Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays
Recent measurements of the spectra and anisotropy of cosmic rays (CRs) show a fine structure that reflects the spectral hardenings of CRs nuclei at the rigidity <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow...
Ausführliche Beschreibung
Autor*in: |
Aifeng Li [verfasserIn] Shiyu Yin [verfasserIn] Maoyuan Liu [verfasserIn] Hao Wang [verfasserIn] Xiaoyu Li [verfasserIn] Yaping Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Universe - MDPI AG, 2015, 8(2022), 6, p 307 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; number:6, p 307 |
Links: |
---|
DOI / URN: |
10.3390/universe8060307 |
---|
Katalog-ID: |
DOAJ02556899X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ02556899X | ||
003 | DE-627 | ||
005 | 20240414190822.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/universe8060307 |2 doi | |
035 | |a (DE-627)DOAJ02556899X | ||
035 | |a (DE-599)DOAJ17a735e7a7f44053b2891f77e71d4bd8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC793-793.5 | |
100 | 0 | |a Aifeng Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Recent measurements of the spectra and anisotropy of cosmic rays (CRs) show a fine structure that reflects the spectral hardenings of CRs nuclei at the rigidity <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 200 GV followed by softenings at <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 10 TV, and reveal complicated energy dependence of the amplitude and phase of anisotropy from 100 GeV to PeV. Numerous studies have shown that the existence of nearby CR sources and a local interstellar magnetic field (LIMF) near the solar system are crucial for such CR spectral and anisotropic patterns. In this work, we analyze the CR spectra of different CR components and the anisotropy considering the nearby Geminga supernova remnants (SNRs) source. In the calculation process, we also introduce the anisotropic diffusion of CRs induced by the LIMF based on the spatial-dependent propagation (SDP) model. As a result, our model can simultaneously account for the CR spectra and the anisotropy from 100 GeV to PeV. Future high-precision measurements of the CR anisotropy, for example, by the LHAASO experiment, would be of the essence in the assessment of our proposed model. | ||
650 | 4 | |a cosmic ray anisotropy | |
650 | 4 | |a cosmic ray spectra | |
650 | 4 | |a Geminga supernova remnants | |
650 | 4 | |a local interstellar magnetic field | |
653 | 0 | |a Elementary particle physics | |
700 | 0 | |a Shiyu Yin |e verfasserin |4 aut | |
700 | 0 | |a Maoyuan Liu |e verfasserin |4 aut | |
700 | 0 | |a Hao Wang |e verfasserin |4 aut | |
700 | 0 | |a Xiaoyu Li |e verfasserin |4 aut | |
700 | 0 | |a Yaping Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Universe |d MDPI AG, 2015 |g 8(2022), 6, p 307 |w (DE-627)820684236 |w (DE-600)2813994-X |x 22181997 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g number:6, p 307 |
856 | 4 | 0 | |u https://doi.org/10.3390/universe8060307 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/17a735e7a7f44053b2891f77e71d4bd8 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2218-1997/8/6/307 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2218-1997 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |e 6, p 307 |
author_variant |
a l al s y sy m l ml h w hw x l xl y l yl |
---|---|
matchkey_str |
article:22181997:2022----::nepeainfhsetanaiorpog |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QC |
publishDate |
2022 |
allfields |
10.3390/universe8060307 doi (DE-627)DOAJ02556899X (DE-599)DOAJ17a735e7a7f44053b2891f77e71d4bd8 DE-627 ger DE-627 rakwb eng QC793-793.5 Aifeng Li verfasserin aut Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recent measurements of the spectra and anisotropy of cosmic rays (CRs) show a fine structure that reflects the spectral hardenings of CRs nuclei at the rigidity <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 200 GV followed by softenings at <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 10 TV, and reveal complicated energy dependence of the amplitude and phase of anisotropy from 100 GeV to PeV. Numerous studies have shown that the existence of nearby CR sources and a local interstellar magnetic field (LIMF) near the solar system are crucial for such CR spectral and anisotropic patterns. In this work, we analyze the CR spectra of different CR components and the anisotropy considering the nearby Geminga supernova remnants (SNRs) source. In the calculation process, we