A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing
For robots equipped with an advanced computer vision-based system, object recognition has stringent real-time requirements. When the environment becomes complicated and keeps changing, existing works (e.g., template-matching strategy and machine-learning strategy) are computationally expensive, comp...
Ausführliche Beschreibung
Autor*in: |
Hui Wei [verfasserIn] Luping Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 18(2018), 7, p 2116 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2018 ; number:7, p 2116 |
Links: |
---|
DOI / URN: |
10.3390/s18072116 |
---|
Katalog-ID: |
DOAJ025621289 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ025621289 | ||
003 | DE-627 | ||
005 | 20230503063757.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s18072116 |2 doi | |
035 | |a (DE-627)DOAJ025621289 | ||
035 | |a (DE-599)DOAJ0c58ddccd76d4f01b339cd4316b84c3d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Hui Wei |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a For robots equipped with an advanced computer vision-based system, object recognition has stringent real-time requirements. When the environment becomes complicated and keeps changing, existing works (e.g., template-matching strategy and machine-learning strategy) are computationally expensive, compromising object recognition performance and even stability. In order to detect objects accurately, it is necessary to build an efficient imaging sensor architecture as the neural architecture. Inspired by the neural mechanism of primary visual cortex, this paper presents an efficient three-layer architecture and proposes an approach of constraint propagation examination to efficiently extract and process information (linear contour). Through applying this architecture in the preprocessing phase to extract lines, the running time of object detection is decreased dramatically because not only are all lines represented as very simple vectors, but also the number of lines is very limited. In terms of the second measure of improving efficiency, we apply a shape-based recognition method because it does not need any high-dimensional feature descriptor, long-term training, or time-expensive preprocessing. The final results perform well. It is proved that detection performance is good. The brain is the result of natural optimization, so we conclude that a visual cortex-inspired imaging sensor architecture can greatly improve the efficiency of information processing. | ||
650 | 4 | |a visual cortex-inspired architecture | |
650 | 4 | |a constraint propagation | |
650 | 4 | |a imaging sensor | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Luping Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 18(2018), 7, p 2116 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2018 |g number:7, p 2116 |
856 | 4 | 0 | |u https://doi.org/10.3390/s18072116 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0c58ddccd76d4f01b339cd4316b84c3d |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/1424-8220/18/7/2116 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 18 |j 2018 |e 7, p 2116 |
author_variant |
h w hw l w lw |
---|---|
matchkey_str |
article:14248220:2018----::vsacreisieiaigesrrhtcuenisplct |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TP |
publishDate |
2018 |
allfields |
10.3390/s18072116 doi (DE-627)DOAJ025621289 (DE-599)DOAJ0c58ddccd76d4f01b339cd4316b84c3d DE-627 ger DE-627 rakwb eng TP1-1185 Hui Wei verfasserin aut A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For robots equipped with an advanced computer vision-based system, object recognition has stringent real-time requirements. When the environment becomes complicated and keeps changing, existing works (e.g., template-matching strategy and machine-learning strategy) are computationally expensive, compromising object recognition performance and even stability. In order to detect objects accurately, it is necessary to build an efficient imaging sensor architecture as the neural architecture. Inspired by the neural mechanism of primary visual cortex, this paper presents an efficient three-layer architecture and proposes an approach of constraint propagation examination to efficiently extract and process information (linear contour). Through applying this architecture in the preprocessing phase to extract lines, the running time of object detection is decreased dramatically because not only are all lines represented as very simple vectors, but also the number of lines is very limited. In terms of the second measure of improving efficiency, we apply a shape-based recognition method because it does not need any high-dimensional feature descriptor, long-term training, or time-expensive preprocessing. The final results perform well. It is proved that detection performance is good. The brain is the result of natural optimization, so we conclude that a visual cortex-inspired imaging sensor architecture can greatly improve the efficiency of information processing. visual cortex-inspired architecture constraint propagation imaging sensor Chemical technology Luping Wang verfasserin aut In Sensors MDPI AG, 2003 18(2018), 7, p 2116 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:18 year:2018 number:7, p 2116 https://doi.org/10.3390/s18072116 kostenfrei https://doaj.org/article/0c58ddccd76d4f01b339cd4316b84c3d kostenfrei http://www.mdpi.com/1424-8220/18/7/2116 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 7, p 2116 |
