Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network
Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yi...
Ausführliche Beschreibung
Autor*in: |
Ziling Zhang [verfasserIn] Xinyuan Nan [verfasserIn] Cong Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 19(2018), 1, p 64 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2018 ; number:1, p 64 |
Links: |
---|
DOI / URN: |
10.3390/s19010064 |
---|
Katalog-ID: |
DOAJ025928589 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ025928589 | ||
003 | DE-627 | ||
005 | 20230307093437.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s19010064 |2 doi | |
035 | |a (DE-627)DOAJ025928589 | ||
035 | |a (DE-599)DOAJ4268fc830bcc45f6bd0e77705d22f5b2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Ziling Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method. | ||
650 | 4 | |a distributed sensor fusion | |
650 | 4 | |a small-range sensor network | |
650 | 4 | |a iterative operation | |
650 | 4 | |a multi-fading factor | |
650 | 4 | |a weighted fading memory index | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Xinyuan Nan |e verfasserin |4 aut | |
700 | 0 | |a Cong Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 19(2018), 1, p 64 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2018 |g number:1, p 64 |
856 | 4 | 0 | |u https://doi.org/10.3390/s19010064 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4268fc830bcc45f6bd0e77705d22f5b2 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/1424-8220/19/1/64 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 2018 |e 1, p 64 |
author_variant |
z z zz x n xn c w cw |
---|---|
matchkey_str |
article:14248220:2018----::elieegtdaauinloihfreprtrdtcinaeos |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TP |
publishDate |
2018 |
allfields |
10.3390/s19010064 doi (DE-627)DOAJ025928589 (DE-599)DOAJ4268fc830bcc45f6bd0e77705d22f5b2 DE-627 ger DE-627 rakwb eng TP1-1185 Ziling Zhang verfasserin aut Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method. distributed sensor fusion small-range sensor network iterative operation multi-fading factor weighted fading memory index Chemical technology Xinyuan Nan verfasserin aut Cong Wang verfasserin aut In Sensors MDPI AG, 2003 19(2018), 1, p 64 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2018 number:1, p 64 https://doi.org/10.3390/s19010064 kostenfrei https://doaj.org/article/4268fc830bcc45f6bd0e77705d22f5b2 kostenfrei http://www.mdpi.com/1424-8220/19/1/64 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2018 1, p 64 |
spelling |
10.3390/s19010064 doi (DE-627)DOAJ025928589 (DE-599)DOAJ4268fc830bcc45f6bd0e77705d22f5b2 DE-627 ger DE-627 rakwb eng TP1-1185 Ziling Zhang verfasserin aut Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method. distributed sensor fusion small-range sensor network iterative operation multi-fading factor weighted fading memory index Chemical technology Xinyuan Nan verfasserin aut Cong Wang verfasserin aut In Sensors MDPI AG, 2003 19(2018), 1, p 64 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2018 number:1, p 64 https://doi.org/10.3390/s19010064 kostenfrei https://doaj.org/article/4268fc830bcc45f6bd0e77705d22f5b2 kostenfrei http://www.mdpi.com/1424-8220/19/1/64 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2018 1, p 64 |
allfields_unstemmed |
10.3390/s19010064 doi (DE-627)DOAJ025928589 (DE-599)DOAJ4268fc830bcc45f6bd0e77705d22f5b2 DE-627 ger DE-627 rakwb eng TP1-1185 Ziling Zhang verfasserin aut Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method. distributed sensor fusion small-range sensor network iterative operation multi-fading factor weighted fading memory index Chemical technology Xinyuan Nan verfasserin aut Cong Wang verfasserin aut In Sensors MDPI AG, 2003 19(2018), 1, p 64 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2018 number:1, p 64 https://doi.org/10.3390/s19010064 kostenfrei https://doaj.org/article/4268fc830bcc45f6bd0e77705d22f5b2 kostenfrei http://www.mdpi.com/1424-8220/19/1/64 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2018 1, p 64 |
allfieldsGer |
10.3390/s19010064 doi (DE-627)DOAJ025928589 (DE-599)DOAJ4268fc830bcc45f6bd0e77705d22f5b2 DE-627 ger DE-627 rakwb eng TP1-1185 Ziling Zhang verfasserin aut Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method. distributed sensor fusion small-range sensor network iterative operation multi-fading factor weighted fading memory index Chemical technology Xinyuan Nan verfasserin aut Cong Wang verfasserin aut In Sensors MDPI AG, 2003 19(2018), 1, p 64 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2018 number:1, p 64 https://doi.org/10.3390/s19010064 kostenfrei https://doaj.org/article/4268fc830bcc45f6bd0e77705d22f5b2 kostenfrei http://www.mdpi.com/1424-8220/19/1/64 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2018 1, p 64 |
allfieldsSound |
10.3390/s19010064 doi (DE-627)DOAJ025928589 (DE-599)DOAJ4268fc830bcc45f6bd0e77705d22f5b2 DE-627 ger DE-627 rakwb eng TP1-1185 Ziling Zhang verfasserin aut Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method. distributed sensor fusion small-range sensor network iterative operation multi-fading factor weighted fading memory index Chemical technology Xinyuan Nan verfasserin aut Cong Wang verfasserin aut In Sensors MDPI AG, 2003 19(2018), 1, p 64 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2018 number:1, p 64 https://doi.org/10.3390/s19010064 kostenfrei https://doaj.org/article/4268fc830bcc45f6bd0e77705d22f5b2 kostenfrei http://www.mdpi.com/1424-8220/19/1/64 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2018 1, p 64 |
language |
English |
source |
In Sensors 19(2018), 1, p 64 volume:19 year:2018 number:1, p 64 |
sourceStr |
