Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model
Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman–Mont...
Ausführliche Beschreibung
Autor*in: |
Jiankun Ge [verfasserIn] Linfeng Zhao [verfasserIn] Zihui Yu [verfasserIn] Huanhuan Liu [verfasserIn] Lei Zhang [verfasserIn] Xuewen Gong [verfasserIn] Huaiwei Sun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Plants - MDPI AG, 2013, 11(2022), 15, p 1923 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2022 ; number:15, p 1923 |
Links: |
---|
DOI / URN: |
10.3390/plants11151923 |
---|
Katalog-ID: |
DOAJ026116561 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ026116561 | ||
003 | DE-627 | ||
005 | 20240414122350.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/plants11151923 |2 doi | |
035 | |a (DE-627)DOAJ026116561 | ||
035 | |a (DE-599)DOAJ82aa4f73633b487580b9109ae08e4172 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK1-989 | |
100 | 0 | |a Jiankun Ge |e verfasserin |4 aut | |
245 | 1 | 0 | |a Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman–Monteith equation, but they are often inaccurate when applied to greenhouse crop evapotranspiration. The use of machine learning models to predict ET has gradually increased, but research into their application for greenhouse crops is relatively rare. We used experimental data for three years (2019–2021) to model the effects on ET of eight meteorological factors (net solar radiation (<i<R<sub<n</sub<</i<), mean temperature (<i<T<sub<a</sub<</i<), minimum temperature (<i<T<sub<amin</sub<</i<), maximum temperature (<i<T<sub<amax</sub<</i<), relative humidity (RH), minimum relative humidity (RH<sub<min</sub<), maximum relative humidity (RH<sub<max</sub<), and wind speed (V)) using a greenhouse drip irrigated tomato crop ET prediction model (XGBR-ET) that was based on XGBoost regression (XGBR). The model was compared with seven other common regression models (linear regression (LR), support vector regression (SVR), K neighbors regression (KNR), random forest regression (RFR), AdaBoost regression (ABR), bagging regression (BR), and gradient boosting regression (GBR)). The results showed that <i<R<sub<n</sub<</i<, <i<T<sub<a</sub<</i<, and <i<T<sub<amax</sub<</i< were positively correlated with ET, and that <i<T<sub<amin</sub<</i<, RH, RH<sub<min</sub<, RH<sub<max</sub<, and V were negatively correlated with ET. <i<R<sub<n</sub<</i< had the greatest correlation with ET (r = 0.89), and V had the least correlation with ET (r = 0.43). The eight models were ordered, in terms of prediction accuracy, XGBR-ET < GBR-ET < SVR-ET < ABR-ET < BR-ET < LR-ET < KNR-ET < RFR-ET. The statistical indicators mean square error (0.032), root mean square error (0.163), mean absolute error (0.132), mean absolute percentage error (4.47%), and coefficient of determination (0.981) of XGBR-ET showed that XGBR-ET modeled daily ET for greenhouse tomatoes well. The parameters of the XGBR-ET model were ablated to show that the order of importance of meteorological factors on XGBR-ET was <i<R<sub<n</sub<</i< < RH < RH<sub<min</sub<< <i<T<sub<amax</sub<</i<< RH<sub<max</sub<< <i<T<sub<amin</sub<</i<< <i<T<sub<a</sub<</i<< V. Selecting <i<R<sub<n</sub<</i<, RH, RH<sub<min</sub<, <i<T<sub<amax</sub<</i<, and <i<T<sub<amin</sub<</i< as model input variables using XGBR ensured the prediction accuracy of the model (mean square error 0.047). This study has value as a reference for the simplification of the calculation of evapotranspiration for drip irrigated greenhouse tomato crops using a novel application of machine learning as a basis for an effective irrigation program. | ||
650 | 4 | |a XGBoost regression | |
650 | 4 | |a evapotranspiration | |
650 | 4 | |a solar greenhouse | |
