The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method
The rising use of renewable energy sources, particularly those that are weather-dependent like wind and solar energy, has increased the uncertainty of supply in these power systems. In order to obtain considerably more accurate results in the analysis of power systems, such as in the planning and op...
Ausführliche Beschreibung
Autor*in: |
Amr Khaled Khamees [verfasserIn] Almoataz Y. Abdelaziz [verfasserIn] Makram R. Eskaros [verfasserIn] Mahmoud A. Attia [verfasserIn] Ahmed O. Badr [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
probability distribution functions mixture probability distribution functions |
---|
Übergeordnetes Werk: |
In: Processes - MDPI AG, 2013, 10(2022), 2446, p 2446 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:2446, p 2446 |
Links: |
---|
DOI / URN: |
10.3390/pr10112446 |
---|
Katalog-ID: |
DOAJ02575291X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ02575291X | ||
003 | DE-627 | ||
005 | 20230307091855.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/pr10112446 |2 doi | |
035 | |a (DE-627)DOAJ02575291X | ||
035 | |a (DE-599)DOAJfb5ddf9f38bd4439a2e4c82a98c2b986 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Amr Khaled Khamees |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The rising use of renewable energy sources, particularly those that are weather-dependent like wind and solar energy, has increased the uncertainty of supply in these power systems. In order to obtain considerably more accurate results in the analysis of power systems, such as in the planning and operation, it is necessary to tackle the stochastic nature of these sources. Operators require adequate techniques and procedures to mitigate the negative consequences of the stochastic behavior of renewable energy generators. Thus, this paper presents a modification of the original probability distribution functions (PDFs) where the original PDFs are insufficient for wind speed and solar irradiance modeling because they have a significant error between the real data frequency distribution and the estimated distribution curve. This modification is using a mixture of probability distributions, which can improve the fitting of data and reduce this error. The main aim of this paper is to model wind speed and solar irradiance behaviors using a two-component and a three-component mixture of PDFs generated from the integration of the original Weibull, Lognormal, Gamma, and Inverse-Gaussian PDFs. Three statistical errors are used to test the efficiency of the proposed original and mixture PDFs, which are the root mean square error (RMSE), the coefficient of correlation (<i<R</i<<sup<2</sup<), and the Chi-square error (<i<X</i<<sup<2</sup<). The results show that the mixture of PDFs gives better fitting criteria for wind speed and solar irradiance frequency distributions than the original PDFs. The parameters of the original and the mixture of PDFs are calculated using the innovative metaheuristic Mayfly algorithm (MA). The three-component mixture of PDFs lowered the RMSE by about 73% and was 17% more than the best original and the two-component mixture distributions. | ||
650 | 4 | |a probability distribution functions | |
650 | 4 | |a mixture probability distribution functions | |
650 | 4 | |a metaheuristic optimization methods | |
650 | 4 | |a Mayfly algorithm | |
650 | 4 | |a statistical error | |
653 | 0 | |a Chemical technology | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Almoataz Y. Abdelaziz |e verfasserin |4 aut | |
700 | 0 | |a Makram R. Eskaros |e verfasserin |4 aut | |
700 | 0 | |a Mahmoud A. Attia |e verfasserin |4 aut | |
700 | 0 | |a Ahmed O. Badr |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Processes |d MDPI AG, 2013 |g 10(2022), 2446, p 2446 |w (DE-627)750371439 |w (DE-600)2720994-5 |x 22279717 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:2446, p 2446 |
856 | 4 | 0 | |u https://doi.org/10.3390/pr10112446 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fb5ddf9f38bd4439a2e4c82a98c2b986 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9717/10/11/2446 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9717 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 2446, p 2446 |
author_variant |
a k k akk a y a aya m r e mre m a a maa a o b aob |
---|---|
matchkey_str |
article:22279717:2022----::hmxuefrbbltdsrbtofntosownadhtvlacoess |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TP |
publishDate |
2022 |
allfields |