In Sensors 19(2018), 1, p 64 volume:19 year:2018 number:1, p 64 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
distributed sensor fusion small-range sensor network iterative operation multi-fading factor weighted fading memory index Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Ziling Zhang @@aut@@ Xinyuan Nan @@aut@@ Cong Wang @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ025928589 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025928589</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307093437.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s19010064</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025928589</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4268fc830bcc45f6bd0e77705d22f5b2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ziling Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed sensor fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">small-range sensor network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iterative operation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-fading factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted fading memory index</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinyuan Nan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">19(2018), 1, p 64</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1, p 64</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s19010064</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4268fc830bcc45f6bd0e77705d22f5b2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1424-8220/19/1/64</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2018</subfield><subfield code="e">1, p 64</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Ziling Zhang |
spellingShingle |
Ziling Zhang misc TP1-1185 misc distributed sensor fusion misc small-range sensor network misc iterative operation misc multi-fading factor misc weighted fading memory index misc Chemical technology Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network |
authorStr |
Ziling Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network distributed sensor fusion small-range sensor network iterative operation multi-fading factor weighted fading memory index |
topic |
misc TP1-1185 misc distributed sensor fusion misc small-range sensor network misc iterative operation misc multi-fading factor misc weighted fading memory index misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc distributed sensor fusion misc small-range sensor network misc iterative operation misc multi-fading factor misc weighted fading memory index misc Chemical technology |
topic_browse |
misc TP1-1185 misc distributed sensor fusion misc small-range sensor network misc iterative operation misc multi-fading factor misc weighted fading memory index misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network |
ctrlnum |
(DE-627)DOAJ025928589 (DE-599)DOAJ4268fc830bcc45f6bd0e77705d22f5b2 |
title_full |
Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network |
author_sort |
Ziling Zhang |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Ziling Zhang Xinyuan Nan Cong Wang |
container_volume |
19 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Ziling Zhang |
doi_str_mv |
10.3390/s19010064 |
author2-role |
verfasserin |
title_sort |
real-time weighted data fusion algorithm for temperature detection based on small-range sensor network |
callnumber |
TP1-1185 |
title_auth |
Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network |
abstract |
Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method. |
abstractGer |
Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method. |
abstract_unstemmed |
Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 64 |
title_short |
Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network |
url |
https://doi.org/10.3390/s19010064 https://doaj.org/article/4268fc830bcc45f6bd0e77705d22f5b2 http://www.mdpi.com/1424-8220/19/1/64 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Xinyuan Nan Cong Wang |
author2Str |
Xinyuan Nan Cong Wang |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s19010064 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T18:00:00.383Z |
_version_ |
1803581758252253184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025928589</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307093437.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s19010064</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025928589</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4268fc830bcc45f6bd0e77705d22f5b2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ziling Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real-Time Weighted Data Fusion Algorithm for Temperature Detection Based on Small-Range Sensor Network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed sensor fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">small-range sensor network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iterative operation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-fading factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted fading memory index</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinyuan Nan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">19(2018), 1, p 64</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1, p 64</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s19010064</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4268fc830bcc45f6bd0e77705d22f5b2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1424-8220/19/1/64</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2018</subfield><subfield code="e">1, p 64</subfield></datafield></record></collection>
|
score |
7.400895 |