Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin
The largest carbonate condensate field has been found in the Tarim Basin, NW China. Different from sandstone condensate gas reservoirs, however, the conventional gas injection for pressure maintenance development is not favorable for Ordovician fracture-cave reservoirs. Based on this, in this paper,...
Ausführliche Beschreibung
Autor*in: |
Fuxiao Shen [verfasserIn] Shiyin Li [verfasserIn] Xingliang Deng [verfasserIn] Zhiliang Liu [verfasserIn] Ping Guo [verfasserIn] Guanghui Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 15(2022), 11, p 3881 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:11, p 3881 |
Links: |
---|
DOI / URN: |
10.3390/en15113881 |
---|
Katalog-ID: |
DOAJ02555185X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ02555185X | ||
003 | DE-627 | ||
005 | 20240414212911.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en15113881 |2 doi | |
035 | |a (DE-627)DOAJ02555185X | ||
035 | |a (DE-599)DOAJb928704b8d8f423c9d8b8b7629a84491 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Fuxiao Shen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The largest carbonate condensate field has been found in the Tarim Basin, NW China. Different from sandstone condensate gas reservoirs, however, the conventional gas injection for pressure maintenance development is not favorable for Ordovician fracture-cave reservoirs. Based on this, in this paper, 21 sets of displacement experiments in full-diameter cores and a pilot test in 11 boreholes were carried out to study enhanced oil recovery (EOR) in complicated carbonate reservoirs. The experimental results show that the seepage channels of the gas condensate reservoirs are fractures, which are quite different from sandstone pore-throat structures. Condensate oil recovery using water injection was up to 57–88% in unfilled fractured caves and at ca. 52–80% in sand-filled fractured caves. These values are much higher than the 14–46% and 17–58% values obtained from the depletion and gas injection experiments, respectively. The water injection in 11 wells showed that the condensate oil recovery increased by 0–17.7% (avg. 3.1%). The effective EOR for residual oil replacement using water injection may be attributed to fractures, as the gas channel leads to an ineffective gas circulation and pipe flow in fracture-cave reservoirs, which is favorable for waterflood development. The complicated fracture network in the deep subsurface may be the key element in the varied and lower oil recovery rates obtained from the wells than from the experiments. This case study provides new insights for the exploitation of similar condensate gas reservoirs. | ||
650 | 4 | |a Tarim Basin | |
650 | 4 | |a fracture-cave reservoir | |
650 | 4 | |a oil recovery from condensate gas reservoir | |
650 | 4 | |a water injection | |
650 | 4 | |a enhanced oil recovery | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Shiyin Li |e verfasserin |4 aut | |
700 | 0 | |a Xingliang Deng |e verfasserin |4 aut | |
700 | 0 | |a Zhiliang Liu |e verfasserin |4 aut | |
700 | 0 | |a Ping Guo |e verfasserin |4 aut | |
700 | 0 | |a Guanghui Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 15(2022), 11, p 3881 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:11, p 3881 |
856 | 4 | 0 | |u https://doi.org/10.3390/en15113881 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b928704b8d8f423c9d8b8b7629a84491 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/15/11/3881 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 11, p 3881 |
author_variant |
f s fs s l sl x d xd z l zl p g pg g w gw |
---|---|
matchkey_str |
article:19961073:2022----::plctooersnwtrnetoicroaeodnaeee |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/en15113881 doi (DE-627)DOAJ02555185X (DE-599)DOAJb928704b8d8f423c9d8b8b7629a84491 DE-627 ger DE-627 rakwb eng Fuxiao Shen verfasserin aut Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The largest carbonate condensate field has been found in the Tarim Basin, NW China. Different from sandstone condensate gas reservoirs, however, the conventional gas injection for pressure maintenance development is not favorable for Ordovician fracture-cave reservoirs. Based on this, in this paper, 21 sets of displacement experiments in full-diameter cores and a pilot test in 11 boreholes were carried out to study enhanced oil recovery (EOR) in complicated carbonate reservoirs. The experimental results show that the seepage channels of the gas condensate reservoirs are fractures, which are quite different from sandstone pore-throat structures. Condensate oil recovery using water injection was up to 57–88% in unfilled fractured caves and at ca. 52–80% in sand-filled fractured caves. These values are much higher than the 14–46% and 17–58% values obtained from the depletion and gas injection experiments, respectively. The