10.3390/pr10112446 doi (DE-627)DOAJ02575291X (DE-599)DOAJfb5ddf9f38bd4439a2e4c82a98c2b986 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Amr Khaled Khamees verfasserin aut The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The rising use of renewable energy sources, particularly those that are weather-dependent like wind and solar energy, has increased the uncertainty of supply in these power systems. In order to obtain considerably more accurate results in the analysis of power systems, such as in the planning and operation, it is necessary to tackle the stochastic nature of these sources. Operators require adequate techniques and procedures to mitigate the negative consequences of the stochastic behavior of renewable energy generators. Thus, this paper presents a modification of the original probability distribution functions (PDFs) where the original PDFs are insufficient for wind speed and solar irradiance modeling because they have a significant error between the real data frequency distribution and the estimated distribution curve. This modification is using a mixture of probability distributions, which can improve the fitting of data and reduce this error. The main aim of this paper is to model wind speed and solar irradiance behaviors using a two-component and a three-component mixture of PDFs generated from the integration of the original Weibull, Lognormal, Gamma, and Inverse-Gaussian PDFs. Three statistical errors are used to test the efficiency of the proposed original and mixture PDFs, which are the root mean square error (RMSE), the coefficient of correlation (<i<R</i<<sup<2</sup<), and the Chi-square error (<i<X</i<<sup<2</sup<). The results show that the mixture of PDFs gives better fitting criteria for wind speed and solar irradiance frequency distributions than the original PDFs. The parameters of the original and the mixture of PDFs are calculated using the innovative metaheuristic Mayfly algorithm (MA). The three-component mixture of PDFs lowered the RMSE by about 73% and was 17% more than the best original and the two-component mixture distributions. probability distribution functions mixture probability distribution functions metaheuristic optimization methods Mayfly algorithm statistical error Chemical technology Chemistry Almoataz Y. Abdelaziz verfasserin aut Makram R. Eskaros verfasserin aut Mahmoud A. Attia verfasserin aut Ahmed O. Badr verfasserin aut In Processes MDPI AG, 2013 10(2022), 2446, p 2446 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:2446, p 2446 https://doi.org/10.3390/pr10112446 kostenfrei https://doaj.org/article/fb5ddf9f38bd4439a2e4c82a98c2b986 kostenfrei https://www.mdpi.com/2227-9717/10/11/2446 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2446, p 2446 |
spelling |
10.3390/pr10112446 doi (DE-627)DOAJ02575291X (DE-599)DOAJfb5ddf9f38bd4439a2e4c82a98c2b986 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Amr Khaled Khamees verfasserin aut The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The rising use of renewable energy sources, particularly those that are weather-dependent like wind and solar energy, has increased the uncertainty of supply in these power systems. In order to obtain considerably more accurate results in the analysis of power systems, such as in the planning and operation, it is necessary to tackle the stochastic nature of these sources. Operators require adequate techniques and procedures to mitigate the negative consequences of the stochastic behavior of renewable energy generators. Thus, this paper presents a modification of the original probability distribution functions (PDFs) where the original PDFs are insufficient for wind speed and solar irradiance modeling because they have a significant error between the real data frequency distribution and the estimated distribution curve. This modification is using a mixture of probability distributions, which can improve the fitting of data and reduce this error. The main aim of this paper is to model wind speed and solar irradiance behaviors using a two-component and a three-component mixture of PDFs generated from the integration of the original Weibull, Lognormal, Gamma, and Inverse-Gaussian PDFs. Three statistical errors are used to test the efficiency of the proposed original and mixture PDFs, which are the root mean square error (RMSE), the coefficient of correlation (<i<R</i<<sup<2</sup<), and the Chi-square error (<i<X</i<<sup<2</sup<). The results show that the mixture of PDFs gives better fitting criteria for wind speed and solar irradiance frequency distributions than the original PDFs. The parameters of the original and the mixture of PDFs are calculated using the innovative metaheuristic Mayfly algorithm (MA). The three-component mixture of PDFs lowered the RMSE by about 73% and was 17% more than the best original and the two-component mixture distributions. probability distribution functions mixture probability distribution functions metaheuristic optimization methods Mayfly algorithm statistical error Chemical technology Chemistry Almoataz Y. Abdelaziz verfasserin aut Makram R. Eskaros verfasserin aut Mahmoud A. Attia verfasserin aut Ahmed O. Badr verfasserin aut In Processes MDPI AG, 2013 10(2022), 2446, p 2446 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:2446, p 2446 https://doi.org/10.3390/pr10112446 kostenfrei https://doaj.org/article/fb5ddf9f38bd4439a2e4c82a98c2b986 kostenfrei https://www.mdpi.com/2227-9717/10/11/2446 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2446, p 2446 |
allfields_unstemmed |