also introduce the anisotropic diffusion of CRs induced by the LIMF based on the spatial-dependent propagation (SDP) model. As a result, our model can simultaneously account for the CR spectra and the anisotropy from 100 GeV to PeV. Future high-precision measurements of the CR anisotropy, for example, by the LHAASO experiment, would be of the essence in the assessment of our proposed model. cosmic ray anisotropy cosmic ray spectra Geminga supernova remnants local interstellar magnetic field Elementary particle physics Shiyu Yin verfasserin aut Maoyuan Liu verfasserin aut Hao Wang verfasserin aut Xiaoyu Li verfasserin aut Yaping Li verfasserin aut In Universe MDPI AG, 2015 8(2022), 6, p 307 (DE-627)820684236 (DE-600)2813994-X 22181997 nnns volume:8 year:2022 number:6, p 307 https://doi.org/10.3390/universe8060307 kostenfrei https://doaj.org/article/17a735e7a7f44053b2891f77e71d4bd8 kostenfrei https://www.mdpi.com/2218-1997/8/6/307 kostenfrei https://doaj.org/toc/2218-1997 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 6, p 307 |
spelling |
10.3390/universe8060307 doi (DE-627)DOAJ02556899X (DE-599)DOAJ17a735e7a7f44053b2891f77e71d4bd8 DE-627 ger DE-627 rakwb eng QC793-793.5 Aifeng Li verfasserin aut Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recent measurements of the spectra and anisotropy of cosmic rays (CRs) show a fine structure that reflects the spectral hardenings of CRs nuclei at the rigidity <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 200 GV followed by softenings at <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 10 TV, and reveal complicated energy dependence of the amplitude and phase of anisotropy from 100 GeV to PeV. Numerous studies have shown that the existence of nearby CR sources and a local interstellar magnetic field (LIMF) near the solar system are crucial for such CR spectral and anisotropic patterns. In this work, we analyze the CR spectra of different CR components and the anisotropy considering the nearby Geminga supernova remnants (SNRs) source. In the calculation process, we also introduce the anisotropic diffusion of CRs induced by the LIMF based on the spatial-dependent propagation (SDP) model. As a result, our model can simultaneously account for the CR spectra and the anisotropy from 100 GeV to PeV. Future high-precision measurements of the CR anisotropy, for example, by the LHAASO experiment, would be of the essence in the assessment of our proposed model. cosmic ray anisotropy cosmic ray spectra Geminga supernova remnants local interstellar magnetic field Elementary particle physics Shiyu Yin verfasserin aut Maoyuan Liu verfasserin aut Hao Wang verfasserin aut Xiaoyu Li verfasserin aut Yaping Li verfasserin aut In Universe MDPI AG, 2015 8(2022), 6, p 307 (DE-627)820684236 (DE-600)2813994-X 22181997 nnns volume:8 year:2022 number:6, p 307 https://doi.org/10.3390/universe8060307 kostenfrei https://doaj.org/article/17a735e7a7f44053b2891f77e71d4bd8 kostenfrei https://www.mdpi.com/2218-1997/8/6/307 kostenfrei https://doaj.org/toc/2218-1997 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 6, p 307 |
allfields_unstemmed |
10.3390/universe8060307 doi (DE-627)DOAJ02556899X (DE-599)DOAJ17a735e7a7f44053b2891f77e71d4bd8 DE-627 ger DE-627 rakwb eng QC793-793.5 Aifeng Li verfasserin aut Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recent measurements of the spectra and anisotropy of cosmic rays (CRs) show a fine structure that reflects the spectral hardenings of CRs nuclei at the rigidity <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 200 GV followed by softenings at <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 10 TV, and reveal complicated energy dependence of the amplitude and phase of anisotropy from 100 GeV to PeV. Numerous studies have shown that the existence of nearby CR sources and a local interstellar magnetic field (LIMF) near the solar system are crucial for such CR spectral and anisotropic patterns. In this work, we analyze the CR spectra of different CR components and the anisotropy considering the nearby Geminga supernova remnants (SNRs) source. In the calculation process, we also introduce the anisotropic diffusion of CRs induced by the LIMF based on the spatial-dependent propagation (SDP) model. As a result, our model can simultaneously account for the CR spectra and the anisotropy from 100 GeV to PeV. Future high-precision measurements of the CR anisotropy, for example, by the LHAASO experiment, would be of the essence in the assessment of our proposed model. cosmic ray anisotropy cosmic ray spectra Geminga supernova remnants local interstellar magnetic field Elementary particle physics Shiyu Yin verfasserin aut Maoyuan Liu verfasserin aut Hao Wang verfasserin aut Xiaoyu Li verfasserin aut Yaping Li verfasserin aut In Universe MDPI AG, 2015 8(2022), 6, p 307 (DE-627)820684236 (DE-600)2813994-X 22181997 nnns volume:8 year:2022 number:6, p 307 https://doi.org/10.3390/universe8060307 kostenfrei https://doaj.org/article/17a735e7a7f44053b2891f77e71d4bd8 kostenfrei https://www.mdpi.com/2218-1997/8/6/307 kostenfrei https://doaj.org/toc/2218-1997 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 6, p 307 |
