Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile
Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar system for...
Ausführliche Beschreibung
Autor*in: |
Yuqing Lu [verfasserIn] Jiandong Mao [verfasserIn] Yingnan Zhang [verfasserIn] Hu Zhao [verfasserIn] Chunyan Zhou [verfasserIn] Xin Gong [verfasserIn] Qiang Wang [verfasserIn] Yi Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 22(2022), 6, p 2333 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2022 ; number:6, p 2333 |
Links: |
---|
DOI / URN: |
10.3390/s22062333 |
---|
Katalog-ID: |
DOAJ025835939 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ025835939 | ||
003 | DE-627 | ||
005 | 20240414133446.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s22062333 |2 doi | |
035 | |a (DE-627)DOAJ025835939 | ||
035 | |a (DE-599)DOAJ64f4e6ca379a4730ab5fb1a9bccca281 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Yuqing Lu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar system for detecting atmospheric turbulence, the appropriate parameters of the Mie-scattering lidar system are selected and optimized using the residual turbulent scintillation theory. Then, the Fourier transform method is employed to perform the numerical simulation of the phase screen of the laser light intensity transformation on the vertical transmission path of atmospheric turbulence. The phase screen simulation, low-frequency optimization, and scintillation index calculation methods are provided in detail, respectively. Based on the phase distribution of the laser beam, the scintillation index is obtained. Through the relationship between the scintillation index and the atmospheric turbulent refractive index structure constant, the atmospheric turbulence profile is inverted. The simulation results show that the atmospheric refractive index structure constant profile obtained by the iterative method is consistent with the input HV<sub<5/7</sub< model below 6500 m, which has great guiding significance to carry out actual experiments to measure atmospheric turbulence using the Mie lidar. | ||
650 | 4 | |a Mie lidar | |
650 | 4 | |a atmospheric turbulence | |
650 | 4 | |a residual turbulent scintillation | |
650 | 4 | |a scintillation index | |
650 | 4 | |a atmospheric refractive index structure constant | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Jiandong Mao |e verfasserin |4 aut | |
700 | 0 | |a Yingnan Zhang |e verfasserin |4 aut | |
700 | 0 | |a Hu Zhao |e verfasserin |4 aut | |
700 | 0 | |a Chunyan Zhou |e verfasserin |4 aut | |
700 | 0 | |a Xin Gong |e verfasserin |4 aut | |
700 | 0 | |a Qiang Wang |e verfasserin |4 aut | |
700 | 0 | |a Yi Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 22(2022), 6, p 2333 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2022 |g number:6, p 2333 |
856 | 4 | 0 | |u https://doi.org/10.3390/s22062333 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/64f4e6ca379a4730ab5fb1a9bccca281 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/22/6/2333 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2022 |e 6, p 2333 |
author_variant |
y l yl j m jm y z yz h z hz c z cz x g xg q w qw y z yz |
---|---|
matchkey_str |
article:14248220:2022----::iuainnaayiomecteigiamauigtop |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TP |
publishDate |
2022 |
allfields |
10.3390/s22062333 doi (DE-627)DOAJ025835939 (DE-599)DOAJ64f4e6ca379a4730ab5fb1a9bccca281 DE-627 ger DE-627 rakwb eng TP1-1185 Yuqing Lu verfasserin aut Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar system for detecting atmospheric turbulence, the appropriate parameters of the Mie-scattering lidar system are selected and optimized using the residual turbulent scintillation theory. Then, the Fourier transform method is employed to perform the numerical simulation of the phase screen of the laser light intensity transformation on the vertical transmission path of atmospheric turbulence. The phase screen simulation, low-frequency optimization, and scintillation index calculation methods are provided in detail, respectively. Based on the phase distribution of the laser beam, the scintillation index is obtained. Through the relationship between the scintillation index and the atmospheric turbulent refractive index structure constant, the atmospheric turbulence profile is inverted. The simulation results show that the atmospheric refractive index structure constant profile obtained by the iterative method is consistent with the input HV<sub<5/7</sub< model below 6500 m, which has great guiding significance to carry out actual experiments to measure atmospheric turbulence using the Mie lidar. Mie lidar atmospheric turbulence residual turbulent scintillation scintillation index atmospheric refractive index structure constant Chemical technology Jiandong Mao verfasserin aut Yingnan Zhang verfasserin aut Hu Zhao verfasserin aut Chunyan Zhou verfasserin aut Xin Gong verfasserin aut Qiang Wang verfasserin aut Yi Zhang verfasserin aut In Sensors MDPI AG, 2003 22(2022), 6, p 2333 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:6, p 2333 https://doi.org/10.3390/s22062333 kostenfrei https://doaj.org/article/64f4e6ca379a4730ab5fb1a9bccca281 kostenfrei https://www.mdpi.com/1424-8220/22/6/2333 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 6, p 2333 |