spelling |
10.3390/s18072116 doi (DE-627)DOAJ025621289 (DE-599)DOAJ0c58ddccd76d4f01b339cd4316b84c3d DE-627 ger DE-627 rakwb eng TP1-1185 Hui Wei verfasserin aut A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For robots equipped with an advanced computer vision-based system, object recognition has stringent real-time requirements. When the environment becomes complicated and keeps changing, existing works (e.g., template-matching strategy and machine-learning strategy) are computationally expensive, compromising object recognition performance and even stability. In order to detect objects accurately, it is necessary to build an efficient imaging sensor architecture as the neural architecture. Inspired by the neural mechanism of primary visual cortex, this paper presents an efficient three-layer architecture and proposes an approach of constraint propagation examination to efficiently extract and process information (linear contour). Through applying this architecture in the preprocessing phase to extract lines, the running time of object detection is decreased dramatically because not only are all lines represented as very simple vectors, but also the number of lines is very limited. In terms of the second measure of improving efficiency, we apply a shape-based recognition method because it does not need any high-dimensional feature descriptor, long-term training, or time-expensive preprocessing. The final results perform well. It is proved that detection performance is good. The brain is the result of natural optimization, so we conclude that a visual cortex-inspired imaging sensor architecture can greatly improve the efficiency of information processing. visual cortex-inspired architecture constraint propagation imaging sensor Chemical technology Luping Wang verfasserin aut In Sensors MDPI AG, 2003 18(2018), 7, p 2116 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:18 year:2018 number:7, p 2116 https://doi.org/10.3390/s18072116 kostenfrei https://doaj.org/article/0c58ddccd76d4f01b339cd4316b84c3d kostenfrei http://www.mdpi.com/1424-8220/18/7/2116 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 7, p 2116 |
allfields_unstemmed |
10.3390/s18072116 doi (DE-627)DOAJ025621289 (DE-599)DOAJ0c58ddccd76d4f01b339cd4316b84c3d DE-627 ger DE-627 rakwb eng TP1-1185 Hui Wei verfasserin aut A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For robots equipped with an advanced computer vision-based system, object recognition has stringent real-time requirements. When the environment becomes complicated and keeps changing, existing works (e.g., template-matching strategy and machine-learning strategy) are computationally expensive, compromising object recognition performance and even stability. In order to detect objects accurately, it is necessary to build an efficient imaging sensor architecture as the neural architecture. Inspired by the neural mechanism of primary visual cortex, this paper presents an efficient three-layer architecture and proposes an approach of constraint propagation examination to efficiently extract and process information (linear contour). Through applying this architecture in the preprocessing phase to extract lines, the running time of object detection is decreased dramatically because not only are all lines represented as very simple vectors, but also the number of lines is very limited. In terms of the second measure of improving efficiency, we apply a shape-based recognition method because it does not need any high-dimensional feature descriptor, long-term training, or time-expensive preprocessing. The final results perform well. It is proved that detection performance is good. The brain is the result of natural optimization, so we conclude that a visual cortex-inspired imaging sensor architecture can greatly improve the efficiency of information processing. visual cortex-inspired architecture constraint propagation imaging sensor Chemical technology Luping Wang verfasserin aut In Sensors MDPI AG, 2003 18(2018), 7, p 2116 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:18 year:2018 number:7, p 2116 https://doi.org/10.3390/s18072116 kostenfrei https://doaj.org/article/0c58ddccd76d4f01b339cd4316b84c3d kostenfrei http://www.mdpi.com/1424-8220/18/7/2116 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 7, p 2116 |
allfieldsGer |