650 | 4 | |a drip irrigated tomato | |
650 | 4 | |a machine learning | |
653 | 0 | |a Botany | |
700 | 0 | |a Linfeng Zhao |e verfasserin |4 aut | |
700 | 0 | |a Zihui Yu |e verfasserin |4 aut | |
700 | 0 | |a Huanhuan Liu |e verfasserin |4 aut | |
700 | 0 | |a Lei Zhang |e verfasserin |4 aut | |
700 | 0 | |a Xuewen Gong |e verfasserin |4 aut | |
700 | 0 | |a Huaiwei Sun |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plants |d MDPI AG, 2013 |g 11(2022), 15, p 1923 |w (DE-627)737288345 |w (DE-600)2704341-1 |x 22237747 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2022 |g number:15, p 1923 |
856 | 4 | 0 | |u https://doi.org/10.3390/plants11151923 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/82aa4f73633b487580b9109ae08e4172 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2223-7747/11/15/1923 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2223-7747 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2022 |e 15, p 1923 |
author_variant |
j g jg l z lz z y zy h l hl l z lz x g xg h s hs |
---|---|
matchkey_str |
article:22237747:2022----::rdcinfrehueoaorpvptasiainsnxbo |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QK |
publishDate |
2022 |
allfields |
10.3390/plants11151923 doi (DE-627)DOAJ026116561 (DE-599)DOAJ82aa4f73633b487580b9109ae08e4172 DE-627 ger DE-627 rakwb eng QK1-989 Jiankun Ge verfasserin aut Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman–Monteith equation, but they are often inaccurate when applied to greenhouse crop evapotranspiration. The use of machine learning models to predict ET has gradually increased, but research into their application for greenhouse crops is relatively rare. We used experimental data for three years (2019–2021) to model the effects on ET of eight meteorological factors (net solar radiation (<i<R<sub<n</sub<</i<), mean temperature (<i<T<sub<a</sub<</i<), minimum temperature (<i<T<sub<amin</sub<</i<), maximum temperature (<i<T<sub<amax</sub<</i<), relative humidity (RH), minimum relative humidity (RH<sub<min</sub<), maximum relative humidity (RH<sub<max</sub<), and wind speed (V)) using a greenhouse drip irrigated tomato crop ET prediction model (XGBR-ET) that was based on XGBoost regression (XGBR). The model was compared with seven other common regression models (linear regression (LR), support vector regression (SVR), K neighbors regression (KNR), random forest regression (RFR), AdaBoost regression (ABR), bagging regression (BR), and gradient boosting regression (GBR)). The results showed that <i<R<sub<n</sub<</i<, <i<T<sub<a</sub<</i<, and <i<T<sub<amax</sub<</i< were positively correlated with ET, and that <i<T<sub<amin</sub<</i<, RH, RH<sub<min</sub<, RH<sub<max</sub<, and V were negatively correlated with ET. <i<R<sub<n</sub<</i< had the greatest correlation with ET (r = 0.89), and V had the least correlation with ET (r = 0.43). The eight models were ordered, in terms of prediction accuracy, XGBR-ET < GBR-ET < SVR-ET < ABR-ET < BR-ET < LR-ET < KNR-ET < RFR-ET. The statistical indicators mean square error (0.032), root mean square error (0.163), mean absolute error (0.132), mean absolute percentage error (4.47%), and coefficient of determination (0.981) of XGBR-ET showed that XGBR-ET modeled daily ET for greenhouse tomatoes well. The parameters of the XGBR-ET model were ablated to show that the order of importance of meteorological factors on XGBR-ET was <i<R<sub<n</sub<</i< < RH < RH<sub<min</sub<< <i<T<sub<amax</sub<</i<< RH<sub<max</sub<< <i<T<sub<amin</sub<</i<< <i<T<sub<a</sub<</i<< V. Selecting <i<R<sub<n</sub<</i<, RH, RH<sub<min</sub<, <i<T<sub<amax</sub<</i<, and <i<T<sub<amin</sub<</i< as model input variables using XGBR ensured the prediction accuracy of the model (mean square error 0.047). This