Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals
Epilepsy is a disease that decreases the quality of life of patients; it is also among the most common neurological diseases. Several studies have approached the classification and prediction of seizures by using electroencephalographic data and machine learning techniques. A large diversity of feat...
Ausführliche Beschreibung
Autor*in: |
Sergio E. Sánchez-Hernández [verfasserIn] Ricardo A. Salido-Ruiz [verfasserIn] Sulema Torres-Ramos [verfasserIn] Israel Román-Godínez [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 22(2022), 8, p 3066 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2022 ; number:8, p 3066 |
Links: |
---|
DOI / URN: |
10.3390/s22083066 |
---|
Katalog-ID: |
DOAJ025688472 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ025688472 | ||
003 | DE-627 | ||
005 | 20240414134348.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s22083066 |2 doi | |
035 | |a (DE-627)DOAJ025688472 | ||
035 | |a (DE-599)DOAJ75fc712a566b4e6a8336870ebf7fb40e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Sergio E. Sánchez-Hernández |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Epilepsy is a disease that decreases the quality of life of patients; it is also among the most common neurological diseases. Several studies have approached the classification and prediction of seizures by using electroencephalographic data and machine learning techniques. A large diversity of features has been extracted from electroencephalograms to perform classification tasks; therefore, it is important to use feature selection methods to select those that leverage pattern recognition. In this study, the performance of a set of feature selection methods was compared across different classification models; the classification task consisted of the detection of ictal activity from the CHB-MIT and Siena Scalp EEG databases. The comparison was implemented for different feature sets and the number of features. Furthermore, the similarity between selected feature subsets across classification models was evaluated. The best F1-score (0.90) was reported by the K-nearest neighbor along with the CHB-MIT dataset. Results showed that none of the feature selection methods clearly outperformed the rest of the methods, as the performance was notably affected by the classifier, dataset, and feature set. Two of the combinations (classifier/feature selection method) reporting the best results were K-nearest neighbor/support vector machine and random forest/embedded random forest. | ||
650 | 4 | |a EEG | |
650 | 4 | |a epilepsy | |
650 | 4 | |a seizure detection | |
650 | 4 | |a machine learning | |
650 | 4 | |a features | |
650 | 4 | |a feature selection | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Ricardo A. Salido-Ruiz |e verfasserin |4 aut | |
700 | 0 | |a Sulema Torres-Ramos |e verfasserin |4 aut | |
700 | 0 | |a Israel Román-Godínez |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 22(2022), 8, p 3066 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2022 |g number:8, p 3066 |
856 | 4 | 0 | |u https://doi.org/10.3390/s22083066 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/75fc712a566b4e6a8336870ebf7fb40e |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/22/8/3066 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2022 |e 8, p 3066 |
author_variant |
s e s h sesh r a s r rasr s t r str i r g irg |
---|---|
matchkey_str |
article:14248220:2022----::vlainfetrslcinehdfrlsiiainfplp |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TP |
publishDate |
2022 |
allfields |
10.3390/s22083066 doi (DE-627)DOAJ025688472 (DE-599)DOAJ75fc712a566b4e6a8336870ebf7fb40e DE-627 ger DE-627 rakwb eng TP1-1185 Sergio E. Sánchez-Hernández verfasserin aut Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy is a disease that decreases the quality of life of patients; it is also among the most common neurological diseases. Several studies have approached the classification and prediction of seizures by using electroencephalographic data and machine learning techniques. A large diversity of features has been extracted from electroencephalograms to perform classification tasks; therefore, it is important to use feature selection methods to select those that leverage pattern recognition. In this study, the performance of a set of feature selection methods was compared across different classification models; the classification task consisted of the detection of ictal activity from the CHB-MIT and Siena Scalp EEG databases. The comparison was implemented for different feature sets and the number of features. Furthermore, the similarity between selected feature subsets across classification models was evaluated. The best F1-score (0.90) was reported by the K-nearest neighbor along with the CHB-MIT dataset. Results showed that none of the feature selection methods clearly outperformed the rest of the methods, as the performance was notably affected by the classifier, dataset, and feature set. Two of the combinations (classifier/feature selection method) reporting the best results were K-nearest neighbor/support vector machine and random forest/embedded random forest. EEG epilepsy seizure detection machine learning features feature selection Chemical technology Ricardo A. Salido-Ruiz verfasserin aut Sulema Torres-Ramos verfasserin aut Israel Román-Godínez verfasserin aut In Sensors MDPI AG, 2003 22(2022), 8, p 3066 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:8, p 3066 https://doi.org/10.3390/s22083066 kostenfrei https://doaj.org/article/75fc712a566b4e6a8336870ebf7fb40e kostenfrei https://www.mdpi.com/1424-8220/22/8/3066 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 8, p 3066 |