water injection in 11 wells showed that the condensate oil recovery increased by 0–17.7% (avg. 3.1%). The effective EOR for residual oil replacement using water injection may be attributed to fractures, as the gas channel leads to an ineffective gas circulation and pipe flow in fracture-cave reservoirs, which is favorable for waterflood development. The complicated fracture network in the deep subsurface may be the key element in the varied and lower oil recovery rates obtained from the wells than from the experiments. This case study provides new insights for the exploitation of similar condensate gas reservoirs. Tarim Basin fracture-cave reservoir oil recovery from condensate gas reservoir water injection enhanced oil recovery Technology T Shiyin Li verfasserin aut Xingliang Deng verfasserin aut Zhiliang Liu verfasserin aut Ping Guo verfasserin aut Guanghui Wu verfasserin aut In Energies MDPI AG, 2008 15(2022), 11, p 3881 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:11, p 3881 https://doi.org/10.3390/en15113881 kostenfrei https://doaj.org/article/b928704b8d8f423c9d8b8b7629a84491 kostenfrei https://www.mdpi.com/1996-1073/15/11/3881 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 11, p 3881 |
spelling |
10.3390/en15113881 doi (DE-627)DOAJ02555185X (DE-599)DOAJb928704b8d8f423c9d8b8b7629a84491 DE-627 ger DE-627 rakwb eng Fuxiao Shen verfasserin aut Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The largest carbonate condensate field has been found in the Tarim Basin, NW China. Different from sandstone condensate gas reservoirs, however, the conventional gas injection for pressure maintenance development is not favorable for Ordovician fracture-cave reservoirs. Based on this, in this paper, 21 sets of displacement experiments in full-diameter cores and a pilot test in 11 boreholes were carried out to study enhanced oil recovery (EOR) in complicated carbonate reservoirs. The experimental results show that the seepage channels of the gas condensate reservoirs are fractures, which are quite different from sandstone pore-throat structures. Condensate oil recovery using water injection was up to 57–88% in unfilled fractured caves and at ca. 52–80% in sand-filled fractured caves. These values are much higher than the 14–46% and 17–58% values obtained from the depletion and gas injection experiments, respectively. The water injection in 11 wells showed that the condensate oil recovery increased by 0–17.7% (avg. 3.1%). The effective EOR for residual oil replacement using water injection may be attributed to fractures, as the gas channel leads to an ineffective gas circulation and pipe flow in fracture-cave reservoirs, which is favorable for waterflood development. The complicated fracture network in the deep subsurface may be the key element in the varied and lower oil recovery rates obtained from the wells than from the experiments. This case study provides new insights for the exploitation of similar condensate gas reservoirs. Tarim Basin fracture-cave reservoir oil recovery from condensate gas reservoir water injection enhanced oil recovery Technology T Shiyin Li verfasserin aut Xingliang Deng verfasserin aut Zhiliang Liu verfasserin aut Ping Guo verfasserin aut Guanghui Wu verfasserin aut In Energies MDPI AG, 2008 15(2022), 11, p 3881 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:11, p 3881 https://doi.org/10.3390/en15113881 kostenfrei https://doaj.org/article/b928704b8d8f423c9d8b8b7629a84491 kostenfrei https://www.mdpi.com/1996-1073/15/11/3881 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 11, p 3881 |
allfields_unstemmed |
10.3390/en15113881 doi (DE-627)DOAJ02555185X (DE-599)DOAJb928704b8d8f423c9d8b8b7629a84491 DE-627 ger DE-627 rakwb eng Fuxiao Shen verfasserin aut Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The largest carbonate condensate field has been found in the Tarim Basin, NW China. Different from sandstone condensate gas reservoirs, however, the conventional gas injection for pressure maintenance development is not favorable for Ordovician fracture-cave reservoirs. Based on this, in this paper, 21 sets of displacement experiments in full-diameter cores and a pilot test in 11 boreholes were carried out to study enhanced oil recovery (EOR) in complicated carbonate reservoirs. The experimental results show that the seepage channels of the gas condensate reservoirs are fractures, which are quite different from sandstone pore-throat structures. Condensate oil recovery using water injection was up to 57–88% in unfilled fractured caves and at ca. 52–80% in sand-filled fractured caves. These values are much higher than the 14–46% and 17–58% values obtained from the depletion and gas injection experiments, respectively. The water injection in 11 wells showed that the condensate oil recovery increased by 0–17.7% (avg. 3.1%). The effective EOR for residual oil replacement