10.3390/s18072116 doi (DE-627)DOAJ025621289 (DE-599)DOAJ0c58ddccd76d4f01b339cd4316b84c3d DE-627 ger DE-627 rakwb eng TP1-1185 Hui Wei verfasserin aut A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For robots equipped with an advanced computer vision-based system, object recognition has stringent real-time requirements. When the environment becomes complicated and keeps changing, existing works (e.g., template-matching strategy and machine-learning strategy) are computationally expensive, compromising object recognition performance and even stability. In order to detect objects accurately, it is necessary to build an efficient imaging sensor architecture as the neural architecture. Inspired by the neural mechanism of primary visual cortex, this paper presents an efficient three-layer architecture and proposes an approach of constraint propagation examination to efficiently extract and process information (linear contour). Through applying this architecture in the preprocessing phase to extract lines, the running time of object detection is decreased dramatically because not only are all lines represented as very simple vectors, but also the number of lines is very limited. In terms of the second measure of improving efficiency, we apply a shape-based recognition method because it does not need any high-dimensional feature descriptor, long-term training, or time-expensive preprocessing. The final results perform well. It is proved that detection performance is good. The brain is the result of natural optimization, so we conclude that a visual cortex-inspired imaging sensor architecture can greatly improve the efficiency of information processing. visual cortex-inspired architecture constraint propagation imaging sensor Chemical technology Luping Wang verfasserin aut In Sensors MDPI AG, 2003 18(2018), 7, p 2116 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:18 year:2018 number:7, p 2116 https://doi.org/10.3390/s18072116 kostenfrei https://doaj.org/article/0c58ddccd76d4f01b339cd4316b84c3d kostenfrei http://www.mdpi.com/1424-8220/18/7/2116 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 7, p 2116 |
allfieldsSound |
10.3390/s18072116 doi (DE-627)DOAJ025621289 (DE-599)DOAJ0c58ddccd76d4f01b339cd4316b84c3d DE-627 ger DE-627 rakwb eng TP1-1185 Hui Wei verfasserin aut A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For robots equipped with an advanced computer vision-based system, object recognition has stringent real-time requirements. When the environment becomes complicated and keeps changing, existing works (e.g., template-matching strategy and machine-learning strategy) are computationally expensive, compromising object recognition performance and even stability. In order to detect objects accurately, it is necessary to build an efficient imaging sensor architecture as the neural architecture. Inspired by the neural mechanism of primary visual cortex, this paper presents an efficient three-layer architecture and proposes an approach of constraint propagation examination to efficiently extract and process information (linear contour). Through applying this architecture in the preprocessing phase to extract lines, the running time of object detection is decreased dramatically because not only are all lines represented as very simple vectors, but also the number of lines is very limited. In terms of the second measure of improving efficiency, we apply a shape-based recognition method because it does not need any high-dimensional feature descriptor, long-term training, or time-expensive preprocessing. The final results perform well. It is proved that detection performance is good. The brain is the result of natural optimization, so we conclude that a visual cortex-inspired imaging sensor architecture can greatly improve the efficiency of information processing. visual cortex-inspired architecture constraint propagation imaging sensor Chemical technology Luping Wang verfasserin aut In Sensors MDPI AG, 2003 18(2018), 7, p 2116 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:18 year:2018 number:7, p 2116 https://doi.org/10.3390/s18072116 kostenfrei https://doaj.org/article/0c58ddccd76d4f01b339cd4316b84c3d kostenfrei http://www.mdpi.com/1424-8220/18/7/2116 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 7, p 2116 |
language |
English |
source |
In Sensors 18(2018), 7, p 2116 volume:18 year:2018 number:7, p 2116 |
sourceStr |
In Sensors 18(2018), 7, p 2116 volume:18 year:2018 number:7, p 2116 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
visual cortex-inspired architecture constraint propagation imaging sensor Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Hui Wei @@aut@@ Luping Wang @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ025621289 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025621289</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503063757.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s18072116</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025621289</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0c58ddccd76d4f01b339cd4316b84c3d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hui Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For robots equipped with an advanced computer vision-based system, object recognition has stringent real-time requirements. When the environment becomes complicated and keeps changing, existing works (e.g., template-matching strategy and machine-learning strategy) are computationally expensive, compromising object recognition performance and even stability. In order to detect objects accurately, it is necessary to build an efficient imaging sensor architecture as the neural architecture. Inspired by the neural mechanism of primary visual cortex, this paper presents an efficient three-layer architecture and proposes an approach of constraint propagation examination to efficiently extract and process information (linear contour). Through applying this architecture in the preprocessing phase to extract lines, the running time