spelling |
10.3390/s22083066 doi (DE-627)DOAJ025688472 (DE-599)DOAJ75fc712a566b4e6a8336870ebf7fb40e DE-627 ger DE-627 rakwb eng TP1-1185 Sergio E. Sánchez-Hernández verfasserin aut Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy is a disease that decreases the quality of life of patients; it is also among the most common neurological diseases. Several studies have approached the classification and prediction of seizures by using electroencephalographic data and machine learning techniques. A large diversity of features has been extracted from electroencephalograms to perform classification tasks; therefore, it is important to use feature selection methods to select those that leverage pattern recognition. In this study, the performance of a set of feature selection methods was compared across different classification models; the classification task consisted of the detection of ictal activity from the CHB-MIT and Siena Scalp EEG databases. The comparison was implemented for different feature sets and the number of features. Furthermore, the similarity between selected feature subsets across classification models was evaluated. The best F1-score (0.90) was reported by the K-nearest neighbor along with the CHB-MIT dataset. Results showed that none of the feature selection methods clearly outperformed the rest of the methods, as the performance was notably affected by the classifier, dataset, and feature set. Two of the combinations (classifier/feature selection method) reporting the best results were K-nearest neighbor/support vector machine and random forest/embedded random forest. EEG epilepsy seizure detection machine learning features feature selection Chemical technology Ricardo A. Salido-Ruiz verfasserin aut Sulema Torres-Ramos verfasserin aut Israel Román-Godínez verfasserin aut In Sensors MDPI AG, 2003 22(2022), 8, p 3066 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:8, p 3066 https://doi.org/10.3390/s22083066 kostenfrei https://doaj.org/article/75fc712a566b4e6a8336870ebf7fb40e kostenfrei https://www.mdpi.com/1424-8220/22/8/3066 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 8, p 3066 |
allfields_unstemmed |
10.3390/s22083066 doi (DE-627)DOAJ025688472 (DE-599)DOAJ75fc712a566b4e6a8336870ebf7fb40e DE-627 ger DE-627 rakwb eng TP1-1185 Sergio E. Sánchez-Hernández verfasserin aut Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy is a disease that decreases the quality of life of patients; it is also among the most common neurological diseases. Several studies have approached the classification and prediction of seizures by using electroencephalographic data and machine learning techniques. A large diversity of features has been extracted from electroencephalograms to perform classification tasks; therefore, it is important to use feature selection methods to select those that leverage pattern recognition. In this study, the performance of a set of feature selection methods was compared across different classification models; the classification task consisted of the detection of ictal activity from the CHB-MIT and Siena Scalp EEG databases. The comparison was implemented for different feature sets and the number of features. Furthermore, the similarity between selected feature subsets across classification models was evaluated. The best F1-score (0.90) was reported by the K-nearest neighbor along with the CHB-MIT dataset. Results showed that none of the feature selection methods clearly outperformed the rest of the methods, as the performance was notably affected by the classifier, dataset, and feature set. Two of the combinations (classifier/feature selection method) reporting the best results were K-nearest neighbor/support vector machine and random forest/embedded random forest. EEG epilepsy seizure detection machine learning features feature selection Chemical technology Ricardo A. Salido-Ruiz verfasserin aut Sulema Torres-Ramos verfasserin aut Israel Román-Godínez verfasserin aut In Sensors MDPI AG, 2003 22(2022), 8, p 3066 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:8, p 3066 https://doi.org/10.3390/s22083066 kostenfrei https://doaj.org/article/75fc712a566b4e6a8336870ebf7fb40e kostenfrei https://www.mdpi.com/1424-8220/22/8/3066 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 8, p 3066 |
allfieldsGer |