using water injection may be attributed to fractures, as the gas channel leads to an ineffective gas circulation and pipe flow in fracture-cave reservoirs, which is favorable for waterflood development. The complicated fracture network in the deep subsurface may be the key element in the varied and lower oil recovery rates obtained from the wells than from the experiments. This case study provides new insights for the exploitation of similar condensate gas reservoirs. Tarim Basin fracture-cave reservoir oil recovery from condensate gas reservoir water injection enhanced oil recovery Technology T Shiyin Li verfasserin aut Xingliang Deng verfasserin aut Zhiliang Liu verfasserin aut Ping Guo verfasserin aut Guanghui Wu verfasserin aut In Energies MDPI AG, 2008 15(2022), 11, p 3881 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:11, p 3881 https://doi.org/10.3390/en15113881 kostenfrei https://doaj.org/article/b928704b8d8f423c9d8b8b7629a84491 kostenfrei https://www.mdpi.com/1996-1073/15/11/3881 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 11, p 3881 |
allfieldsGer |
10.3390/en15113881 doi (DE-627)DOAJ02555185X (DE-599)DOAJb928704b8d8f423c9d8b8b7629a84491 DE-627 ger DE-627 rakwb eng Fuxiao Shen verfasserin aut Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The largest carbonate condensate field has been found in the Tarim Basin, NW China. Different from sandstone condensate gas reservoirs, however, the conventional gas injection for pressure maintenance development is not favorable for Ordovician fracture-cave reservoirs. Based on this, in this paper, 21 sets of displacement experiments in full-diameter cores and a pilot test in 11 boreholes were carried out to study enhanced oil recovery (EOR) in complicated carbonate reservoirs. The experimental results show that the seepage channels of the gas condensate reservoirs are fractures, which are quite different from sandstone pore-throat structures. Condensate oil recovery using water injection was up to 57–88% in unfilled fractured caves and at ca. 52–80% in sand-filled fractured caves. These values are much higher than the 14–46% and 17–58% values obtained from the depletion and gas injection experiments, respectively. The water injection in 11 wells showed that the condensate oil recovery increased by 0–17.7% (avg. 3.1%). The effective EOR for residual oil replacement using water injection may be attributed to fractures, as the gas channel leads to an ineffective gas circulation and pipe flow in fracture-cave reservoirs, which is favorable for waterflood development. The complicated fracture network in the deep subsurface may be the key element in the varied and lower oil recovery rates obtained from the wells than from the experiments. This case study provides new insights for the exploitation of similar condensate gas reservoirs. Tarim Basin fracture-cave reservoir oil recovery from condensate gas reservoir water injection enhanced oil recovery Technology T Shiyin Li verfasserin aut Xingliang Deng verfasserin aut Zhiliang Liu verfasserin aut Ping Guo verfasserin aut Guanghui Wu verfasserin aut In Energies MDPI AG, 2008 15(2022), 11, p 3881 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:11, p 3881 https://doi.org/10.3390/en15113881 kostenfrei https://doaj.org/article/b928704b8d8f423c9d8b8b7629a84491 kostenfrei https://www.mdpi.com/1996-1073/15/11/3881 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 11, p 3881 |
allfieldsSound |
10.3390/en15113881 doi (DE-627)DOAJ02555185X (DE-599)DOAJb928704b8d8f423c9d8b8b7629a84491 DE-627 ger DE-627 rakwb eng Fuxiao Shen verfasserin aut Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The largest carbonate condensate field has been found in the Tarim Basin, NW China. Different from sandstone condensate gas reservoirs, however, the conventional gas injection for pressure maintenance development is not favorable for Ordovician fracture-cave reservoirs. Based on this, in this paper, 21 sets of displacement experiments in full-diameter cores and a pilot test in 11 boreholes were carried out to study enhanced oil recovery (EOR) in complicated carbonate reservoirs. The experimental results show that the seepage channels of the gas condensate reservoirs are fractures, which are quite different from sandstone pore-throat structures. Condensate oil recovery using water injection was up to 57–88% in unfilled fractured caves and at ca. 52–80% in sand-filled fractured caves. These values are much higher than the 14–46% and 17–58% values obtained from the depletion and gas injection experiments, respectively. The water injection in 11 wells showed that the condensate oil recovery increased by 0–17.7% (avg. 3.1%). The effective EOR for residual oil replacement using water injection may be attributed to fractures, as the gas channel leads to an ineffective gas circulation and pipe flow in fracture-cave