance of seismic analysing methods for seismic risk assessments. coal burst rockbursts detection probability seismic monitoring magnitude of completeness seismic data integrity Chemical technology Anye Cao verfasserin aut Siyuan Gong verfasserin aut Changbin Wang verfasserin aut Rupei Zhang verfasserin aut In Sensors MDPI AG, 2003 22(2022), 10, p 3682 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:10, p 3682 https://doi.org/10.3390/s22103682 kostenfrei https://doaj.org/article/667cd8d4b3224c90ae992363d9c0d709 kostenfrei https://www.mdpi.com/1424-8220/22/10/3682 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 10, p 3682 |
allfieldsGer |
10.3390/s22103682 doi (DE-627)DOAJ025546279 (DE-599)DOAJ667cd8d4b3224c90ae992363d9c0d709 DE-627 ger DE-627 rakwb eng TP1-1185 Hui Li verfasserin aut Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Seismic hazards are typical mining hazards causing dynamic failure of coal and rock mass, which greatly threatens the safety of personnel and equipment. At present, various seismic analysis methods are used to assess seismic risks but their accuracy is significantly limited by the incompleteness of seismic data. The probability of detecting earthquakes (<i<PDE</i<) method has been proven as a powerful means for retrieving missed seismic events and enhancing the seismic data integrity in mines. However, to date, the reliability of the results of the <i<PDE</i< method has not been assessed and the highly integrated seismic data have not been linked with the actual hazard potential. To fill these gaps, this paper investigated the impacts of the seismic data volume used for calculation and the modification of the layout of sensors on the reliability and robustness of the <i<PDE</i< method. The event counts and seismic energy were compensated using the <i<PDE</i< method, correlated with strong seismic events. The results indicated that the compensated seismic data presented higher accuracy in locating future hazardous events than before. This research provides references on enhancing the performance of seismic analysing methods for seismic risk assessments. coal burst rockbursts detection probability seismic monitoring magnitude of completeness seismic data integrity Chemical technology Anye Cao verfasserin aut Siyuan Gong verfasserin aut Changbin Wang verfasserin aut Rupei Zhang verfasserin aut In Sensors MDPI AG, 2003 22(2022), 10, p 3682 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:10, p 3682 https://doi.org/10.3390/s22103682 kostenfrei https://doaj.org/article/667cd8d4b3224c90ae992363d9c0d709 kostenfrei https://www.mdpi.com/1424-8220/22/10/3682 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 10, p 3682 |
allfieldsSound |
10.3390/s22103682 doi (DE-627)DOAJ025546279 (DE-599)DOAJ667cd8d4b3224c90ae992363d9c0d709 DE-627 ger DE-627 rakwb eng TP1-1185 Hui Li verfasserin aut Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Seismic hazards are typical mining hazards causing dynamic failure of coal and rock mass, which greatly threatens the safety of personnel and equipment. At present, various seismic analysis methods are used to assess seismic risks but their accuracy is significantly limited by the incompleteness of seismic data. The probability of detecting earthquakes (<i<PDE</i<) method has been proven as a powerful means for retrieving missed seismic events and enhancing the seismic data integrity in mines. However, to date, the reliability of the results of the <i<PDE</i< method has not been assessed and the highly integrated seismic data have not been linked with the actual hazard potential. To fill these gaps, this paper investigated the impacts of the seismic data volume used for calculation and the modification of the layout of sensors on the reliability and robustness of the <i<PDE</i< method. The event counts and seismic energy were compensated using the <i<PDE</i< method, correlated with strong seismic events. The results indicated that the compensated seismic data presented higher accuracy in locating future hazardous events than before. This research provides references on enhancing the performance of seismic analysing methods for seismic risk assessments. coal burst rockbursts detection probability seismic monitoring magnitude of completeness seismic data integrity Chemical technology Anye Cao verfasserin aut Siyuan Gong verfasserin aut Changbin Wang verfasserin aut Rupei Zhang verfasserin aut In Sensors MDPI AG, 2003 22(2022), 10, p 3682 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:10, p 3682 https://doi.org/10.3390/s22103682 kostenfrei https://doaj.org/article/667cd8d4b3224c90ae992363d9c0d709 kostenfrei https://www.mdpi.com/1424-8220/22/10/3682 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 10, p 3682 |
language |
English |
source |
In Sensors 22(2022), 10, p 3682 volume:22 year:2022 number:10, p 3682 |
sourceStr |
In Sensors 22(2022), 10, p 3682 volume:22 year:2022 number:10, p 3682 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