of object detection is decreased dramatically because not only are all lines represented as very simple vectors, but also the number of lines is very limited. In terms of the second measure of improving efficiency, we apply a shape-based recognition method because it does not need any high-dimensional feature descriptor, long-term training, or time-expensive preprocessing. The final results perform well. It is proved that detection performance is good. The brain is the result of natural optimization, so we conclude that a visual cortex-inspired imaging sensor architecture can greatly improve the efficiency of information processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">visual cortex-inspired architecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">constraint propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">imaging sensor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luping Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">18(2018), 7, p 2116</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:7, p 2116</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s18072116</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0c58ddccd76d4f01b339cd4316b84c3d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1424-8220/18/7/2116</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2018</subfield><subfield code="e">7, p 2116</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Hui Wei |
spellingShingle |
Hui Wei misc TP1-1185 misc visual cortex-inspired architecture misc constraint propagation misc imaging sensor misc Chemical technology A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing |
authorStr |
Hui Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing visual cortex-inspired architecture constraint propagation imaging sensor |
topic |
misc TP1-1185 misc visual cortex-inspired architecture misc constraint propagation misc imaging sensor misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc visual cortex-inspired architecture misc constraint propagation misc imaging sensor misc Chemical technology |
topic_browse |
misc TP1-1185 misc visual cortex-inspired architecture misc constraint propagation misc imaging sensor misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing |
ctrlnum |
(DE-627)DOAJ025621289 (DE-599)DOAJ0c58ddccd76d4f01b339cd4316b84c3d |
title_full |
A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing |
author_sort |
Hui Wei |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Hui Wei Luping Wang |
container_volume |
18 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Hui Wei |
doi_str_mv |
10.3390/s18072116 |
author2-role |
verfasserin |
title_sort |
visual cortex-inspired imaging-sensor architecture and its application in real-time processing |
callnumber |
TP1-1185 |
title_auth |
A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing |
abstract |
For robots equipped with an advanced computer vision-based system, object recognition has stringent real-time requirements. When the environment becomes complicated and keeps changing, existing works (e.g., template-matching strategy and machine-learning strategy) are computationally expensive, compromising object recognition performance and even stability. In order to detect objects accurately, it is necessary to build an efficient imaging sensor architecture as the neural architecture. Inspired by the neural mechanism of primary visual cortex, this paper presents an efficient three-layer architecture and proposes an approach of constraint propagation examination to efficiently extract and process information (linear contour). Through applying this architecture in the preprocessing phase to extract lines, the running time of object detection is decreased dramatically because not only are all lines represented as very simple vectors, but also the number of lines is very limited. In terms of the second measure of improving efficiency, we apply a shape-based recognition method because it does not need any high-dimensional feature descriptor, long-term training, or time-expensive preprocessing. The final results perform well. It is proved that detection performance is good. The brain is the result of natural optimization, so we conclude that a visual cortex-inspired imaging sensor architecture can greatly improve the efficiency of information processing. |
abstractGer |
For robots equipped with an advanced computer vision-based system, object recognition has stringent real-time requirements. When the environment becomes complicated and keeps changing, existing works (e.g., template-matching strategy and machine-learning strategy) are computationally expensive, compromising object recognition performance and even stability. In order to detect objects accurately, it is necessary to build an efficient imaging sensor architecture as the neural architecture. Inspired by the neural mechanism of primary visual cortex, this paper presents an efficient three-layer architecture and proposes an approach of constraint propagation examination to efficiently extract and process information (linear contour). Through applying this architecture in the preprocessing phase to extract lines, the running time of object detection is decreased dramatically because not only are all lines represented as very simple vectors, but also the number of lines is very limited. In terms of the second measure of improving efficiency, we apply a shape-based recognition method because it does not need any high-dimensional feature descriptor, long-term training, or time-expensive preprocessing. The final results perform well. It is proved that detection performance is good. The brain is the result of natural optimization, so we conclude that a visual cortex-inspired imaging sensor architecture can greatly improve the efficiency of information processing. |
