Extensions of symmetric operators I: The inner characteristic function case
Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic character...
Ausführliche Beschreibung
Autor*in: |
Martin R.T.W. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
self-adjoint and unitary extensions reproducing kernel Hilbert spaces of analytic functions |
---|
Übergeordnetes Werk: |
In: Concrete Operators - De Gruyter, 2015, 2(2015), 1 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2015 ; number:1 |
Links: |
---|
DOI / URN: |
10.1515/conop-2015-0004 |
---|
Katalog-ID: |
DOAJ025862286 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ025862286 | ||
003 | DE-627 | ||
005 | 20230307092926.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/conop-2015-0004 |2 doi | |
035 | |a (DE-627)DOAJ025862286 | ||
035 | |a (DE-599)DOAJ7840dd50a89d414d813d7f53489e3eba | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Martin R.T.W. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Extensions of symmetric operators I: The inner characteristic function case |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the quotient of this set by a certain natural equivalence relation and the set of all contractive analytic functions φ which are greater or equal to θB. | ||
650 | 4 | |a symmetric operators | |
650 | 4 | |a partial isometries | |
650 | 4 | |a self-adjoint and unitary extensions | |
650 | 4 | |a reproducing kernel Hilbert spaces of analytic functions | |
650 | 4 | |a Hardy and deBranges Rovnyak spaces | |
650 | 4 | |a Livšic characteristic function | |
653 | 0 | |a Mathematics | |
773 | 0 | 8 | |i In |t Concrete Operators |d De Gruyter, 2015 |g 2(2015), 1 |w (DE-627)777285231 |w (DE-600)2753731-6 |x 22993282 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2015 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.1515/conop-2015-0004 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7840dd50a89d414d813d7f53489e3eba |z kostenfrei |
856 | 4 | 0 | |u http://www.degruyter.com/view/j/conop.2014.2.issue-1/conop-2015-0004/conop-2015-0004.xml?format=INT |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2299-3282 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2015 |e 1 |
author_variant |
m r mr |
---|---|
matchkey_str |
article:22993282:2015----::xesosfymtioeaostenecaatr |
hierarchy_sort_str |
2015 |
callnumber-subject-code |
QA |
publishDate |
2015 |
allfields |
10.1515/conop-2015-0004 doi (DE-627)DOAJ025862286 (DE-599)DOAJ7840dd50a89d414d813d7f53489e3eba DE-627 ger DE-627 rakwb eng QA1-939 Martin R.T.W. verfasserin aut Extensions of symmetric operators I: The inner characteristic function case 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the quotient of this set by a certain natural equivalence relation and the set of all contractive analytic functions φ which are greater or equal to θB. symmetric operators partial isometries self-adjoint and unitary extensions reproducing kernel Hilbert spaces of analytic functions Hardy and deBranges Rovnyak spaces Livšic characteristic function Mathematics In Concrete Operators De Gruyter, 2015 2(2015), 1 (DE-627)777285231 (DE-600)2753731-6 22993282 nnns volume:2 year:2015 number:1 https://doi.org/10.1515/conop-2015-0004 kostenfrei https://doaj.org/article/7840dd50a89d414d813d7f53489e3eba kostenfrei http://www.degruyter.com/view/j/conop.2014.2.issue-1/conop-2015-0004/conop-2015-0004.xml?format=INT kostenfrei https://doaj.org/toc/2299-3282 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 |
spelling |
10.1515/conop-2015-0004 doi (DE-627)DOAJ025862286 (DE-599)DOAJ7840dd50a89d414d813d7f53489e3eba DE-627 ger DE-627 rakwb eng QA1-939 Martin R.T.W. verfasserin aut Extensions of symmetric operators I: The inner characteristic function case 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the quotient of this set by a certain natural equivalence relation and the set of all contractive analytic functions φ which are greater or equal to θB. symmetric operators partial isometries self-adjoint and unitary extensions reproducing kernel Hilbert spaces of analytic functions Hardy and deBranges Rovnyak spaces Livšic characteristic function Mathematics In Concrete Operators De Gruyter, 2015 2(2015), 1 (DE-627)777285231 (DE-600)2753731-6 22993282 nnns volume:2 year:2015 number:1 https://doi.org/10.1515/conop-2015-0004 kostenfrei https://doaj.org/article/7840dd50a89d414d813d7f53489e3eba kostenfrei http://www.degruyter.com/view/j/conop.2014.2.issue-1/conop-2015-0004/conop-2015-0004.xml?format=INT kostenfrei https://doaj.org/toc/2299-3282 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 |
allfields_unstemmed |
10.1515/conop-2015-0004 doi (DE-627)DOAJ025862286 (DE-599)DOAJ7840dd50a89d414d813d7f53489e3eba DE-627 ger DE-627 rakwb eng QA1-939 Martin R.T.W. verfasserin aut Extensions of symmetric operators I: The inner characteristic function case 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the quotient of this set by a certain natural equivalence relation and the set of all contractive analytic functions φ which are greater or equal to θB. symmetric operators partial isometries self-adjoint and unitary extensions reproducing kernel Hilbert spaces of analytic functions Hardy and deBranges Rovnyak spaces Livšic characteristic function Mathematics In Concrete Operators De Gruyter, 2015 2(2015), 1 (DE-627)777285231 (DE-600)2753731-6 22993282 nnns volume:2 year:2015 number:1 https://doi.org/10.1515/conop-2015-0004 kostenfrei https://doaj.org/article/7840dd50a89d414d813d7f53489e3eba kostenfrei http://www.degruyter.com/view/j/conop.2014.2.issue-1/conop-2015-0004/conop-2015-0004.xml?format=INT kostenfrei https://doaj.org/toc/2299-3282 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 |