coal burst rockbursts detection probability seismic monitoring magnitude of completeness seismic data integrity Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Hui Li @@aut@@ Anye Cao @@aut@@ Siyuan Gong @@aut@@ Changbin Wang @@aut@@ Rupei Zhang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ025546279 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025546279</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414214610.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s22103682</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025546279</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ667cd8d4b3224c90ae992363d9c0d709</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hui Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Seismic hazards are typical mining hazards causing dynamic failure of coal and rock mass, which greatly threatens the safety of personnel and equipment. At present, various seismic analysis methods are used to assess seismic risks but their accuracy is significantly limited by the incompleteness of seismic data. The probability of detecting earthquakes (<i<PDE</i<) method has been proven as a powerful means for retrieving missed seismic events and enhancing the seismic data integrity in mines. However, to date, the reliability of the results of the <i<PDE</i< method has not been assessed and the highly integrated seismic data have not been linked with the actual hazard potential. To fill these gaps, this paper investigated the impacts of the seismic data volume used for calculation and the modification of the layout of sensors on the reliability and robustness of the <i<PDE</i< method. The event counts and seismic energy were compensated using the <i<PDE</i< method, correlated with strong seismic events. The results indicated that the compensated seismic data presented higher accuracy in locating future hazardous events than before. This research provides references on enhancing the performance of seismic analysing methods for seismic risk assessments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coal burst</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rockbursts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">detection probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seismic monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnitude of completeness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seismic data integrity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anye Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siyuan Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changbin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rupei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2022), 10, p 3682</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 3682</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s22103682</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/667cd8d4b3224c90ae992363d9c0d709</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/22/10/3682</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 3682</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Hui Li |
spellingShingle |
Hui Li misc TP1-1185 misc coal burst misc rockbursts misc detection probability misc seismic monitoring misc magnitude of completeness misc seismic data integrity misc Chemical technology Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study |
authorStr |
Hui Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study coal burst rockbursts detection probability seismic monitoring magnitude of completeness seismic data integrity |
topic |
misc TP1-1185 misc coal burst misc rockbursts misc detection probability misc seismic monitoring misc magnitude of completeness misc seismic data integrity misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc coal burst misc rockbursts misc detection probability misc seismic monitoring misc magnitude of completeness misc seismic data integrity misc Chemical technology |
topic_browse |
misc TP1-1185 misc coal burst misc rockbursts misc detection probability misc seismic monitoring misc magnitude of completeness misc seismic data integrity misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study |
ctrlnum |
(DE-627)DOAJ025546279 (DE-599)DOAJ667cd8d4b3224c90ae992363d9c0d709 |
title_full |
Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study |
author_sort |
Hui Li |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Hui Li Anye Cao Siyuan Gong Changbin Wang Rupei Zhang |
container_volume |
22 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Hui Li |
doi_str_mv |
10.3390/s22103682 |
author2-role |
verfasserin |
title_sort |
evolution characteristics of seismic detection probability in underground mines and its application for assessing seismic risks—a case study |
callnumber |
TP1-1185 |
title_auth |
Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study |
abstract |
Seismic hazards are typical mining hazards causing dynamic failure of coal and rock mass, which greatly threatens the safety of personnel and equipment. At present, various seismic analysis methods are used to assess seismic risks but their accuracy is significantly limited by the incompleteness of seismic data. The probability of detecting earthquakes (<i<PDE</i<) method has been proven as a powerful means for retrieving missed seismic events and enhancing the seismic data integrity in mines. However, to date, the reliability of the results of the <i<PDE</i< method has not been assessed and the highly integrated seismic data have not been linked with the actual hazard potential. To fill these gaps, this paper investigated the impacts of the seismic data volume used for calculation and the modification of the layout of sensors on the reliability and robustness of the <i<PDE</i< method. The event counts and seismic energy were compensated using the <i<PDE</i< method, correlated with strong seismic events. The results indicated that the compensated seismic data presented higher accuracy in locating future hazardous events than before. This research provides references on enhancing the performance of seismic analysing methods for seismic risk assessments. |
abstractGer |