reservoirs, which is favorable for waterflood development. The complicated fracture network in the deep subsurface may be the key element in the varied and lower oil recovery rates obtained from the wells than from the experiments. This case study provides new insights for the exploitation of similar condensate gas reservoirs. Tarim Basin fracture-cave reservoir oil recovery from condensate gas reservoir water injection enhanced oil recovery Technology T Shiyin Li verfasserin aut Xingliang Deng verfasserin aut Zhiliang Liu verfasserin aut Ping Guo verfasserin aut Guanghui Wu verfasserin aut In Energies MDPI AG, 2008 15(2022), 11, p 3881 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:11, p 3881 https://doi.org/10.3390/en15113881 kostenfrei https://doaj.org/article/b928704b8d8f423c9d8b8b7629a84491 kostenfrei https://www.mdpi.com/1996-1073/15/11/3881 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 11, p 3881 |
language |
English |
source |
In Energies 15(2022), 11, p 3881 volume:15 year:2022 number:11, p 3881 |
sourceStr |
In Energies 15(2022), 11, p 3881 volume:15 year:2022 number:11, p 3881 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tarim Basin fracture-cave reservoir oil recovery from condensate gas reservoir water injection enhanced oil recovery Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Fuxiao Shen @@aut@@ Shiyin Li @@aut@@ Xingliang Deng @@aut@@ Zhiliang Liu @@aut@@ Ping Guo @@aut@@ Guanghui Wu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ02555185X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02555185X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414212911.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15113881</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02555185X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb928704b8d8f423c9d8b8b7629a84491</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fuxiao Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The largest carbonate condensate field has been found in the Tarim Basin, NW China. Different from sandstone condensate gas reservoirs, however, the conventional gas injection for pressure maintenance development is not favorable for Ordovician fracture-cave reservoirs. Based on this, in this paper, 21 sets of displacement experiments in full-diameter cores and a pilot test in 11 boreholes were carried out to study enhanced oil recovery (EOR) in complicated carbonate reservoirs. The experimental results show that the seepage channels of the gas condensate reservoirs are fractures, which are quite different from sandstone pore-throat structures. Condensate oil recovery using water injection was up to 57–88% in unfilled fractured caves and at ca. 52–80% in sand-filled fractured caves. These values are much higher than the 14–46% and 17–58% values obtained from the depletion and gas injection experiments, respectively. The water injection in 11 wells showed that the condensate oil recovery increased by 0–17.7% (avg. 3.1%). The effective EOR for residual oil replacement using water injection may be attributed to fractures, as the gas channel leads to an ineffective gas circulation and pipe flow in fracture-cave reservoirs, which is favorable for waterflood development. The complicated fracture network in the deep subsurface may be the key element in the varied and lower oil recovery rates obtained from the wells than from the experiments. This case study provides new insights for the exploitation of similar condensate gas reservoirs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tarim Basin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fracture-cave reservoir</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oil recovery from condensate gas reservoir</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enhanced oil recovery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiyin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xingliang Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiliang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guanghui Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 11, p 3881</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 3881</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15113881</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b928704b8d8f423c9d8b8b7629a84491</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/11/3881</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 3881</subfield></datafield></record></collection>
|
author |
Fuxiao Shen |
spellingShingle |
Fuxiao Shen misc Tarim Basin misc fracture-cave reservoir misc oil recovery from condensate gas reservoir misc water injection misc enhanced oil recovery misc Technology misc T Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin |
authorStr |
Fuxiao Shen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin Tarim Basin fracture-cave reservoir oil recovery from condensate gas reservoir water injection enhanced oil recovery |