study has value as a reference for the simplification of the calculation of evapotranspiration for drip irrigated greenhouse tomato crops using a novel application of machine learning as a basis for an effective irrigation program. XGBoost regression evapotranspiration solar greenhouse drip irrigated tomato machine learning Botany Linfeng Zhao verfasserin aut Zihui Yu verfasserin aut Huanhuan Liu verfasserin aut Lei Zhang verfasserin aut Xuewen Gong verfasserin aut Huaiwei Sun verfasserin aut In Plants MDPI AG, 2013 11(2022), 15, p 1923 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2022 number:15, p 1923 https://doi.org/10.3390/plants11151923 kostenfrei https://doaj.org/article/82aa4f73633b487580b9109ae08e4172 kostenfrei https://www.mdpi.com/2223-7747/11/15/1923 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 15, p 1923 |
spelling |
10.3390/plants11151923 doi (DE-627)DOAJ026116561 (DE-599)DOAJ82aa4f73633b487580b9109ae08e4172 DE-627 ger DE-627 rakwb eng QK1-989 Jiankun Ge verfasserin aut Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman–Monteith equation, but they are often inaccurate when applied to greenhouse crop evapotranspiration. The use of machine learning models to predict ET has gradually increased, but research into their application for greenhouse crops is relatively rare. We used experimental data for three years (2019–2021) to model the effects on ET of eight meteorological factors (net solar radiation (<i<R<sub<n</sub<</i<), mean temperature (<i<T<sub<a</sub<</i<), minimum temperature (<i<T<sub<amin</sub<</i<), maximum temperature (<i<T<sub<amax</sub<</i<), relative humidity (RH), minimum relative humidity (RH<sub<min</sub<), maximum relative humidity (RH<sub<max</sub<), and wind speed (V)) using a greenhouse drip irrigated tomato crop ET prediction model (XGBR-ET) that was based on XGBoost regression (XGBR). The model was compared with seven other common regression models (linear regression (LR), support vector regression (SVR), K neighbors regression (KNR), random forest regression (RFR), AdaBoost regression (ABR), bagging regression (BR), and gradient boosting regression (GBR)). The results showed that <i<R<sub<n</sub<</i<, <i<T<sub<a</sub<</i<, and <i<T<sub<amax</sub<</i< were positively correlated with ET, and that <i<T<sub<amin</sub<</i<, RH, RH<sub<min</sub<, RH<sub<max</sub<, and V were negatively correlated with ET. <i<R<sub<n</sub<</i< had the greatest correlation with ET (r = 0.89), and V had the least correlation with ET (r = 0.43). The eight models were ordered, in terms of prediction accuracy, XGBR-ET < GBR-ET < SVR-ET < ABR-ET < BR-ET < LR-ET < KNR-ET < RFR-ET. The statistical indicators mean square error (0.032), root mean square error (0.163), mean absolute error (0.132), mean absolute percentage error (4.47%), and coefficient of determination (0.981) of XGBR-ET showed that XGBR-ET modeled daily ET for greenhouse tomatoes well. The parameters of the XGBR-ET model were ablated to show that the order of importance of meteorological factors on XGBR-ET was <i<R<sub<n</sub<</i< < RH < RH<sub<min</sub<< <i<T<sub<amax</sub<</i<< RH<sub<max</sub<< <i<T<sub<amin</sub<</i<< <i<T<sub<a</sub<</i<< V. Selecting <i<R<sub<n</sub<</i<, RH, RH<sub<min</sub<, <i<T<sub<amax</sub<</i<, and <i<T<sub<amin</sub<</i< as model input variables using XGBR ensured the prediction accuracy of the model (mean square error 0.047). This study has value as a reference for the simplification of the calculation of evapotranspiration for drip irrigated greenhouse tomato crops using a novel application of machine learning as a basis for an effective irrigation program. XGBoost regression evapotranspiration solar greenhouse drip irrigated tomato machine learning Botany Linfeng Zhao verfasserin aut Zihui Yu verfasserin aut Huanhuan Liu verfasserin aut Lei Zhang verfasserin aut Xuewen Gong verfasserin aut Huaiwei Sun verfasserin aut In Plants MDPI AG, 2013 11(2022), 15, p 1923 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2022 number:15, p 1923 https://doi.org/10.3390/plants11151923 kostenfrei https://doaj.org/article/82aa4f73633b487580b9109ae08e4172 kostenfrei https://www.mdpi.com/2223-7747/11/15/1923 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 15, p 1923 |