10.3390/pr10112446 doi (DE-627)DOAJ02575291X (DE-599)DOAJfb5ddf9f38bd4439a2e4c82a98c2b986 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Amr Khaled Khamees verfasserin aut The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The rising use of renewable energy sources, particularly those that are weather-dependent like wind and solar energy, has increased the uncertainty of supply in these power systems. In order to obtain considerably more accurate results in the analysis of power systems, such as in the planning and operation, it is necessary to tackle the stochastic nature of these sources. Operators require adequate techniques and procedures to mitigate the negative consequences of the stochastic behavior of renewable energy generators. Thus, this paper presents a modification of the original probability distribution functions (PDFs) where the original PDFs are insufficient for wind speed and solar irradiance modeling because they have a significant error between the real data frequency distribution and the estimated distribution curve. This modification is using a mixture of probability distributions, which can improve the fitting of data and reduce this error. The main aim of this paper is to model wind speed and solar irradiance behaviors using a two-component and a three-component mixture of PDFs generated from the integration of the original Weibull, Lognormal, Gamma, and Inverse-Gaussian PDFs. Three statistical errors are used to test the efficiency of the proposed original and mixture PDFs, which are the root mean square error (RMSE), the coefficient of correlation (<i<R</i<<sup<2</sup<), and the Chi-square error (<i<X</i<<sup<2</sup<). The results show that the mixture of PDFs gives better fitting criteria for wind speed and solar irradiance frequency distributions than the original PDFs. The parameters of the original and the mixture of PDFs are calculated using the innovative metaheuristic Mayfly algorithm (MA). The three-component mixture of PDFs lowered the RMSE by about 73% and was 17% more than the best original and the two-component mixture distributions. probability distribution functions mixture probability distribution functions metaheuristic optimization methods Mayfly algorithm statistical error Chemical technology Chemistry Almoataz Y. Abdelaziz verfasserin aut Makram R. Eskaros verfasserin aut Mahmoud A. Attia verfasserin aut Ahmed O. Badr verfasserin aut In Processes MDPI AG, 2013 10(2022), 2446, p 2446 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:2446, p 2446 https://doi.org/10.3390/pr10112446 kostenfrei https://doaj.org/article/fb5ddf9f38bd4439a2e4c82a98c2b986 kostenfrei https://www.mdpi.com/2227-9717/10/11/2446 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2446, p 2446 |
allfieldsGer |
10.3390/pr10112446 doi (DE-627)DOAJ02575291X (DE-599)DOAJfb5ddf9f38bd4439a2e4c82a98c2b986 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Amr Khaled Khamees verfasserin aut The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The rising use of renewable energy sources, particularly those that are weather-dependent like wind and solar energy, has increased the uncertainty of supply in these power systems. In order to obtain considerably more accurate results in the analysis of power systems, such as in the planning and operation, it is necessary to tackle the stochastic nature of these sources. Operators require adequate techniques and procedures to mitigate the negative consequences of the stochastic behavior of renewable energy generators. Thus, this paper presents a modification of the original probability distribution functions (PDFs) where the original PDFs are insufficient for wind speed and solar irradiance modeling because they have a significant error between the real data frequency distribution and the estimated distribution curve. This modification is using a mixture of probability distributions, which can improve the fitting of data and reduce this error. The main aim of this paper is to model wind speed and solar irradiance behaviors using a two-component and a three-component mixture of PDFs generated from the integration of the original Weibull, Lognormal, Gamma, and Inverse-Gaussian PDFs. Three statistical errors are used to test the efficiency of the proposed original and mixture PDFs, which are the root mean square error (RMSE), the coefficient of correlation (<i<R</i<<sup<2</sup<), and the Chi-square error (<i<X</i<<sup<2</sup<). The results show that the mixture of PDFs gives better fitting criteria for wind speed and solar irradiance frequency distributions than the original PDFs. The parameters of the original and the mixture of PDFs are calculated using the innovative metaheuristic Mayfly algorithm (MA). The three-component mixture of PDFs lowered the RMSE by about 73% and was 17% more than the best original and the two-component mixture distributions. probability distribution functions mixture probability distribution functions metaheuristic optimization methods Mayfly algorithm statistical error Chemical technology Chemistry Almoataz Y. Abdelaziz verfasserin aut Makram R. Eskaros verfasserin aut Mahmoud A. Attia verfasserin aut Ahmed O. Badr verfasserin aut In Processes MDPI AG, 2013 10(2022), 2446, p 2446 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:2446, p 2446 https://doi.org/10.3390/pr10112446 kostenfrei https://doaj.org/article/fb5ddf9f38bd4439a2e4c82a98c2b986 kostenfrei https://www.mdpi.com/2227-9717/10/11/2446 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2446, p 2446 |