spelling |
10.3390/s22062333 doi (DE-627)DOAJ025835939 (DE-599)DOAJ64f4e6ca379a4730ab5fb1a9bccca281 DE-627 ger DE-627 rakwb eng TP1-1185 Yuqing Lu verfasserin aut Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar system for detecting atmospheric turbulence, the appropriate parameters of the Mie-scattering lidar system are selected and optimized using the residual turbulent scintillation theory. Then, the Fourier transform method is employed to perform the numerical simulation of the phase screen of the laser light intensity transformation on the vertical transmission path of atmospheric turbulence. The phase screen simulation, low-frequency optimization, and scintillation index calculation methods are provided in detail, respectively. Based on the phase distribution of the laser beam, the scintillation index is obtained. Through the relationship between the scintillation index and the atmospheric turbulent refractive index structure constant, the atmospheric turbulence profile is inverted. The simulation results show that the atmospheric refractive index structure constant profile obtained by the iterative method is consistent with the input HV<sub<5/7</sub< model below 6500 m, which has great guiding significance to carry out actual experiments to measure atmospheric turbulence using the Mie lidar. Mie lidar atmospheric turbulence residual turbulent scintillation scintillation index atmospheric refractive index structure constant Chemical technology Jiandong Mao verfasserin aut Yingnan Zhang verfasserin aut Hu Zhao verfasserin aut Chunyan Zhou verfasserin aut Xin Gong verfasserin aut Qiang Wang verfasserin aut Yi Zhang verfasserin aut In Sensors MDPI AG, 2003 22(2022), 6, p 2333 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:6, p 2333 https://doi.org/10.3390/s22062333 kostenfrei https://doaj.org/article/64f4e6ca379a4730ab5fb1a9bccca281 kostenfrei https://www.mdpi.com/1424-8220/22/6/2333 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 6, p 2333 |
allfields_unstemmed |
10.3390/s22062333 doi (DE-627)DOAJ025835939 (DE-599)DOAJ64f4e6ca379a4730ab5fb1a9bccca281 DE-627 ger DE-627 rakwb eng TP1-1185 Yuqing Lu verfasserin aut Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar system for detecting atmospheric turbulence, the appropriate parameters of the Mie-scattering lidar system are selected and optimized using the residual turbulent scintillation theory. Then, the Fourier transform method is employed to perform the numerical simulation of the phase screen of the laser light intensity transformation on the vertical transmission path of atmospheric turbulence. The phase screen simulation, low-frequency optimization, and scintillation index calculation methods are provided in detail, respectively. Based on the phase distribution of the laser beam, the scintillation index is obtained. Through the relationship between the scintillation index and the atmospheric turbulent refractive index structure constant, the atmospheric turbulence profile is inverted. The simulation results show that the atmospheric refractive index structure constant profile obtained by the iterative method is consistent with the input HV<sub<5/7</sub< model below 6500 m, which has great guiding significance to carry out actual experiments to measure atmospheric turbulence using the Mie lidar. Mie lidar atmospheric turbulence residual turbulent scintillation scintillation index atmospheric refractive index structure constant Chemical technology Jiandong Mao verfasserin aut Yingnan Zhang verfasserin aut Hu Zhao verfasserin aut Chunyan Zhou verfasserin aut Xin Gong verfasserin aut Qiang Wang verfasserin aut Yi Zhang verfasserin aut In Sensors MDPI AG, 2003 22(2022), 6, p 2333 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:6, p 2333 https://doi.org/10.3390/s22062333 kostenfrei https://doaj.org/article/64f4e6ca379a4730ab5fb1a9bccca281 kostenfrei https://www.mdpi.com/1424-8220/22/6/2333 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 6, p 2333 |
allfieldsGer |
10.3390/s22062333 doi (DE-627)DOAJ025835939 (DE-599)DOAJ64f4e6ca379a4730ab5fb1a9bccca281 DE-627 ger DE-627 rakwb eng TP1-1185 Yuqing Lu verfasserin aut Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar system for detecting atmospheric turbulence, the appropriate parameters of the Mie-scattering lidar system are selected and optimized using the residual turbulent scintillation theory. Then, the Fourier transform method is employed to perform the numerical simulation of the phase screen of the laser light intensity transformation on the vertical transmission path of atmospheric turbulence. The phase screen simulation, low-frequency optimization, and scintillation index calculation methods are provided in detail, respectively. Based on the phase distribution of the laser beam, the scintillation index is obtained. Through the relationship between the scintillation index and the atmospheric