abstract_unstemmed |
For robots equipped with an advanced computer vision-based system, object recognition has stringent real-time requirements. When the environment becomes complicated and keeps changing, existing works (e.g., template-matching strategy and machine-learning strategy) are computationally expensive, compromising object recognition performance and even stability. In order to detect objects accurately, it is necessary to build an efficient imaging sensor architecture as the neural architecture. Inspired by the neural mechanism of primary visual cortex, this paper presents an efficient three-layer architecture and proposes an approach of constraint propagation examination to efficiently extract and process information (linear contour). Through applying this architecture in the preprocessing phase to extract lines, the running time of object detection is decreased dramatically because not only are all lines represented as very simple vectors, but also the number of lines is very limited. In terms of the second measure of improving efficiency, we apply a shape-based recognition method because it does not need any high-dimensional feature descriptor, long-term training, or time-expensive preprocessing. The final results perform well. It is proved that detection performance is good. The brain is the result of natural optimization, so we conclude that a visual cortex-inspired imaging sensor architecture can greatly improve the efficiency of information processing. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 2116 |
title_short |
A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing |
url |
https://doi.org/10.3390/s18072116 https://doaj.org/article/0c58ddccd76d4f01b339cd4316b84c3d http://www.mdpi.com/1424-8220/18/7/2116 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Luping Wang |
author2Str |
Luping Wang |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s18072116 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T16:06:52.618Z |
_version_ |
1803574640763731968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025621289</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503063757.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s18072116</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025621289</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0c58ddccd76d4f01b339cd4316b84c3d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hui Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For robots equipped with an advanced computer vision-based system, object recognition has stringent real-time requirements. When the environment becomes complicated and keeps changing, existing works (e.g., template-matching strategy and machine-learning strategy) are computationally expensive, compromising object recognition performance and even stability. In order to detect objects accurately, it is necessary to build an efficient imaging sensor architecture as the neural architecture. Inspired by the neural mechanism of primary visual cortex, this paper presents an efficient three-layer architecture and proposes an approach of constraint propagation examination to efficiently extract and process information (linear contour). Through applying this architecture in the preprocessing phase to extract lines, the running time of object detection is decreased dramatically because not only are all lines represented as very simple vectors, but also the number of lines is very limited. In terms of the second measure of improving efficiency, we apply a shape-based recognition method because it does not need any high-dimensional feature descriptor, long-term training, or time-expensive preprocessing. The final results perform well. It is proved that detection performance is good. The brain is the result of natural optimization, so we conclude that a visual cortex-inspired imaging sensor architecture can greatly improve the efficiency of information processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">visual cortex-inspired architecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">constraint propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">imaging sensor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luping Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">18(2018), 7, p 2116</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:7, p 2116</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s18072116</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0c58ddccd76d4f01b339cd4316b84c3d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1424-8220/18/7/2116</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2018</subfield><subfield code="e">7, p 2116</subfield></datafield></record></collection>
|
score |
7.4020243 |