allfieldsSound |
10.3390/pr10112446 doi (DE-627)DOAJ02575291X (DE-599)DOAJfb5ddf9f38bd4439a2e4c82a98c2b986 DE-627 ger DE-627 rakwb eng TP1-1185 QD1-999 Amr Khaled Khamees verfasserin aut The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The rising use of renewable energy sources, particularly those that are weather-dependent like wind and solar energy, has increased the uncertainty of supply in these power systems. In order to obtain considerably more accurate results in the analysis of power systems, such as in the planning and operation, it is necessary to tackle the stochastic nature of these sources. Operators require adequate techniques and procedures to mitigate the negative consequences of the stochastic behavior of renewable energy generators. Thus, this paper presents a modification of the original probability distribution functions (PDFs) where the original PDFs are insufficient for wind speed and solar irradiance modeling because they have a significant error between the real data frequency distribution and the estimated distribution curve. This modification is using a mixture of probability distributions, which can improve the fitting of data and reduce this error. The main aim of this paper is to model wind speed and solar irradiance behaviors using a two-component and a three-component mixture of PDFs generated from the integration of the original Weibull, Lognormal, Gamma, and Inverse-Gaussian PDFs. Three statistical errors are used to test the efficiency of the proposed original and mixture PDFs, which are the root mean square error (RMSE), the coefficient of correlation (<i<R</i<<sup<2</sup<), and the Chi-square error (<i<X</i<<sup<2</sup<). The results show that the mixture of PDFs gives better fitting criteria for wind speed and solar irradiance frequency distributions than the original PDFs. The parameters of the original and the mixture of PDFs are calculated using the innovative metaheuristic Mayfly algorithm (MA). The three-component mixture of PDFs lowered the RMSE by about 73% and was 17% more than the best original and the two-component mixture distributions. probability distribution functions mixture probability distribution functions metaheuristic optimization methods Mayfly algorithm statistical error Chemical technology Chemistry Almoataz Y. Abdelaziz verfasserin aut Makram R. Eskaros verfasserin aut Mahmoud A. Attia verfasserin aut Ahmed O. Badr verfasserin aut In Processes MDPI AG, 2013 10(2022), 2446, p 2446 (DE-627)750371439 (DE-600)2720994-5 22279717 nnns volume:10 year:2022 number:2446, p 2446 https://doi.org/10.3390/pr10112446 kostenfrei https://doaj.org/article/fb5ddf9f38bd4439a2e4c82a98c2b986 kostenfrei https://www.mdpi.com/2227-9717/10/11/2446 kostenfrei https://doaj.org/toc/2227-9717 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 2446, p 2446 |
language |
English |
source |
In Processes 10(2022), 2446, p 2446 volume:10 year:2022 number:2446, p 2446 |
sourceStr |
In Processes 10(2022), 2446, p 2446 volume:10 year:2022 number:2446, p 2446 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
probability distribution functions mixture probability distribution functions metaheuristic optimization methods Mayfly algorithm statistical error Chemical technology Chemistry |
isfreeaccess_bool |
true |
container_title |
Processes |
authorswithroles_txt_mv |
Amr Khaled Khamees @@aut@@ Almoataz Y. Abdelaziz @@aut@@ Makram R. Eskaros @@aut@@ Mahmoud A. Attia @@aut@@ Ahmed O. Badr @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
750371439 |
id |
DOAJ02575291X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02575291X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307091855.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr10112446</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02575291X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfb5ddf9f38bd4439a2e4c82a98c2b986</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Amr Khaled Khamees</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The rising use of renewable energy sources, particularly those that are weather-dependent like wind and solar energy, has increased the uncertainty of supply in these power systems. In order to obtain considerably more accurate results in the analysis of power systems, such as in the planning and operation, it is necessary to tackle the stochastic nature of these sources. Operators require adequate techniques and procedures to mitigate the negative consequences of the stochastic behavior of renewable energy generators. Thus, this paper presents a modification of the original