topic |
misc Tarim Basin misc fracture-cave reservoir misc oil recovery from condensate gas reservoir misc water injection misc enhanced oil recovery misc Technology misc T |
topic_unstemmed |
misc Tarim Basin misc fracture-cave reservoir misc oil recovery from condensate gas reservoir misc water injection misc enhanced oil recovery misc Technology misc T |
topic_browse |
misc Tarim Basin misc fracture-cave reservoir misc oil recovery from condensate gas reservoir misc water injection misc enhanced oil recovery misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin |
ctrlnum |
(DE-627)DOAJ02555185X (DE-599)DOAJb928704b8d8f423c9d8b8b7629a84491 |
title_full |
Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin |
author_sort |
Fuxiao Shen |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Fuxiao Shen Shiyin Li Xingliang Deng Zhiliang Liu Ping Guo Guanghui Wu |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Fuxiao Shen |
doi_str_mv |
10.3390/en15113881 |
author2-role |
verfasserin |
title_sort |
application of eor using water injection in carbonate condensate reservoirs in the tarim basin |
title_auth |
Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin |
abstract |
The largest carbonate condensate field has been found in the Tarim Basin, NW China. Different from sandstone condensate gas reservoirs, however, the conventional gas injection for pressure maintenance development is not favorable for Ordovician fracture-cave reservoirs. Based on this, in this paper, 21 sets of displacement experiments in full-diameter cores and a pilot test in 11 boreholes were carried out to study enhanced oil recovery (EOR) in complicated carbonate reservoirs. The experimental results show that the seepage channels of the gas condensate reservoirs are fractures, which are quite different from sandstone pore-throat structures. Condensate oil recovery using water injection was up to 57–88% in unfilled fractured caves and at ca. 52–80% in sand-filled fractured caves. These values are much higher than the 14–46% and 17–58% values obtained from the depletion and gas injection experiments, respectively. The water injection in 11 wells showed that the condensate oil recovery increased by 0–17.7% (avg. 3.1%). The effective EOR for residual oil replacement using water injection may be attributed to fractures, as the gas channel leads to an ineffective gas circulation and pipe flow in fracture-cave reservoirs, which is favorable for waterflood development. The complicated fracture network in the deep subsurface may be the key element in the varied and lower oil recovery rates obtained from the wells than from the experiments. This case study provides new insights for the exploitation of similar condensate gas reservoirs. |
abstractGer |
The largest carbonate condensate field has been found in the Tarim Basin, NW China. Different from sandstone condensate gas reservoirs, however, the conventional gas injection for pressure maintenance development is not favorable for Ordovician fracture-cave reservoirs. Based on this, in this paper, 21 sets of displacement experiments in full-diameter cores and a pilot test in 11 boreholes were carried out to study enhanced oil recovery (EOR) in complicated carbonate reservoirs. The experimental results show that the seepage channels of the gas condensate reservoirs are fractures, which are quite different from sandstone pore-throat structures. Condensate oil recovery using water injection was up to 57–88% in unfilled fractured caves and at ca. 52–80% in sand-filled fractured caves. These values are much higher than the 14–46% and 17–58% values obtained from the depletion and gas injection experiments, respectively. The water injection in 11 wells showed that the condensate oil recovery increased by 0–17.7% (avg. 3.1%). The effective EOR for residual oil replacement using water injection may be attributed to fractures, as the gas channel leads to an ineffective gas circulation and pipe flow in fracture-cave reservoirs, which is favorable for waterflood development. The complicated fracture network in the deep subsurface may be the key element in the varied and lower oil recovery rates obtained from the wells than from the experiments. This case study provides new insights for the exploitation of similar condensate gas reservoirs. |
abstract_unstemmed |