allfieldsGer |
10.1515/conop-2015-0004 doi (DE-627)DOAJ025862286 (DE-599)DOAJ7840dd50a89d414d813d7f53489e3eba DE-627 ger DE-627 rakwb eng QA1-939 Martin R.T.W. verfasserin aut Extensions of symmetric operators I: The inner characteristic function case 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the quotient of this set by a certain natural equivalence relation and the set of all contractive analytic functions φ which are greater or equal to θB. symmetric operators partial isometries self-adjoint and unitary extensions reproducing kernel Hilbert spaces of analytic functions Hardy and deBranges Rovnyak spaces Livšic characteristic function Mathematics In Concrete Operators De Gruyter, 2015 2(2015), 1 (DE-627)777285231 (DE-600)2753731-6 22993282 nnns volume:2 year:2015 number:1 https://doi.org/10.1515/conop-2015-0004 kostenfrei https://doaj.org/article/7840dd50a89d414d813d7f53489e3eba kostenfrei http://www.degruyter.com/view/j/conop.2014.2.issue-1/conop-2015-0004/conop-2015-0004.xml?format=INT kostenfrei https://doaj.org/toc/2299-3282 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 |
allfieldsSound |
10.1515/conop-2015-0004 doi (DE-627)DOAJ025862286 (DE-599)DOAJ7840dd50a89d414d813d7f53489e3eba DE-627 ger DE-627 rakwb eng QA1-939 Martin R.T.W. verfasserin aut Extensions of symmetric operators I: The inner characteristic function case 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the quotient of this set by a certain natural equivalence relation and the set of all contractive analytic functions φ which are greater or equal to θB. symmetric operators partial isometries self-adjoint and unitary extensions reproducing kernel Hilbert spaces of analytic functions Hardy and deBranges Rovnyak spaces Livšic characteristic function Mathematics In Concrete Operators De Gruyter, 2015 2(2015), 1 (DE-627)777285231 (DE-600)2753731-6 22993282 nnns volume:2 year:2015 number:1 https://doi.org/10.1515/conop-2015-0004 kostenfrei https://doaj.org/article/7840dd50a89d414d813d7f53489e3eba kostenfrei http://www.degruyter.com/view/j/conop.2014.2.issue-1/conop-2015-0004/conop-2015-0004.xml?format=INT kostenfrei https://doaj.org/toc/2299-3282 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 |
language |
English |
source |
In Concrete Operators 2(2015), 1 volume:2 year:2015 number:1 |
sourceStr |
In Concrete Operators 2(2015), 1 volume:2 year:2015 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
symmetric operators partial isometries self-adjoint and unitary extensions reproducing kernel Hilbert spaces of analytic functions Hardy and deBranges Rovnyak spaces Livšic characteristic function Mathematics |
isfreeaccess_bool |
true |
container_title |
Concrete Operators |
authorswithroles_txt_mv |
Martin R.T.W. @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
777285231 |
id |
DOAJ025862286 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025862286</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307092926.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/conop-2015-0004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025862286</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7840dd50a89d414d813d7f53489e3eba</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Martin R.T.W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extensions of symmetric operators I: The inner characteristic function case</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the quotient of this set by a certain natural equivalence relation and the set of all contractive analytic functions φ which are greater or equal to θB.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">symmetric operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">partial isometries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">self-adjoint and unitary extensions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reproducing kernel Hilbert spaces of analytic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hardy and deBranges Rovnyak spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Livšic characteristic function</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Concrete Operators</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">2(2015), 1</subfield><subfield code="w">(DE-627)777285231</subfield><subfield code="w">(DE-600)2753731-6</subfield><subfield code="x">22993282</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/conop-2015-0004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7840dd50a89d414d813d7f53489e3eba</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/view/j/conop.2014.2.issue-1/conop-2015-0004/conop-2015-0004.xml?format=INT</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2299-3282</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Martin R.T.W. |
spellingShingle |
Martin R.T.W. misc QA1-939 misc symmetric operators misc partial isometries misc self-adjoint and unitary extensions misc reproducing kernel Hilbert spaces of analytic functions misc Hardy and deBranges Rovnyak spaces misc Livšic characteristic function misc Mathematics Extensions of symmetric operators I: The inner characteristic function case |
authorStr |
