Cascadable all-optical NAND gates using diffractive networks
Abstract Owing to its potential advantages such as scalability, low latency and power efficiency, optical computing has seen rapid advances over the last decades. Here, we present the design and analysis of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical v...
Ausführliche Beschreibung
Autor*in: |
Yi Luo [verfasserIn] Deniz Mengu [verfasserIn] Aydogan Ozcan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: Scientific Reports - Nature Portfolio, 2011, 12(2022), 1, Seite 11 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:1 ; pages:11 |
Links: |
---|
DOI / URN: |
10.1038/s41598-022-11331-4 |
---|
Katalog-ID: |
DOAJ025972707 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ025972707 | ||
003 | DE-627 | ||
005 | 20230307093858.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41598-022-11331-4 |2 doi | |
035 | |a (DE-627)DOAJ025972707 | ||
035 | |a (DE-599)DOAJacc231aa1ba1449fba43dbcdf2c44f33 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Yi Luo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cascadable all-optical NAND gates using diffractive networks |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Owing to its potential advantages such as scalability, low latency and power efficiency, optical computing has seen rapid advances over the last decades. Here, we present the design and analysis of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical values at the input and output planes of a diffractive NAND gate using the relative optical power of two spatially-separated apertures. Based on this architecture, we numerically optimized the design of a diffractive neural network composed of 4 passive layers to all-optically perform NAND operation using diffraction of light, and cascaded these diffractive NAND gates to perform complex logical functions by successively feeding the output of one diffractive NAND gate into another. We numerically demonstrated the cascadability of our diffractive NAND gates by using identical diffractive designs to all-optically perform AND and OR operations, which can be formulated as $$\mathrm{AND}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{2}\right), \mathrm{NAND}\left({I}_{1},{I}_{2}\right)\right)$$ AND I 1 , I 2 = NAND NAND I 1 , I 2 , NAND I 1 , I 2 and $$\mathrm{OR}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{1}\right), \mathrm{NAND}\left({I}_{2},{I}_{2}\right)\right)$$ OR I 1 , I 2 = NAND NAND I 1 , I 1 , NAND I 2 , I 2 , respectively. We also designed an all-optical half-adder that takes two logical values as input and returns their sum and the carry using cascaded diffractive NAND gates. Cascadable all-optical NAND gates composed of spatially-engineered passive diffractive layers can serve optical computing platforms. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Deniz Mengu |e verfasserin |4 aut | |
700 | 0 | |a Aydogan Ozcan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Scientific Reports |d Nature Portfolio, 2011 |g 12(2022), 1, Seite 11 |w (DE-627)663366712 |w (DE-600)2615211-3 |x 20452322 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:1 |g pages:11 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-11331-4 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/acc231aa1ba1449fba43dbcdf2c44f33 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-11331-4 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2045-2322 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 1 |h 11 |
author_variant |
y l yl d m dm a o ao |
---|---|
matchkey_str |
article:20452322:2022----::acdbelotcladaeuigif |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1038/s41598-022-11331-4 doi (DE-627)DOAJ025972707 (DE-599)DOAJacc231aa1ba1449fba43dbcdf2c44f33 DE-627 ger DE-627 rakwb eng Yi Luo verfasserin aut Cascadable all-optical NAND gates using diffractive networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Owing to its potential advantages such as scalability, low latency and power efficiency, optical computing has seen rapid advances over the last decades. Here, we present the design and analysis of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical values at the input and output planes of a diffractive NAND gate using the relative optical power of two spatially-separated apertures. Based on this architecture, we numerically optimized the design of a diffractive neural network composed of 4 passive layers to all-optically perform NAND operation using diffraction of light, and cascaded these diffractive NAND gates to perform complex logical functions by successively feeding the output of one diffractive NAND gate into another. We numerically demonstrated the cascadability of our diffractive NAND gates by using identical diffractive designs to all-optically perform AND and OR operations, which can be formulated as $$\mathrm{AND}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{2}\right), \mathrm{NAND}\left({I}_{1},{I}_{2}\right)\right)$$ AND I 1 , I 2 = NAND NAND I 1 , I 2 , NAND I 1 , I 2 and $$\mathrm{OR}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{1}\right), \mathrm{NAND}\left({I}_{2},{I}_{2}\right)\right)$$ OR I 1 , I 2 = NAND NAND I 1 , I 1 , NAND I 2 , I 2 , respectively. We also designed an all-optical half-adder that takes two logical values as input and returns their sum and the carry using cascaded diffractive NAND gates. Cascadable all-optical NAND gates composed of spatially-engineered passive diffractive layers can serve optical computing platforms. Medicine R Science Q Deniz Mengu verfasserin aut Aydogan Ozcan verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 11 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:11 https://doi.org/10.1038/s41598-022-11331-4 kostenfrei https://doaj.org/article/acc231aa1ba1449fba43dbcdf2c44f33 kostenfrei https://doi.org/10.1038/s41598-022-11331-4 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 11 |