allfieldsGer |
10.3390/universe8060307 doi (DE-627)DOAJ02556899X (DE-599)DOAJ17a735e7a7f44053b2891f77e71d4bd8 DE-627 ger DE-627 rakwb eng QC793-793.5 Aifeng Li verfasserin aut Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recent measurements of the spectra and anisotropy of cosmic rays (CRs) show a fine structure that reflects the spectral hardenings of CRs nuclei at the rigidity <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 200 GV followed by softenings at <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 10 TV, and reveal complicated energy dependence of the amplitude and phase of anisotropy from 100 GeV to PeV. Numerous studies have shown that the existence of nearby CR sources and a local interstellar magnetic field (LIMF) near the solar system are crucial for such CR spectral and anisotropic patterns. In this work, we analyze the CR spectra of different CR components and the anisotropy considering the nearby Geminga supernova remnants (SNRs) source. In the calculation process, we also introduce the anisotropic diffusion of CRs induced by the LIMF based on the spatial-dependent propagation (SDP) model. As a result, our model can simultaneously account for the CR spectra and the anisotropy from 100 GeV to PeV. Future high-precision measurements of the CR anisotropy, for example, by the LHAASO experiment, would be of the essence in the assessment of our proposed model. cosmic ray anisotropy cosmic ray spectra Geminga supernova remnants local interstellar magnetic field Elementary particle physics Shiyu Yin verfasserin aut Maoyuan Liu verfasserin aut Hao Wang verfasserin aut Xiaoyu Li verfasserin aut Yaping Li verfasserin aut In Universe MDPI AG, 2015 8(2022), 6, p 307 (DE-627)820684236 (DE-600)2813994-X 22181997 nnns volume:8 year:2022 number:6, p 307 https://doi.org/10.3390/universe8060307 kostenfrei https://doaj.org/article/17a735e7a7f44053b2891f77e71d4bd8 kostenfrei https://www.mdpi.com/2218-1997/8/6/307 kostenfrei https://doaj.org/toc/2218-1997 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 6, p 307 |
allfieldsSound |
10.3390/universe8060307 doi (DE-627)DOAJ02556899X (DE-599)DOAJ17a735e7a7f44053b2891f77e71d4bd8 DE-627 ger DE-627 rakwb eng QC793-793.5 Aifeng Li verfasserin aut Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recent measurements of the spectra and anisotropy of cosmic rays (CRs) show a fine structure that reflects the spectral hardenings of CRs nuclei at the rigidity <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 200 GV followed by softenings at <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 10 TV, and reveal complicated energy dependence of the amplitude and phase of anisotropy from 100 GeV to PeV. Numerous studies have shown that the existence of nearby CR sources and a local interstellar magnetic field (LIMF) near the solar system are crucial for such CR spectral and anisotropic patterns. In this work, we analyze the CR spectra of different CR components and the anisotropy considering the nearby Geminga supernova remnants (SNRs) source. In the calculation process, we also introduce the anisotropic diffusion of CRs induced by the LIMF based on the spatial-dependent propagation (SDP) model. As a result, our model can simultaneously account for the CR spectra and the anisotropy from 100 GeV to PeV. Future high-precision measurements of the CR anisotropy, for example, by the LHAASO experiment, would be of the essence in the assessment of our proposed model. cosmic ray anisotropy cosmic ray spectra Geminga supernova remnants local interstellar magnetic field Elementary particle physics Shiyu Yin verfasserin aut Maoyuan Liu verfasserin aut Hao Wang verfasserin aut Xiaoyu Li verfasserin aut Yaping Li verfasserin aut In Universe MDPI AG, 2015 8(2022), 6, p 307 (DE-627)820684236 (DE-600)2813994-X 22181997 nnns volume:8 year:2022 number:6, p 307 https://doi.org/10.3390/universe8060307 kostenfrei https://doaj.org/article/17a735e7a7f44053b2891f77e71d4bd8 kostenfrei https://www.mdpi.com/2218-1997/8/6/307 kostenfrei https://doaj.org/toc/2218-1997 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 6, p 307 |