10.3390/s22083066 doi (DE-627)DOAJ025688472 (DE-599)DOAJ75fc712a566b4e6a8336870ebf7fb40e DE-627 ger DE-627 rakwb eng TP1-1185 Sergio E. Sánchez-Hernández verfasserin aut Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy is a disease that decreases the quality of life of patients; it is also among the most common neurological diseases. Several studies have approached the classification and prediction of seizures by using electroencephalographic data and machine learning techniques. A large diversity of features has been extracted from electroencephalograms to perform classification tasks; therefore, it is important to use feature selection methods to select those that leverage pattern recognition. In this study, the performance of a set of feature selection methods was compared across different classification models; the classification task consisted of the detection of ictal activity from the CHB-MIT and Siena Scalp EEG databases. The comparison was implemented for different feature sets and the number of features. Furthermore, the similarity between selected feature subsets across classification models was evaluated. The best F1-score (0.90) was reported by the K-nearest neighbor along with the CHB-MIT dataset. Results showed that none of the feature selection methods clearly outperformed the rest of the methods, as the performance was notably affected by the classifier, dataset, and feature set. Two of the combinations (classifier/feature selection method) reporting the best results were K-nearest neighbor/support vector machine and random forest/embedded random forest. EEG epilepsy seizure detection machine learning features feature selection Chemical technology Ricardo A. Salido-Ruiz verfasserin aut Sulema Torres-Ramos verfasserin aut Israel Román-Godínez verfasserin aut In Sensors MDPI AG, 2003 22(2022), 8, p 3066 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:8, p 3066 https://doi.org/10.3390/s22083066 kostenfrei https://doaj.org/article/75fc712a566b4e6a8336870ebf7fb40e kostenfrei https://www.mdpi.com/1424-8220/22/8/3066 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 8, p 3066 |
allfieldsSound |
10.3390/s22083066 doi (DE-627)DOAJ025688472 (DE-599)DOAJ75fc712a566b4e6a8336870ebf7fb40e DE-627 ger DE-627 rakwb eng TP1-1185 Sergio E. Sánchez-Hernández verfasserin aut Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Epilepsy is a disease that decreases the quality of life of patients; it is also among the most common neurological diseases. Several studies have approached the classification and prediction of seizures by using electroencephalographic data and machine learning techniques. A large diversity of features has been extracted from electroencephalograms to perform classification tasks; therefore, it is important to use feature selection methods to select those that leverage pattern recognition. In this study, the performance of a set of feature selection methods was compared across different classification models; the classification task consisted of the detection of ictal activity from the CHB-MIT and Siena Scalp EEG databases. The comparison was implemented for different feature sets and the number of features. Furthermore, the similarity between selected feature subsets across classification models was evaluated. The best F1-score (0.90) was reported by the K-nearest neighbor along with the CHB-MIT dataset. Results showed that none of the feature selection methods clearly outperformed the rest of the methods, as the performance was notably affected by the classifier, dataset, and feature set. Two of the combinations (classifier/feature selection method) reporting the best results were K-nearest neighbor/support vector machine and random forest/embedded random forest. EEG epilepsy seizure detection machine learning features feature selection Chemical technology Ricardo A. Salido-Ruiz verfasserin aut Sulema Torres-Ramos verfasserin aut Israel Román-Godínez verfasserin aut In Sensors MDPI AG, 2003 22(2022), 8, p 3066 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:8, p 3066 https://doi.org/10.3390/s22083066 kostenfrei https://doaj.org/article/75fc712a566b4e6a8336870ebf7fb40e kostenfrei https://www.mdpi.com/1424-8220/22/8/3066 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 8, p 3066 |
language |
English |
source |
In Sensors 22(2022), 8, p 3066 volume:22 year:2022 number:8, p 3066 |
sourceStr |
In Sensors 22(2022), 8, p 3066 volume:22 year:2022 number:8, p 3066 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
EEG epilepsy seizure detection machine learning features feature selection Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Sergio E. Sánchez-Hernández @@aut@@ Ricardo A. Salido-Ruiz @@aut@@ Sulema Torres-Ramos @@aut@@ Israel Román-Godínez @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ025688472 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025688472</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414134348.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s22083066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025688472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ75fc712a566b4e6a8336870ebf7fb40e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sergio E. Sánchez-Hernández</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Epilepsy is a disease that decreases the quality of life of patients; it is also among the most common neurological diseases. Several studies have approached the classification and prediction of seizures by using electroencephalographic data and machine learning techniques. A large diversity of features has been extracted from electroencephalograms to perform classification tasks; therefore, it is important to use feature selection methods to select those that leverage pattern recognition. In this study, the performance of a set of feature selection methods was compared across different classification models; the classification task consisted of the detection of ictal activity from the CHB-MIT and Siena Scalp EEG databases. The comparison was implemented for different feature sets and the number of features. Furthermore, the similarity between selected feature subsets across classification models was evaluated. The best F1-score (0.90) was reported by the K-nearest neighbor along with the CHB-MIT dataset. Results showed that none of the feature selection methods clearly outperformed the rest of the methods, as the performance was notably affected by the classifier, dataset, and feature set. Two of the combinations (classifier/feature selection method) reporting the best results were K-nearest neighbor/support vector machine and random forest/embedded random forest.