spelling |
10.1038/s41598-022-11331-4 doi (DE-627)DOAJ025972707 (DE-599)DOAJacc231aa1ba1449fba43dbcdf2c44f33 DE-627 ger DE-627 rakwb eng Yi Luo verfasserin aut Cascadable all-optical NAND gates using diffractive networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Owing to its potential advantages such as scalability, low latency and power efficiency, optical computing has seen rapid advances over the last decades. Here, we present the design and analysis of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical values at the input and output planes of a diffractive NAND gate using the relative optical power of two spatially-separated apertures. Based on this architecture, we numerically optimized the design of a diffractive neural network composed of 4 passive layers to all-optically perform NAND operation using diffraction of light, and cascaded these diffractive NAND gates to perform complex logical functions by successively feeding the output of one diffractive NAND gate into another. We numerically demonstrated the cascadability of our diffractive NAND gates by using identical diffractive designs to all-optically perform AND and OR operations, which can be formulated as $$\mathrm{AND}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{2}\right), \mathrm{NAND}\left({I}_{1},{I}_{2}\right)\right)$$ AND I 1 , I 2 = NAND NAND I 1 , I 2 , NAND I 1 , I 2 and $$\mathrm{OR}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{1}\right), \mathrm{NAND}\left({I}_{2},{I}_{2}\right)\right)$$ OR I 1 , I 2 = NAND NAND I 1 , I 1 , NAND I 2 , I 2 , respectively. We also designed an all-optical half-adder that takes two logical values as input and returns their sum and the carry using cascaded diffractive NAND gates. Cascadable all-optical NAND gates composed of spatially-engineered passive diffractive layers can serve optical computing platforms. Medicine R Science Q Deniz Mengu verfasserin aut Aydogan Ozcan verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 11 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:11 https://doi.org/10.1038/s41598-022-11331-4 kostenfrei https://doaj.org/article/acc231aa1ba1449fba43dbcdf2c44f33 kostenfrei https://doi.org/10.1038/s41598-022-11331-4 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 11 |
allfields_unstemmed |
10.1038/s41598-022-11331-4 doi (DE-627)DOAJ025972707 (DE-599)DOAJacc231aa1ba1449fba43dbcdf2c44f33 DE-627 ger DE-627 rakwb eng Yi Luo verfasserin aut Cascadable all-optical NAND gates using diffractive networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Owing to its potential advantages such as scalability, low latency and power efficiency, optical computing has seen rapid advances over the last decades. Here, we present the design and analysis of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical values at the input and output planes of a diffractive NAND gate using the relative optical power of two spatially-separated apertures. Based on this architecture, we numerically optimized the design of a diffractive neural network composed of 4 passive layers to all-optically perform NAND operation using diffraction of light, and cascaded these diffractive NAND gates to perform complex logical functions by successively feeding the output of one diffractive NAND gate into another. We numerically demonstrated the cascadability of our diffractive NAND gates by using identical diffractive designs to all-optically perform AND and OR operations, which can be formulated as $$\mathrm{AND}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{2}\right), \mathrm{NAND}\left({I}_{1},{I}_{2}\right)\right)$$ AND I 1 , I 2 = NAND NAND I 1 , I 2 , NAND I 1 , I 2 and $$\mathrm{OR}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{1}\right), \mathrm{NAND}\left({I}_{2},{I}_{2}\right)\right)$$ OR I 1 , I 2 = NAND NAND I 1 , I 1 , NAND I 2 , I 2 , respectively. We also designed an all-optical half-adder that takes two logical values as input and returns their sum and the carry using cascaded diffractive NAND gates. Cascadable all-optical NAND gates composed of spatially-engineered passive diffractive layers can serve optical computing platforms. Medicine R Science Q Deniz Mengu verfasserin aut Aydogan Ozcan verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 11 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:11 https://doi.org/10.1038/s41598-022-11331-4 kostenfrei https://doaj.org/article/acc231aa1ba1449fba43dbcdf2c44f33 kostenfrei https://doi.org/10.1038/s41598-022-11331-4 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 11 |
allfieldsGer |