language |
English |
source |
In Universe 8(2022), 6, p 307 volume:8 year:2022 number:6, p 307 |
sourceStr |
In Universe 8(2022), 6, p 307 volume:8 year:2022 number:6, p 307 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cosmic ray anisotropy cosmic ray spectra Geminga supernova remnants local interstellar magnetic field Elementary particle physics |
isfreeaccess_bool |
true |
container_title |
Universe |
authorswithroles_txt_mv |
Aifeng Li @@aut@@ Shiyu Yin @@aut@@ Maoyuan Liu @@aut@@ Hao Wang @@aut@@ Xiaoyu Li @@aut@@ Yaping Li @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
820684236 |
id |
DOAJ02556899X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02556899X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414190822.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/universe8060307</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02556899X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ17a735e7a7f44053b2891f77e71d4bd8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC793-793.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Aifeng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent measurements of the spectra and anisotropy of cosmic rays (CRs) show a fine structure that reflects the spectral hardenings of CRs nuclei at the rigidity <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 200 GV followed by softenings at <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 10 TV, and reveal complicated energy dependence of the amplitude and phase of anisotropy from 100 GeV to PeV. Numerous studies have shown that the existence of nearby CR sources and a local interstellar magnetic field (LIMF) near the solar system are crucial for such CR spectral and anisotropic patterns. In this work, we analyze the CR spectra of different CR components and the anisotropy considering the nearby Geminga supernova remnants (SNRs) source. In the calculation process, we also introduce the anisotropic diffusion of CRs induced by the LIMF based on the spatial-dependent propagation (SDP) model. As a result, our model can simultaneously account for the CR spectra and the anisotropy from 100 GeV to PeV. Future high-precision measurements of the CR anisotropy, for example, by the LHAASO experiment, would be of the essence in the assessment of our proposed model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cosmic ray anisotropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cosmic ray spectra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geminga supernova remnants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local interstellar magnetic field</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Elementary particle physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiyu Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maoyuan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoyu Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaping Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Universe</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">8(2022), 6, p 307</subfield><subfield code="w">(DE-627)820684236</subfield><subfield code="w">(DE-600)2813994-X</subfield><subfield code="x">22181997</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6, p 307</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/universe8060307</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/17a735e7a7f44053b2891f77e71d4bd8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-1997/8/6/307</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-1997</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">6, p 307</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Aifeng Li |
spellingShingle |
Aifeng Li misc QC793-793.5 misc cosmic ray anisotropy misc cosmic ray spectra misc Geminga supernova remnants misc local interstellar magnetic field misc Elementary particle physics Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays |
authorStr |
Aifeng Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820684236 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC793-793 |
illustrated |
Not Illustrated |
issn |
22181997 |
topic_title |
QC793-793.5 Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays cosmic ray anisotropy cosmic ray spectra Geminga supernova remnants local interstellar magnetic field |