turbulent refractive index structure constant, the atmospheric turbulence profile is inverted. The simulation results show that the atmospheric refractive index structure constant profile obtained by the iterative method is consistent with the input HV<sub<5/7</sub< model below 6500 m, which has great guiding significance to carry out actual experiments to measure atmospheric turbulence using the Mie lidar. Mie lidar atmospheric turbulence residual turbulent scintillation scintillation index atmospheric refractive index structure constant Chemical technology Jiandong Mao verfasserin aut Yingnan Zhang verfasserin aut Hu Zhao verfasserin aut Chunyan Zhou verfasserin aut Xin Gong verfasserin aut Qiang Wang verfasserin aut Yi Zhang verfasserin aut In Sensors MDPI AG, 2003 22(2022), 6, p 2333 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:6, p 2333 https://doi.org/10.3390/s22062333 kostenfrei https://doaj.org/article/64f4e6ca379a4730ab5fb1a9bccca281 kostenfrei https://www.mdpi.com/1424-8220/22/6/2333 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 6, p 2333 |
allfieldsSound |
10.3390/s22062333 doi (DE-627)DOAJ025835939 (DE-599)DOAJ64f4e6ca379a4730ab5fb1a9bccca281 DE-627 ger DE-627 rakwb eng TP1-1185 Yuqing Lu verfasserin aut Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar system for detecting atmospheric turbulence, the appropriate parameters of the Mie-scattering lidar system are selected and optimized using the residual turbulent scintillation theory. Then, the Fourier transform method is employed to perform the numerical simulation of the phase screen of the laser light intensity transformation on the vertical transmission path of atmospheric turbulence. The phase screen simulation, low-frequency optimization, and scintillation index calculation methods are provided in detail, respectively. Based on the phase distribution of the laser beam, the scintillation index is obtained. Through the relationship between the scintillation index and the atmospheric turbulent refractive index structure constant, the atmospheric turbulence profile is inverted. The simulation results show that the atmospheric refractive index structure constant profile obtained by the iterative method is consistent with the input HV<sub<5/7</sub< model below 6500 m, which has great guiding significance to carry out actual experiments to measure atmospheric turbulence using the Mie lidar. Mie lidar atmospheric turbulence residual turbulent scintillation scintillation index atmospheric refractive index structure constant Chemical technology Jiandong Mao verfasserin aut Yingnan Zhang verfasserin aut Hu Zhao verfasserin aut Chunyan Zhou verfasserin aut Xin Gong verfasserin aut Qiang Wang verfasserin aut Yi Zhang verfasserin aut In Sensors MDPI AG, 2003 22(2022), 6, p 2333 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:6, p 2333 https://doi.org/10.3390/s22062333 kostenfrei https://doaj.org/article/64f4e6ca379a4730ab5fb1a9bccca281 kostenfrei https://www.mdpi.com/1424-8220/22/6/2333 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 6, p 2333 |
language |
English |
source |
In Sensors 22(2022), 6, p 2333 volume:22 year:2022 number:6, p 2333 |
sourceStr |
In Sensors 22(2022), 6, p 2333 volume:22 year:2022 number:6, p 2333 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mie lidar atmospheric turbulence residual turbulent scintillation scintillation index atmospheric refractive index structure constant Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Yuqing Lu @@aut@@ Jiandong Mao @@aut@@ Yingnan Zhang @@aut@@ Hu Zhao @@aut@@ Chunyan Zhou @@aut@@ Xin Gong @@aut@@ Qiang Wang @@aut@@ Yi Zhang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ025835939 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025835939</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414133446.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s22062333</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025835939</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ64f4e6ca379a4730ab5fb1a9bccca281</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuqing Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar system for detecting atmospheric turbulence, the appropriate parameters of the Mie-scattering lidar system are selected and optimized using the residual turbulent scintillation theory. Then, the Fourier transform method is employed to perform the numerical simulation of the phase screen of the laser light intensity transformation on the vertical transmission path of atmospheric turbulence. The phase screen simulation, low-frequency optimization, and scintillation index calculation methods are provided in detail, respectively. Based on the phase distribution of the laser beam, the scintillation index is obtained. Through the relationship between the scintillation index and the atmospheric turbulent refractive index structure constant, the atmospheric turbulence profile is inverted. The simulation results show that the atmospheric refractive index structure constant profile obtained by the iterative method is consistent with the input HV<sub<5/7</sub< model below 6500 m, which has great guiding significance to carry out actual experiments to measure atmospheric turbulence using the Mie lidar.