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EEG</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">epilepsy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seizure detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">features</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature selection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ricardo A. Salido-Ruiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sulema Torres-Ramos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Israel Román-Godínez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2022), 8, p 3066</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8, p 3066</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s22083066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/75fc712a566b4e6a8336870ebf7fb40e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/22/8/3066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">8, p 3066</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Sergio E. Sánchez-Hernández |
spellingShingle |
Sergio E. Sánchez-Hernández misc TP1-1185 misc EEG misc epilepsy misc seizure detection misc machine learning misc features misc feature selection misc Chemical technology Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals |
authorStr |
Sergio E. Sánchez-Hernández |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals EEG epilepsy seizure detection machine learning features feature selection |
topic |
misc TP1-1185 misc EEG misc epilepsy misc seizure detection misc machine learning misc features misc feature selection misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc EEG misc epilepsy misc seizure detection misc machine learning misc features misc feature selection misc Chemical technology |
topic_browse |
misc TP1-1185 misc EEG misc epilepsy misc seizure detection misc machine learning misc features misc feature selection misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals |
ctrlnum |
(DE-627)DOAJ025688472 (DE-599)DOAJ75fc712a566b4e6a8336870ebf7fb40e |
title_full |
Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals |
author_sort |
Sergio E. Sánchez-Hernández |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Sergio E. Sánchez-Hernández Ricardo A. Salido-Ruiz Sulema Torres-Ramos Israel Román-Godínez |
container_volume |
22 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Sergio E. Sánchez-Hernández |
doi_str_mv |
10.3390/s22083066 |
author2-role |
verfasserin |
title_sort |
evaluation of feature selection methods for classification of epileptic seizure eeg signals |
callnumber |
TP1-1185 |
title_auth |
Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals |
abstract |
Epilepsy is a disease that decreases the quality of life of patients; it is also among the most common neurological diseases. Several studies have approached the classification and prediction of seizures by using electroencephalographic data and machine learning techniques. A large diversity of features has been extracted from electroencephalograms to perform classification tasks; therefore, it is important to use feature selection methods to select those that leverage pattern recognition. In this study, the performance of a set of feature selection methods was compared across different classification models; the classification task consisted of the detection of ictal activity from the CHB-MIT and Siena Scalp EEG databases. The comparison was implemented for different feature sets and the number of features. Furthermore, the similarity between selected feature subsets across classification models was evaluated. The best F1-score (0.90) was reported by the K-nearest neighbor along with the CHB-MIT dataset. Results showed that none of the feature selection methods clearly outperformed the rest of the methods, as the performance was notably affected by the classifier, dataset, and feature set. Two of the combinations (classifier/feature selection method) reporting the best results were K-nearest neighbor/support vector machine and random forest/embedded random forest. |
abstractGer |
Epilepsy is a disease that decreases the quality of life of patients; it is also among the most common neurological diseases. Several studies have approached the classification and prediction of seizures by using electroencephalographic data and machine learning techniques. A large diversity of features has been extracted from electroencephalograms to perform classification tasks; therefore, it is important to use feature selection methods to select those that leverage pattern recognition. In this study, the performance of a set of feature selection methods was compared across different classification models; the classification task consisted of the detection of ictal activity from the CHB-MIT and Siena Scalp EEG databases. The comparison was implemented for different feature sets and the number of features. Furthermore, the similarity between selected feature subsets across classification models was evaluated. The best F1-score (0.90) was reported by the K-nearest neighbor along with the CHB-MIT dataset. Results showed that none of the feature selection methods clearly outperformed the rest of the methods, as the performance was notably affected by the classifier, dataset, and feature set. Two of the combinations (classifier/feature selection method) reporting the best results were K-nearest neighbor/support vector machine and random forest/embedded random forest. |