topic |
misc QC793-793.5 misc cosmic ray anisotropy misc cosmic ray spectra misc Geminga supernova remnants misc local interstellar magnetic field misc Elementary particle physics |
topic_unstemmed |
misc QC793-793.5 misc cosmic ray anisotropy misc cosmic ray spectra misc Geminga supernova remnants misc local interstellar magnetic field misc Elementary particle physics |
topic_browse |
misc QC793-793.5 misc cosmic ray anisotropy misc cosmic ray spectra misc Geminga supernova remnants misc local interstellar magnetic field misc Elementary particle physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Universe |
hierarchy_parent_id |
820684236 |
hierarchy_top_title |
Universe |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820684236 (DE-600)2813994-X |
title |
Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays |
ctrlnum |
(DE-627)DOAJ02556899X (DE-599)DOAJ17a735e7a7f44053b2891f77e71d4bd8 |
title_full |
Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays |
author_sort |
Aifeng Li |
journal |
Universe |
journalStr |
Universe |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Aifeng Li Shiyu Yin Maoyuan Liu Hao Wang Xiaoyu Li Yaping Li |
container_volume |
8 |
class |
QC793-793.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Aifeng Li |
doi_str_mv |
10.3390/universe8060307 |
author2-role |
verfasserin |
title_sort |
interpretation of the spectra and anisotropy of galactic cosmic rays |
callnumber |
QC793-793.5 |
title_auth |
Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays |
abstract |
Recent measurements of the spectra and anisotropy of cosmic rays (CRs) show a fine structure that reflects the spectral hardenings of CRs nuclei at the rigidity <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 200 GV followed by softenings at <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 10 TV, and reveal complicated energy dependence of the amplitude and phase of anisotropy from 100 GeV to PeV. Numerous studies have shown that the existence of nearby CR sources and a local interstellar magnetic field (LIMF) near the solar system are crucial for such CR spectral and anisotropic patterns. In this work, we analyze the CR spectra of different CR components and the anisotropy considering the nearby Geminga supernova remnants (SNRs) source. In the calculation process, we also introduce the anisotropic diffusion of CRs induced by the LIMF based on the spatial-dependent propagation (SDP) model. As a result, our model can simultaneously account for the CR spectra and the anisotropy from 100 GeV to PeV. Future high-precision measurements of the CR anisotropy, for example, by the LHAASO experiment, would be of the essence in the assessment of our proposed model. |
abstractGer |
Recent measurements of the spectra and anisotropy of cosmic rays (CRs) show a fine structure that reflects the spectral hardenings of CRs nuclei at the rigidity <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 200 GV followed by softenings at <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 10 TV, and reveal complicated energy dependence of the amplitude and phase of anisotropy from 100 GeV to PeV. Numerous studies have shown that the existence of nearby CR sources and a local interstellar magnetic field (LIMF) near the solar system are crucial for such CR spectral and anisotropic patterns. In this work, we analyze the CR spectra of different CR components and the anisotropy considering the nearby Geminga supernova remnants (SNRs) source. In the calculation process, we also introduce the anisotropic diffusion of CRs induced by the LIMF based on the spatial-dependent propagation (SDP) model. As a result, our model can simultaneously account for the CR spectra and the anisotropy from 100 GeV to PeV. Future high-precision measurements of the CR anisotropy, for example, by the LHAASO experiment, would be of the essence in the assessment of our proposed model. |
abstract_unstemmed |