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mie lidar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atmospheric turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">residual turbulent scintillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scintillation index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atmospheric refractive index structure constant</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiandong Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yingnan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hu Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunyan Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2022), 6, p 2333</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6, p 2333</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s22062333</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/64f4e6ca379a4730ab5fb1a9bccca281</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/22/6/2333</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">6, p 2333</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yuqing Lu |
spellingShingle |
Yuqing Lu misc TP1-1185 misc Mie lidar misc atmospheric turbulence misc residual turbulent scintillation misc scintillation index misc atmospheric refractive index structure constant misc Chemical technology Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile |
authorStr |
Yuqing Lu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile Mie lidar atmospheric turbulence residual turbulent scintillation scintillation index atmospheric refractive index structure constant |
topic |
misc TP1-1185 misc Mie lidar misc atmospheric turbulence misc residual turbulent scintillation misc scintillation index misc atmospheric refractive index structure constant misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc Mie lidar misc atmospheric turbulence misc residual turbulent scintillation misc scintillation index misc atmospheric refractive index structure constant misc Chemical technology |
topic_browse |
misc TP1-1185 misc Mie lidar misc atmospheric turbulence misc residual turbulent scintillation misc scintillation index misc atmospheric refractive index structure constant misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile |
ctrlnum |
(DE-627)DOAJ025835939 (DE-599)DOAJ64f4e6ca379a4730ab5fb1a9bccca281 |
title_full |
Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile |
author_sort |
Yuqing Lu |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Yuqing Lu Jiandong Mao Yingnan Zhang Hu Zhao Chunyan Zhou Xin Gong Qiang Wang Yi Zhang |
container_volume |
22 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Yuqing Lu |
doi_str_mv |
10.3390/s22062333 |
author2-role |
verfasserin |
title_sort |
simulation and analysis of mie-scattering lidar-measuring atmospheric turbulence profile |
callnumber |
TP1-1185 |
title_auth |
Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile |
abstract |
Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar system for detecting atmospheric turbulence, the appropriate parameters of the Mie-scattering lidar system are selected and optimized using the residual turbulent scintillation theory. Then, the Fourier transform method is employed to perform the numerical simulation of the phase screen of the laser light intensity transformation on the vertical transmission path of atmospheric turbulence. The phase screen simulation, low-frequency optimization, and scintillation index calculation methods are provided in detail, respectively. Based on the phase distribution of the laser beam, the scintillation index is obtained. Through the relationship between the scintillation index and the atmospheric turbulent refractive index structure constant, the atmospheric turbulence profile is inverted. The simulation results show that the atmospheric refractive index structure constant profile obtained by the iterative method is consistent with the input HV<sub<5/7</sub< model below 6500 m, which has great guiding significance to carry out actual experiments to measure atmospheric turbulence using the Mie lidar. |
abstractGer |
Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar system for detecting atmospheric turbulence, the appropriate parameters of the Mie-scattering lidar system are selected and optimized using the residual turbulent scintillation theory. Then, the Fourier transform method is employed to perform the numerical simulation of the phase screen of the laser light intensity transformation on the vertical transmission path of atmospheric turbulence. The phase screen simulation, low-frequency optimization, and scintillation index calculation methods are provided in detail, respectively. Based on the phase distribution of the laser beam, the scintillation index is obtained. Through the relationship between the scintillation index and the atmospheric turbulent refractive index structure constant, the atmospheric turbulence profile is inverted. The simulation results show that the atmospheric refractive index structure constant profile obtained by the iterative method is consistent with the input HV<sub<5/7</sub< model below 6500 m, which has great guiding significance to carry out actual experiments to measure atmospheric turbulence using the Mie lidar. |