abstract_unstemmed |
Epilepsy is a disease that decreases the quality of life of patients; it is also among the most common neurological diseases. Several studies have approached the classification and prediction of seizures by using electroencephalographic data and machine learning techniques. A large diversity of features has been extracted from electroencephalograms to perform classification tasks; therefore, it is important to use feature selection methods to select those that leverage pattern recognition. In this study, the performance of a set of feature selection methods was compared across different classification models; the classification task consisted of the detection of ictal activity from the CHB-MIT and Siena Scalp EEG databases. The comparison was implemented for different feature sets and the number of features. Furthermore, the similarity between selected feature subsets across classification models was evaluated. The best F1-score (0.90) was reported by the K-nearest neighbor along with the CHB-MIT dataset. Results showed that none of the feature selection methods clearly outperformed the rest of the methods, as the performance was notably affected by the classifier, dataset, and feature set. Two of the combinations (classifier/feature selection method) reporting the best results were K-nearest neighbor/support vector machine and random forest/embedded random forest. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 3066 |
title_short |
Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals |
url |
https://doi.org/10.3390/s22083066 https://doaj.org/article/75fc712a566b4e6a8336870ebf7fb40e https://www.mdpi.com/1424-8220/22/8/3066 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Ricardo A. Salido-Ruiz Sulema Torres-Ramos Israel Román-Godínez |
author2Str |
Ricardo A. Salido-Ruiz Sulema Torres-Ramos Israel Román-Godínez |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s22083066 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T16:31:34.075Z |
_version_ |
1803576194186084352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025688472</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414134348.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s22083066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025688472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ75fc712a566b4e6a8336870ebf7fb40e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sergio E. Sánchez-Hernández</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Epilepsy is a disease that decreases the quality of life of patients; it is also among the most common neurological diseases. Several studies have approached the classification and prediction of seizures by using electroencephalographic data and machine learning techniques. A large diversity of features has been extracted from electroencephalograms to perform classification tasks; therefore, it is important to use feature selection methods to select those that leverage pattern recognition. In this study, the performance of a set of feature selection methods was compared across different classification models; the classification task consisted of the detection of ictal activity from the CHB-MIT and Siena Scalp EEG databases. The comparison was implemented for different feature sets and the number of features. Furthermore, the similarity between selected feature subsets across classification models was evaluated. The best F1-score (0.90) was reported by the K-nearest neighbor along with the CHB-MIT dataset. Results showed that none of the feature selection methods clearly outperformed the rest of the methods, as the performance was notably affected by the classifier, dataset, and feature set. Two of the combinations (classifier/feature selection method) reporting the best results were K-nearest neighbor/support vector machine and random forest/embedded random forest.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EEG</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">epilepsy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seizure detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">features</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature selection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ricardo A. Salido-Ruiz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sulema Torres-Ramos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Israel Román-Godínez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2022), 8, p 3066</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8, p 3066</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s22083066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/75fc712a566b4e6a8336870ebf7fb40e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/22/8/3066</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">8, p 3066</subfield></datafield></record></collection>
|
score |
7.40158 |