probability distribution functions (PDFs) where the original PDFs are insufficient for wind speed and solar irradiance modeling because they have a significant error between the real data frequency distribution and the estimated distribution curve. This modification is using a mixture of probability distributions, which can improve the fitting of data and reduce this error. The main aim of this paper is to model wind speed and solar irradiance behaviors using a two-component and a three-component mixture of PDFs generated from the integration of the original Weibull, Lognormal, Gamma, and Inverse-Gaussian PDFs. Three statistical errors are used to test the efficiency of the proposed original and mixture PDFs, which are the root mean square error (RMSE), the coefficient of correlation (<i<R</i<<sup<2</sup<), and the Chi-square error (<i<X</i<<sup<2</sup<). The results show that the mixture of PDFs gives better fitting criteria for wind speed and solar irradiance frequency distributions than the original PDFs. The parameters of the original and the mixture of PDFs are calculated using the innovative metaheuristic Mayfly algorithm (MA). The three-component mixture of PDFs lowered the RMSE by about 73% and was 17% more than the best original and the two-component mixture distributions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probability distribution functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixture probability distribution functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metaheuristic optimization methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mayfly algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">statistical error</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Almoataz Y. Abdelaziz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Makram R. Eskaros</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mahmoud A. Attia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ahmed O. Badr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 2446, p 2446</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2446, p 2446</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr10112446</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fb5ddf9f38bd4439a2e4c82a98c2b986</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/10/11/2446</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">2446, p 2446</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Amr Khaled Khamees |
spellingShingle |
Amr Khaled Khamees misc TP1-1185 misc QD1-999 misc probability distribution functions misc mixture probability distribution functions misc metaheuristic optimization methods misc Mayfly algorithm misc statistical error misc Chemical technology misc Chemistry The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method |
authorStr |
Amr Khaled Khamees |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750371439 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
22279717 |
topic_title |
TP1-1185 QD1-999 The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method probability distribution functions mixture probability distribution functions metaheuristic optimization methods Mayfly algorithm statistical error |
topic |
misc TP1-1185 misc QD1-999 misc probability distribution functions misc mixture probability distribution functions misc metaheuristic optimization methods misc Mayfly algorithm misc statistical error misc Chemical technology misc Chemistry |
topic_unstemmed |
misc TP1-1185 misc QD1-999 misc probability distribution functions misc mixture probability distribution functions misc metaheuristic optimization methods misc Mayfly algorithm misc statistical error misc Chemical technology misc Chemistry |
topic_browse |
misc TP1-1185 misc QD1-999 misc probability distribution functions misc mixture probability distribution functions misc metaheuristic optimization methods misc Mayfly algorithm misc statistical error misc Chemical technology misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Processes |
hierarchy_parent_id |
750371439 |
hierarchy_top_title |
Processes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750371439 (DE-600)2720994-5 |
title |
The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method |
ctrlnum |
(DE-627)DOAJ02575291X (DE-599)DOAJfb5ddf9f38bd4439a2e4c82a98c2b986 |
title_full |
The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method |
author_sort |
Amr Khaled Khamees |
journal |
Processes |
journalStr |
Processes |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Amr Khaled Khamees Almoataz Y. Abdelaziz Makram R. Eskaros Mahmoud A. Attia Ahmed O. Badr |
container_volume |
10 |
class |
TP1-1185 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Amr Khaled Khamees |
doi_str_mv |
10.3390/pr10112446 |
author2-role |
verfasserin |
title_sort |
mixture of probability distribution functions for wind and photovoltaic power systems using a metaheuristic method |
callnumber |
TP1-1185 |
title_auth |
The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method |
abstract |