abstract_unstemmed |
Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar system for detecting atmospheric turbulence, the appropriate parameters of the Mie-scattering lidar system are selected and optimized using the residual turbulent scintillation theory. Then, the Fourier transform method is employed to perform the numerical simulation of the phase screen of the laser light intensity transformation on the vertical transmission path of atmospheric turbulence. The phase screen simulation, low-frequency optimization, and scintillation index calculation methods are provided in detail, respectively. Based on the phase distribution of the laser beam, the scintillation index is obtained. Through the relationship between the scintillation index and the atmospheric turbulent refractive index structure constant, the atmospheric turbulence profile is inverted. The simulation results show that the atmospheric refractive index structure constant profile obtained by the iterative method is consistent with the input HV<sub<5/7</sub< model below 6500 m, which has great guiding significance to carry out actual experiments to measure atmospheric turbulence using the Mie lidar. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 2333 |
title_short |
Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile |
url |
https://doi.org/10.3390/s22062333 https://doaj.org/article/64f4e6ca379a4730ab5fb1a9bccca281 https://www.mdpi.com/1424-8220/22/6/2333 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Jiandong Mao Yingnan Zhang Hu Zhao Chunyan Zhou Xin Gong Qiang Wang Yi Zhang |
author2Str |
Jiandong Mao Yingnan Zhang Hu Zhao Chunyan Zhou Xin Gong Qiang Wang Yi Zhang |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s22062333 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T17:25:55.279Z |
_version_ |
1803579613807378432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025835939</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414133446.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s22062333</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025835939</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ64f4e6ca379a4730ab5fb1a9bccca281</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuqing Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Based on the residual turbulent scintillation theory, the Mie-scattering lidar can measure the intensity of atmospheric turbulence by detecting the light intensity scintillation index of the laser return signal. In order to evaluate and optimize the reliability of the Mie-scattering lidar system for detecting atmospheric turbulence, the appropriate parameters of the Mie-scattering lidar system are selected and optimized using the residual turbulent scintillation theory. Then, the Fourier transform method is employed to perform the numerical simulation of the phase screen of the laser light intensity transformation on the vertical transmission path of atmospheric turbulence. The phase screen simulation, low-frequency optimization, and scintillation index calculation methods are provided in detail, respectively. Based on the phase distribution of the laser beam, the scintillation index is obtained. Through the relationship between the scintillation index and the atmospheric turbulent refractive index structure constant, the atmospheric turbulence profile is inverted. The simulation results show that the atmospheric refractive index structure constant profile obtained by the iterative method is consistent with the input HV<sub<5/7</sub< model below 6500 m, which has great guiding significance to carry out actual experiments to measure atmospheric turbulence using the Mie lidar.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mie lidar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atmospheric turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">residual turbulent scintillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scintillation index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atmospheric refractive index structure constant</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiandong Mao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yingnan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hu Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunyan Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2022), 6, p 2333</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6, p 2333</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s22062333</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/64f4e6ca379a4730ab5fb1a9bccca281</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/22/6/2333</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">6, p 2333</subfield></datafield></record></collection>
|
score |
7.400729 |