Martin R.T.W. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)777285231 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
22993282 |
topic_title |
QA1-939 Extensions of symmetric operators I: The inner characteristic function case symmetric operators partial isometries self-adjoint and unitary extensions reproducing kernel Hilbert spaces of analytic functions Hardy and deBranges Rovnyak spaces Livšic characteristic function |
topic |
misc QA1-939 misc symmetric operators misc partial isometries misc self-adjoint and unitary extensions misc reproducing kernel Hilbert spaces of analytic functions misc Hardy and deBranges Rovnyak spaces misc Livšic characteristic function misc Mathematics |
topic_unstemmed |
misc QA1-939 misc symmetric operators misc partial isometries misc self-adjoint and unitary extensions misc reproducing kernel Hilbert spaces of analytic functions misc Hardy and deBranges Rovnyak spaces misc Livšic characteristic function misc Mathematics |
topic_browse |
misc QA1-939 misc symmetric operators misc partial isometries misc self-adjoint and unitary extensions misc reproducing kernel Hilbert spaces of analytic functions misc Hardy and deBranges Rovnyak spaces misc Livšic characteristic function misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Concrete Operators |
hierarchy_parent_id |
777285231 |
hierarchy_top_title |
Concrete Operators |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)777285231 (DE-600)2753731-6 |
title |
Extensions of symmetric operators I: The inner characteristic function case |
ctrlnum |
(DE-627)DOAJ025862286 (DE-599)DOAJ7840dd50a89d414d813d7f53489e3eba |
title_full |
Extensions of symmetric operators I: The inner characteristic function case |
author_sort |
Martin R.T.W. |
journal |
Concrete Operators |
journalStr |
Concrete Operators |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Martin R.T.W. |
container_volume |
2 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Martin R.T.W. |
doi_str_mv |
10.1515/conop-2015-0004 |
title_sort |
extensions of symmetric operators i: the inner characteristic function case |
callnumber |
QA1-939 |
title_auth |
Extensions of symmetric operators I: The inner characteristic function case |
abstract |
Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the quotient of this set by a certain natural equivalence relation and the set of all contractive analytic functions φ which are greater or equal to θB. |
abstractGer |
Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the quotient of this set by a certain natural equivalence relation and the set of all contractive analytic functions φ which are greater or equal to θB. |
abstract_unstemmed |
Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the quotient of this set by a certain natural equivalence relation and the set of all contractive analytic functions φ which are greater or equal to θB. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Extensions of symmetric operators I: The inner characteristic function case |
url |
https://doi.org/10.1515/conop-2015-0004 https://doaj.org/article/7840dd50a89d414d813d7f53489e3eba http://www.degruyter.com/view/j/conop.2014.2.issue-1/conop-2015-0004/conop-2015-0004.xml?format=INT https://doaj.org/toc/2299-3282 |
remote_bool |
true |
ppnlink |
777285231 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/conop-2015-0004 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T17:36:10.895Z |
_version_ |
1803580259328589824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025862286</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307092926.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/conop-2015-0004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025862286</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7840dd50a89d414d813d7f53489e3eba</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Martin R.T.W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extensions of symmetric operators I: The inner characteristic function case</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Given a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θB by constructing a bijection between the quotient of this set by a certain natural equivalence relation and the set of all contractive analytic functions φ which are greater or equal to θB.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">symmetric operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">partial isometries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">self-adjoint and unitary extensions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reproducing kernel Hilbert spaces of analytic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hardy and deBranges Rovnyak spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Livšic characteristic function</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Concrete Operators</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">2(2015), 1</subfield><subfield code="w">(DE-627)777285231</subfield><subfield code="w">(DE-600)2753731-6</subfield><subfield code="x">22993282</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/conop-2015-0004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7840dd50a89d414d813d7f53489e3eba</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/view/j/conop.2014.2.issue-1/conop-2015-0004/conop-2015-0004.xml?format=INT</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2299-3282</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.399723 |