The rising use of renewable energy sources, particularly those that are weather-dependent like wind and solar energy, has increased the uncertainty of supply in these power systems. In order to obtain considerably more accurate results in the analysis of power systems, such as in the planning and operation, it is necessary to tackle the stochastic nature of these sources. Operators require adequate techniques and procedures to mitigate the negative consequences of the stochastic behavior of renewable energy generators. Thus, this paper presents a modification of the original probability distribution functions (PDFs) where the original PDFs are insufficient for wind speed and solar irradiance modeling because they have a significant error between the real data frequency distribution and the estimated distribution curve. This modification is using a mixture of probability distributions, which can improve the fitting of data and reduce this error. The main aim of this paper is to model wind speed and solar irradiance behaviors using a two-component and a three-component mixture of PDFs generated from the integration of the original Weibull, Lognormal, Gamma, and Inverse-Gaussian PDFs. Three statistical errors are used to test the efficiency of the proposed original and mixture PDFs, which are the root mean square error (RMSE), the coefficient of correlation (<i<R</i<<sup<2</sup<), and the Chi-square error (<i<X</i<<sup<2</sup<). The results show that the mixture of PDFs gives better fitting criteria for wind speed and solar irradiance frequency distributions than the original PDFs. The parameters of the original and the mixture of PDFs are calculated using the innovative metaheuristic Mayfly algorithm (MA). The three-component mixture of PDFs lowered the RMSE by about 73% and was 17% more than the best original and the two-component mixture distributions. |
abstractGer |
The rising use of renewable energy sources, particularly those that are weather-dependent like wind and solar energy, has increased the uncertainty of supply in these power systems. In order to obtain considerably more accurate results in the analysis of power systems, such as in the planning and operation, it is necessary to tackle the stochastic nature of these sources. Operators require adequate techniques and procedures to mitigate the negative consequences of the stochastic behavior of renewable energy generators. Thus, this paper presents a modification of the original probability distribution functions (PDFs) where the original PDFs are insufficient for wind speed and solar irradiance modeling because they have a significant error between the real data frequency distribution and the estimated distribution curve. This modification is using a mixture of probability distributions, which can improve the fitting of data and reduce this error. The main aim of this paper is to model wind speed and solar irradiance behaviors using a two-component and a three-component mixture of PDFs generated from the integration of the original Weibull, Lognormal, Gamma, and Inverse-Gaussian PDFs. Three statistical errors are used to test the efficiency of the proposed original and mixture PDFs, which are the root mean square error (RMSE), the coefficient of correlation (<i<R</i<<sup<2</sup<), and the Chi-square error (<i<X</i<<sup<2</sup<). The results show that the mixture of PDFs gives better fitting criteria for wind speed and solar irradiance frequency distributions than the original PDFs. The parameters of the original and the mixture of PDFs are calculated using the innovative metaheuristic Mayfly algorithm (MA). The three-component mixture of PDFs lowered the RMSE by about 73% and was 17% more than the best original and the two-component mixture distributions. |
abstract_unstemmed |
The rising use of renewable energy sources, particularly those that are weather-dependent like wind and solar energy, has increased the uncertainty of supply in these power systems. In order to obtain considerably more accurate results in the analysis of power systems, such as in the planning and operation, it is necessary to tackle the stochastic nature of these sources. Operators require adequate techniques and procedures to mitigate the negative consequences of the stochastic behavior of renewable energy generators. Thus, this paper presents a modification of the original probability distribution functions (PDFs) where the original PDFs are insufficient for wind speed and solar irradiance modeling because they have a significant error between the real data frequency distribution and the estimated distribution curve. This modification is using a mixture of probability distributions, which can improve the fitting of data and reduce this error. The main aim of this paper is to model wind speed and solar irradiance behaviors using a two-component and a three-component mixture of PDFs generated from the integration of the original Weibull, Lognormal, Gamma, and Inverse-Gaussian PDFs. Three statistical errors are used to test the efficiency of the proposed original and mixture PDFs, which are the root mean square error (RMSE), the coefficient of correlation (<i<R</i<<sup<2</sup<), and the Chi-square error (<i<X</i<<sup<2</sup<). The results show that the mixture of PDFs gives better fitting criteria for wind speed and solar irradiance frequency distributions than the original PDFs. The parameters of the original and the mixture of PDFs are calculated using the innovative metaheuristic Mayfly algorithm (MA). The three-component mixture of PDFs lowered the RMSE by about 73% and was 17% more than the best original and the two-component mixture distributions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2446, p 2446 |