The largest carbonate condensate field has been found in the Tarim Basin, NW China. Different from sandstone condensate gas reservoirs, however, the conventional gas injection for pressure maintenance development is not favorable for Ordovician fracture-cave reservoirs. Based on this, in this paper, 21 sets of displacement experiments in full-diameter cores and a pilot test in 11 boreholes were carried out to study enhanced oil recovery (EOR) in complicated carbonate reservoirs. The experimental results show that the seepage channels of the gas condensate reservoirs are fractures, which are quite different from sandstone pore-throat structures. Condensate oil recovery using water injection was up to 57–88% in unfilled fractured caves and at ca. 52–80% in sand-filled fractured caves. These values are much higher than the 14–46% and 17–58% values obtained from the depletion and gas injection experiments, respectively. The water injection in 11 wells showed that the condensate oil recovery increased by 0–17.7% (avg. 3.1%). The effective EOR for residual oil replacement using water injection may be attributed to fractures, as the gas channel leads to an ineffective gas circulation and pipe flow in fracture-cave reservoirs, which is favorable for waterflood development. The complicated fracture network in the deep subsurface may be the key element in the varied and lower oil recovery rates obtained from the wells than from the experiments. This case study provides new insights for the exploitation of similar condensate gas reservoirs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 3881 |
title_short |
Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin |
url |
https://doi.org/10.3390/en15113881 https://doaj.org/article/b928704b8d8f423c9d8b8b7629a84491 https://www.mdpi.com/1996-1073/15/11/3881 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Shiyin Li Xingliang Deng Zhiliang Liu Ping Guo Guanghui Wu |
author2Str |
Shiyin Li Xingliang Deng Zhiliang Liu Ping Guo Guanghui Wu |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en15113881 |
up_date |
2024-07-03T15:41:22.733Z |
_version_ |
1803573036563038208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02555185X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414212911.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15113881</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02555185X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb928704b8d8f423c9d8b8b7629a84491</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fuxiao Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of EOR Using Water Injection in Carbonate Condensate Reservoirs in the Tarim Basin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The largest carbonate condensate field has been found in the Tarim Basin, NW China. Different from sandstone condensate gas reservoirs, however, the conventional gas injection for pressure maintenance development is not favorable for Ordovician fracture-cave reservoirs. Based on this, in this paper, 21 sets of displacement experiments in full-diameter cores and a pilot test in 11 boreholes were carried out to study enhanced oil recovery (EOR) in complicated carbonate reservoirs. The experimental results show that the seepage channels of the gas condensate reservoirs are fractures, which are quite different from sandstone pore-throat structures. Condensate oil recovery using water injection was up to 57–88% in unfilled fractured caves and at ca. 52–80% in sand-filled fractured caves. These values are much higher than the 14–46% and 17–58% values obtained from the depletion and gas injection experiments, respectively. The water injection in 11 wells showed that the condensate oil recovery increased by 0–17.7% (avg. 3.1%). The effective EOR for residual oil replacement using water injection may be attributed to fractures, as the gas channel leads to an ineffective gas circulation and pipe flow in fracture-cave reservoirs, which is favorable for waterflood development. The complicated fracture network in the deep subsurface may be the key element in the varied and lower oil recovery rates obtained from the wells than from the experiments. This case study provides new insights for the exploitation of similar condensate gas reservoirs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tarim Basin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fracture-cave reservoir</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oil recovery from condensate gas reservoir</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">water injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enhanced oil recovery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiyin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xingliang Deng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiliang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guanghui Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 11, p 3881</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 3881</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15113881</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b928704b8d8f423c9d8b8b7629a84491</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/11/3881</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 3881</subfield></datafield></record></collection>
|
score |
7.402011 |