Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model

Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman–Mont...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Jiankun Ge [verfasserIn]

Linfeng Zhao [verfasserIn]

Zihui Yu [verfasserIn]

Huanhuan Liu [verfasserIn]

Lei Zhang [verfasserIn]

Xuewen Gong [verfasserIn]

Huaiwei Sun [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

XGBoost regression

evapotranspiration

solar greenhouse

drip irrigated tomato

machine learning

Übergeordnetes Werk:

In: Plants - MDPI AG, 2013, 11(2022), 15, p 1923

Übergeordnetes Werk:

volume:11 ; year:2022 ; number:15, p 1923

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.3390/plants11151923

Katalog-ID:

DOAJ026116561

Nicht das Richtige dabei?

Schreiben Sie uns!