10.1038/s41598-022-11331-4 doi (DE-627)DOAJ025972707 (DE-599)DOAJacc231aa1ba1449fba43dbcdf2c44f33 DE-627 ger DE-627 rakwb eng Yi Luo verfasserin aut Cascadable all-optical NAND gates using diffractive networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Owing to its potential advantages such as scalability, low latency and power efficiency, optical computing has seen rapid advances over the last decades. Here, we present the design and analysis of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical values at the input and output planes of a diffractive NAND gate using the relative optical power of two spatially-separated apertures. Based on this architecture, we numerically optimized the design of a diffractive neural network composed of 4 passive layers to all-optically perform NAND operation using diffraction of light, and cascaded these diffractive NAND gates to perform complex logical functions by successively feeding the output of one diffractive NAND gate into another. We numerically demonstrated the cascadability of our diffractive NAND gates by using identical diffractive designs to all-optically perform AND and OR operations, which can be formulated as $$\mathrm{AND}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{2}\right), \mathrm{NAND}\left({I}_{1},{I}_{2}\right)\right)$$ AND I 1 , I 2 = NAND NAND I 1 , I 2 , NAND I 1 , I 2 and $$\mathrm{OR}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{1}\right), \mathrm{NAND}\left({I}_{2},{I}_{2}\right)\right)$$ OR I 1 , I 2 = NAND NAND I 1 , I 1 , NAND I 2 , I 2 , respectively. We also designed an all-optical half-adder that takes two logical values as input and returns their sum and the carry using cascaded diffractive NAND gates. Cascadable all-optical NAND gates composed of spatially-engineered passive diffractive layers can serve optical computing platforms. Medicine R Science Q Deniz Mengu verfasserin aut Aydogan Ozcan verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 11 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:11 https://doi.org/10.1038/s41598-022-11331-4 kostenfrei https://doaj.org/article/acc231aa1ba1449fba43dbcdf2c44f33 kostenfrei https://doi.org/10.1038/s41598-022-11331-4 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 11 |
allfieldsSound |
10.1038/s41598-022-11331-4 doi (DE-627)DOAJ025972707 (DE-599)DOAJacc231aa1ba1449fba43dbcdf2c44f33 DE-627 ger DE-627 rakwb eng Yi Luo verfasserin aut Cascadable all-optical NAND gates using diffractive networks 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Owing to its potential advantages such as scalability, low latency and power efficiency, optical computing has seen rapid advances over the last decades. Here, we present the design and analysis of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical values at the input and output planes of a diffractive NAND gate using the relative optical power of two spatially-separated apertures. Based on this architecture, we numerically optimized the design of a diffractive neural network composed of 4 passive layers to all-optically perform NAND operation using diffraction of light, and cascaded these diffractive NAND gates to perform complex logical functions by successively feeding the output of one diffractive NAND gate into another. We numerically demonstrated the cascadability of our diffractive NAND gates by using identical diffractive designs to all-optically perform AND and OR operations, which can be formulated as $$\mathrm{AND}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{2}\right), \mathrm{NAND}\left({I}_{1},{I}_{2}\right)\right)$$ AND I 1 , I 2 = NAND NAND I 1 , I 2 , NAND I 1 , I 2 and $$\mathrm{OR}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{1}\right), \mathrm{NAND}\left({I}_{2},{I}_{2}\right)\right)$$ OR I 1 , I 2 = NAND NAND I 1 , I 1 , NAND I 2 , I 2 , respectively. We also designed an all-optical half-adder that takes two logical values as input and returns their sum and the carry using cascaded diffractive NAND gates. Cascadable all-optical NAND gates composed of spatially-engineered passive diffractive layers can serve optical computing platforms. Medicine R Science Q Deniz Mengu verfasserin aut Aydogan Ozcan verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 11 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:11 https://doi.org/10.1038/s41598-022-11331-4 kostenfrei https://doaj.org/article/acc231aa1ba1449fba43dbcdf2c44f33 kostenfrei https://doi.org/10.1038/s41598-022-11331-4 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 11 |
language |
English |
source |
In Scientific Reports 12(2022), 1, Seite 11 volume:12 year:2022 number:1 pages:11 |
sourceStr |
In Scientific Reports 12(2022), 1, Seite 11 volume:12 year:2022 number:1 pages:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
Scientific Reports |
authorswithroles_txt_mv |
Yi Luo @@aut@@ Deniz Mengu @@aut@@ Aydogan Ozcan @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
663366712 |
id |
DOAJ025972707 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025972707</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307093858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-11331-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025972707</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJacc231aa1ba1449fba43dbcdf2c44f33</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yi Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cascadable all-optical NAND gates using diffractive networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Owing to its potential advantages such as scalability, low latency and power efficiency, optical computing has seen rapid advances over the last decades. Here, we present the design and analysis of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical values at the input and output planes of a diffractive NAND gate using the relative optical power of two spatially-separated apertures. Based on this architecture, we numerically