Seismic hazards are typical mining hazards causing dynamic failure of coal and rock mass, which greatly threatens the safety of personnel and equipment. At present, various seismic analysis methods are used to assess seismic risks but their accuracy is significantly limited by the incompleteness of seismic data. The probability of detecting earthquakes (<i<PDE</i<) method has been proven as a powerful means for retrieving missed seismic events and enhancing the seismic data integrity in mines. However, to date, the reliability of the results of the <i<PDE</i< method has not been assessed and the highly integrated seismic data have not been linked with the actual hazard potential. To fill these gaps, this paper investigated the impacts of the seismic data volume used for calculation and the modification of the layout of sensors on the reliability and robustness of the <i<PDE</i< method. The event counts and seismic energy were compensated using the <i<PDE</i< method, correlated with strong seismic events. The results indicated that the compensated seismic data presented higher accuracy in locating future hazardous events than before. This research provides references on enhancing the performance of seismic analysing methods for seismic risk assessments. |
abstract_unstemmed |
Seismic hazards are typical mining hazards causing dynamic failure of coal and rock mass, which greatly threatens the safety of personnel and equipment. At present, various seismic analysis methods are used to assess seismic risks but their accuracy is significantly limited by the incompleteness of seismic data. The probability of detecting earthquakes (<i<PDE</i<) method has been proven as a powerful means for retrieving missed seismic events and enhancing the seismic data integrity in mines. However, to date, the reliability of the results of the <i<PDE</i< method has not been assessed and the highly integrated seismic data have not been linked with the actual hazard potential. To fill these gaps, this paper investigated the impacts of the seismic data volume used for calculation and the modification of the layout of sensors on the reliability and robustness of the <i<PDE</i< method. The event counts and seismic energy were compensated using the <i<PDE</i< method, correlated with strong seismic events. The results indicated that the compensated seismic data presented higher accuracy in locating future hazardous events than before. This research provides references on enhancing the performance of seismic analysing methods for seismic risk assessments. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 3682 |
title_short |
Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study |
url |
https://doi.org/10.3390/s22103682 https://doaj.org/article/667cd8d4b3224c90ae992363d9c0d709 https://www.mdpi.com/1424-8220/22/10/3682 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Anye Cao Siyuan Gong Changbin Wang Rupei Zhang |
author2Str |
Anye Cao Siyuan Gong Changbin Wang Rupei Zhang |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s22103682 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T15:39:16.309Z |
_version_ |
1803572903996817408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025546279</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414214610.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s22103682</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025546279</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ667cd8d4b3224c90ae992363d9c0d709</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hui Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evolution Characteristics of Seismic Detection Probability in Underground Mines and Its Application for Assessing Seismic Risks—A Case Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Seismic hazards are typical mining hazards causing dynamic failure of coal and rock mass, which greatly threatens the safety of personnel and equipment. At present, various seismic analysis methods are used to assess seismic risks but their accuracy is significantly limited by the incompleteness of seismic data. The probability of detecting earthquakes (<i<PDE</i<) method has been proven as a powerful means for retrieving missed seismic events and enhancing the seismic data integrity in mines. However, to date, the reliability of the results of the <i<PDE</i< method has not been assessed and the highly integrated seismic data have not been linked with the actual hazard potential. To fill these gaps, this paper investigated the impacts of the seismic data volume used for calculation and the modification of the layout of sensors on the reliability and robustness of the <i<PDE</i< method. The event counts and seismic energy were compensated using the <i<PDE</i< method, correlated with strong seismic events. The results indicated that the compensated seismic data presented higher accuracy in locating future hazardous events than before. This research provides references on enhancing the performance of seismic analysing methods for seismic risk assessments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coal burst</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rockbursts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">detection probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seismic monitoring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnitude of completeness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seismic data integrity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anye Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siyuan Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changbin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rupei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2022), 10, p 3682</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 3682</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s22103682</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/667cd8d4b3224c90ae992363d9c0d709</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/22/10/3682</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 3682</subfield></datafield></record></collection>
|
score |
7.4019423 |