title_short |
The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method |
url |
https://doi.org/10.3390/pr10112446 https://doaj.org/article/fb5ddf9f38bd4439a2e4c82a98c2b986 https://www.mdpi.com/2227-9717/10/11/2446 https://doaj.org/toc/2227-9717 |
remote_bool |
true |
author2 |
Almoataz Y. Abdelaziz Makram R. Eskaros Mahmoud A. Attia Ahmed O. Badr |
author2Str |
Almoataz Y. Abdelaziz Makram R. Eskaros Mahmoud A. Attia Ahmed O. Badr |
ppnlink |
750371439 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/pr10112446 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T16:54:01.827Z |
_version_ |
1803577607406485504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ02575291X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307091855.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/pr10112446</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02575291X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfb5ddf9f38bd4439a2e4c82a98c2b986</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Amr Khaled Khamees</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The rising use of renewable energy sources, particularly those that are weather-dependent like wind and solar energy, has increased the uncertainty of supply in these power systems. In order to obtain considerably more accurate results in the analysis of power systems, such as in the planning and operation, it is necessary to tackle the stochastic nature of these sources. Operators require adequate techniques and procedures to mitigate the negative consequences of the stochastic behavior of renewable energy generators. Thus, this paper presents a modification of the original probability distribution functions (PDFs) where the original PDFs are insufficient for wind speed and solar irradiance modeling because they have a significant error between the real data frequency distribution and the estimated distribution curve. This modification is using a mixture of probability distributions, which can improve the fitting of data and reduce this error. The main aim of this paper is to model wind speed and solar irradiance behaviors using a two-component and a three-component mixture of PDFs generated from the integration of the original Weibull, Lognormal, Gamma, and Inverse-Gaussian PDFs. Three statistical errors are used to test the efficiency of the proposed original and mixture PDFs, which are the root mean square error (RMSE), the coefficient of correlation (<i<R</i<<sup<2</sup<), and the Chi-square error (<i<X</i<<sup<2</sup<). The results show that the mixture of PDFs gives better fitting criteria for wind speed and solar irradiance frequency distributions than the original PDFs. The parameters of the original and the mixture of PDFs are calculated using the innovative metaheuristic Mayfly algorithm (MA). The three-component mixture of PDFs lowered the RMSE by about 73% and was 17% more than the best original and the two-component mixture distributions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probability distribution functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixture probability distribution functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metaheuristic optimization methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mayfly algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">statistical error</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Almoataz Y. Abdelaziz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Makram R. Eskaros</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mahmoud A. Attia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ahmed O. Badr</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Processes</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 2446, p 2446</subfield><subfield code="w">(DE-627)750371439</subfield><subfield code="w">(DE-600)2720994-5</subfield><subfield code="x">22279717</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2446, p 2446</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/pr10112446</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fb5ddf9f38bd4439a2e4c82a98c2b986</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9717/10/11/2446</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9717</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">2446, p 2446</subfield></datafield></record></collection>
|
score |
7.4004374 |