Recent measurements of the spectra and anisotropy of cosmic rays (CRs) show a fine structure that reflects the spectral hardenings of CRs nuclei at the rigidity <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 200 GV followed by softenings at <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 10 TV, and reveal complicated energy dependence of the amplitude and phase of anisotropy from 100 GeV to PeV. Numerous studies have shown that the existence of nearby CR sources and a local interstellar magnetic field (LIMF) near the solar system are crucial for such CR spectral and anisotropic patterns. In this work, we analyze the CR spectra of different CR components and the anisotropy considering the nearby Geminga supernova remnants (SNRs) source. In the calculation process, we also introduce the anisotropic diffusion of CRs induced by the LIMF based on the spatial-dependent propagation (SDP) model. As a result, our model can simultaneously account for the CR spectra and the anisotropy from 100 GeV to PeV. Future high-precision measurements of the CR anisotropy, for example, by the LHAASO experiment, would be of the essence in the assessment of our proposed model. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 307 |
title_short |
Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays |
url |
https://doi.org/10.3390/universe8060307 https://doaj.org/article/17a735e7a7f44053b2891f77e71d4bd8 https://www.mdpi.com/2218-1997/8/6/307 https://doaj.org/toc/2218-1997 |
remote_bool |
true |
author2 |
Shiyu Yin Maoyuan Liu Hao Wang Xiaoyu Li Yaping Li |
author2Str |
Shiyu Yin Maoyuan Liu Hao Wang Xiaoyu Li Yaping Li |
ppnlink |
820684236 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/universe8060307 |
callnumber-a |
QC793-793.5 |
up_date |
2024-07-03T15:47:23.479Z |
_version_ |
1803573414833684480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02556899X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414190822.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/universe8060307</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02556899X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ17a735e7a7f44053b2891f77e71d4bd8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC793-793.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Aifeng Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interpretation of the Spectra and Anisotropy of Galactic Cosmic Rays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent measurements of the spectra and anisotropy of cosmic rays (CRs) show a fine structure that reflects the spectral hardenings of CRs nuclei at the rigidity <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 200 GV followed by softenings at <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<mi mathvariant="script"<R</mi<</mrow<</semantics<</math<</inline-formula< ∼ 10 TV, and reveal complicated energy dependence of the amplitude and phase of anisotropy from 100 GeV to PeV. Numerous studies have shown that the existence of nearby CR sources and a local interstellar magnetic field (LIMF) near the solar system are crucial for such CR spectral and anisotropic patterns. In this work, we analyze the CR spectra of different CR components and the anisotropy considering the nearby Geminga supernova remnants (SNRs) source. In the calculation process, we also introduce the anisotropic diffusion of CRs induced by the LIMF based on the spatial-dependent propagation (SDP) model. As a result, our model can simultaneously account for the CR spectra and the anisotropy from 100 GeV to PeV. Future high-precision measurements of the CR anisotropy, for example, by the LHAASO experiment, would be of the essence in the assessment of our proposed model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cosmic ray anisotropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cosmic ray spectra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geminga supernova remnants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local interstellar magnetic field</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Elementary particle physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiyu Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maoyuan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoyu Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaping Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Universe</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">8(2022), 6, p 307</subfield><subfield code="w">(DE-627)820684236</subfield><subfield code="w">(DE-600)2813994-X</subfield><subfield code="x">22181997</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6, p 307</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/universe8060307</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/17a735e7a7f44053b2891f77e71d4bd8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-1997/8/6/307</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-1997</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">6, p 307</subfield></datafield></record></collection>
|
score |
7.402112 |