optimized the design of a diffractive neural network composed of 4 passive layers to all-optically perform NAND operation using diffraction of light, and cascaded these diffractive NAND gates to perform complex logical functions by successively feeding the output of one diffractive NAND gate into another. We numerically demonstrated the cascadability of our diffractive NAND gates by using identical diffractive designs to all-optically perform AND and OR operations, which can be formulated as $$\mathrm{AND}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{2}\right), \mathrm{NAND}\left({I}_{1},{I}_{2}\right)\right)$$ AND I 1 , I 2 = NAND NAND I 1 , I 2 , NAND I 1 , I 2 and $$\mathrm{OR}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{1}\right), \mathrm{NAND}\left({I}_{2},{I}_{2}\right)\right)$$ OR I 1 , I 2 = NAND NAND I 1 , I 1 , NAND I 2 , I 2 , respectively. We also designed an all-optical half-adder that takes two logical values as input and returns their sum and the carry using cascaded diffractive NAND gates. Cascadable all-optical NAND gates composed of spatially-engineered passive diffractive layers can serve optical computing platforms.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deniz Mengu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aydogan Ozcan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 11</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-11331-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/acc231aa1ba1449fba43dbcdf2c44f33</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-11331-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
author |
Yi Luo |
spellingShingle |
Yi Luo misc Medicine misc R misc Science misc Q Cascadable all-optical NAND gates using diffractive networks |
authorStr |
Yi Luo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663366712 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20452322 |
topic_title |
Cascadable all-optical NAND gates using diffractive networks |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Scientific Reports |
hierarchy_parent_id |
663366712 |
hierarchy_top_title |
Scientific Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663366712 (DE-600)2615211-3 |
title |
Cascadable all-optical NAND gates using diffractive networks |
ctrlnum |
(DE-627)DOAJ025972707 (DE-599)DOAJacc231aa1ba1449fba43dbcdf2c44f33 |
title_full |
Cascadable all-optical NAND gates using diffractive networks |
author_sort |
Yi Luo |
journal |
Scientific Reports |
journalStr |
Scientific Reports |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
11 |
author_browse |
Yi Luo Deniz Mengu Aydogan Ozcan |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Yi Luo |
doi_str_mv |
10.1038/s41598-022-11331-4 |
author2-role |
verfasserin |
title_sort |
cascadable all-optical nand gates using diffractive networks |
title_auth |
Cascadable all-optical NAND gates using diffractive networks |
abstract |
Abstract Owing to its potential advantages such as scalability, low latency and power efficiency, optical computing has seen rapid advances over the last decades. Here, we present the design and analysis of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical values at the input and output planes of a diffractive NAND gate using the relative optical power of two spatially-separated apertures. Based on this architecture, we numerically optimized the design of a diffractive neural network composed of 4 passive layers to all-optically perform NAND operation using diffraction of light, and cascaded these diffractive NAND gates to perform complex logical functions by successively feeding the output of one diffractive NAND gate into another. We numerically demonstrated the cascadability of our diffractive NAND gates by using identical diffractive designs to all-optically perform AND and OR operations, which can be formulated as $$\mathrm{AND}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{2}\right), \mathrm{NAND}\left({I}_{1},{I}_{2}\right)\right)$$ AND I 1 , I 2 = NAND NAND I 1 , I 2 , NAND I 1 , I 2 and $$\mathrm{OR}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{1}\right), \mathrm{NAND}\left({I}_{2},{I}_{2}\right)\right)$$ OR I 1 , I 2 = NAND NAND I 1 , I 1 , NAND I 2 , I 2 , respectively. We also designed an all-optical half-adder that takes two logical values as input and returns their sum and the carry using cascaded diffractive NAND gates. Cascadable all-optical NAND gates composed of spatially-engineered passive diffractive layers can serve optical computing platforms. |
abstractGer |
Abstract Owing to its potential advantages such as scalability, low latency and power efficiency, optical computing has seen rapid advances over the last decades. Here, we present the design and analysis of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical values at the input and output planes of a diffractive NAND gate using the relative optical power of two spatially-separated apertures. Based on this architecture, we numerically optimized the design of a diffractive neural network composed of 4 passive layers to all-optically perform NAND operation using diffraction of light, and cascaded these diffractive NAND gates to perform complex logical functions by successively feeding the output of one diffractive NAND gate into another. We numerically demonstrated the cascadability of our diffractive NAND gates by using identical diffractive designs to all-optically perform AND and OR operations, which can be formulated as $$\mathrm{AND}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{2}\right), \mathrm{NAND}\left({I}_{1},{I}_{2}\right)\right)$$ AND I 1 , I 2 = NAND NAND I 1 , I 2 , NAND I 1 , I 2 and $$\mathrm{OR}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{1}\right), \mathrm{NAND}\left({I}_{2},{I}_{2}\right)\right)$$ OR I 1 , I 2 = NAND NAND I 1 , I 1 , NAND I 2 , I 2 , respectively. We also designed an all-optical half-adder that takes two logical values as input and returns their sum and the carry using cascaded diffractive NAND gates. Cascadable all-optical NAND gates composed of spatially-engineered passive diffractive layers can serve optical computing platforms. |
abstract_unstemmed |
Abstract Owing to its potential advantages such as scalability, low latency and power efficiency, optical computing has seen rapid advances over the last decades. Here, we present the design and analysis of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical values at the input and output planes of a diffractive NAND gate using the relative optical power of two spatially-separated apertures. Based on this architecture, we numerically optimized the design of a diffractive neural network composed of 4 passive layers to all-optically perform NAND operation using diffraction of light, and cascaded these diffractive NAND gates to perform complex logical functions by successively feeding the output of one diffractive NAND gate into another. We numerically demonstrated the cascadability of our diffractive NAND gates by using identical diffractive designs to all-optically perform AND and OR operations, which can be formulated as $$\mathrm{AND}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{2}\right), \mathrm{NAND}\left({I}_{1},{I}_{2}\right)\right)$$ AND I 1 , I 2 = NAND NAND I 1 , I 2 , NAND I 1 , I 2 and $$\mathrm{OR}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{1}\right), \mathrm{NAND}\left({I}_{2},{I}_{2}\right)\right)$$ OR I 1 , I 2 = NAND NAND I 1 , I 1 , NAND I 2 , I 2 , respectively. We also designed an all-optical half-adder that takes two logical values as input and returns their sum and the carry using cascaded diffractive NAND gates. Cascadable all-optical NAND gates composed of spatially-engineered passive diffractive layers can serve optical computing platforms. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Cascadable all-optical NAND gates using diffractive networks |
url |
https://doi.org/10.1038/s41598-022-11331-4 https://doaj.org/article/acc231aa1ba1449fba43dbcdf2c44f33 https://doaj.org/toc/2045-2322 |
remote_bool |
true |
author2 |
Deniz Mengu Aydogan Ozcan |
author2Str |
Deniz Mengu Aydogan Ozcan |
ppnlink |
663366712 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41598-022-11331-4 |
up_date |
2024-07-03T18:15:45.387Z |
_version_ |
1803582749161816064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ025972707</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307093858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-11331-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ025972707</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJacc231aa1ba1449fba43dbcdf2c44f33</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yi Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cascadable all-optical NAND gates using diffractive networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Owing to its potential advantages such as scalability, low latency and power efficiency, optical computing has seen rapid advances over the last decades. Here, we present the design and analysis of cascadable all-optical NAND gates using diffractive neural networks. We encoded the logical values at the input and output planes of a diffractive NAND gate using the relative optical power of two spatially-separated apertures. Based on this architecture, we numerically optimized the design of a diffractive neural network composed of 4 passive layers to all-optically perform NAND operation using diffraction of light, and cascaded these diffractive NAND gates to perform complex logical functions by successively feeding the output of one diffractive NAND gate into another. We numerically demonstrated the cascadability of our diffractive NAND gates by using identical diffractive designs to all-optically perform AND and OR operations, which can be formulated as $$\mathrm{AND}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{2}\right), \mathrm{NAND}\left({I}_{1},{I}_{2}\right)\right)$$ AND I 1 , I 2 = NAND NAND I 1 , I 2 , NAND I 1 , I 2 and $$\mathrm{OR}\left({I}_{1}, {I}_{2}\right)=\mathrm{NAND}\left(\mathrm{NAND}\left({I}_{1}, {I}_{1}\right), \mathrm{NAND}\left({I}_{2},{I}_{2}\right)\right)$$ OR I 1 , I 2 = NAND NAND I 1 , I 1 , NAND I 2 , I 2 , respectively. We also designed an all-optical half-adder that takes two logical values as input and returns their sum and the carry using cascaded diffractive NAND gates. Cascadable all-optical NAND gates composed of spatially-engineered passive diffractive layers can serve optical computing platforms.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deniz Mengu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aydogan Ozcan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 11</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-11331-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/acc231aa1ba1449fba43dbcdf2c44f33</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-11331-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
score |
7.4007473 |