allfields_unstemmed |
10.3390/plants11151923 doi (DE-627)DOAJ026116561 (DE-599)DOAJ82aa4f73633b487580b9109ae08e4172 DE-627 ger DE-627 rakwb eng QK1-989 Jiankun Ge verfasserin aut Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman–Monteith equation, but they are often inaccurate when applied to greenhouse crop evapotranspiration. The use of machine learning models to predict ET has gradually increased, but research into their application for greenhouse crops is relatively rare. We used experimental data for three years (2019–2021) to model the effects on ET of eight meteorological factors (net solar radiation (<i<R<sub<n</sub<</i<), mean temperature (<i<T<sub<a</sub<</i<), minimum temperature (<i<T<sub<amin</sub<</i<), maximum temperature (<i<T<sub<amax</sub<</i<), relative humidity (RH), minimum relative humidity (RH<sub<min</sub<), maximum relative humidity (RH<sub<max</sub<), and wind speed (V)) using a greenhouse drip irrigated tomato crop ET prediction model (XGBR-ET) that was based on XGBoost regression (XGBR). The model was compared with seven other common regression models (linear regression (LR), support vector regression (SVR), K neighbors regression (KNR), random forest regression (RFR), AdaBoost regression (ABR), bagging regression (BR), and gradient boosting regression (GBR)). The results showed that <i<R<sub<n</sub<</i<, <i<T<sub<a</sub<</i<, and <i<T<sub<amax</sub<</i< were positively correlated with ET, and that <i<T<sub<amin</sub<</i<, RH, RH<sub<min</sub<, RH<sub<max</sub<, and V were negatively correlated with ET. <i<R<sub<n</sub<</i< had the greatest correlation with ET (r = 0.89), and V had the least correlation with ET (r = 0.43). The eight models were ordered, in terms of prediction accuracy, XGBR-ET < GBR-ET < SVR-ET < ABR-ET < BR-ET < LR-ET < KNR-ET < RFR-ET. The statistical indicators mean square error (0.032), root mean square error (0.163), mean absolute error (0.132), mean absolute percentage error (4.47%), and coefficient of determination (0.981) of XGBR-ET showed that XGBR-ET modeled daily ET for greenhouse tomatoes well. The parameters of the XGBR-ET model were ablated to show that the order of importance of meteorological factors on XGBR-ET was <i<R<sub<n</sub<</i< < RH < RH<sub<min</sub<< <i<T<sub<amax</sub<</i<< RH<sub<max</sub<< <i<T<sub<amin</sub<</i<< <i<T<sub<a</sub<</i<< V. Selecting <i<R<sub<n</sub<</i<, RH, RH<sub<min</sub<, <i<T<sub<amax</sub<</i<, and <i<T<sub<amin</sub<</i< as model input variables using XGBR ensured the prediction accuracy of the model (mean square error 0.047). This study has value as a reference for the simplification of the calculation of evapotranspiration for drip irrigated greenhouse tomato crops using a novel application of machine learning as a basis for an effective irrigation program. XGBoost regression evapotranspiration solar greenhouse drip irrigated tomato machine learning Botany Linfeng Zhao verfasserin aut Zihui Yu verfasserin aut Huanhuan Liu verfasserin aut Lei Zhang verfasserin aut Xuewen Gong verfasserin aut Huaiwei Sun verfasserin aut In Plants MDPI AG, 2013 11(2022), 15, p 1923 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2022 number:15, p 1923 https://doi.org/10.3390/plants11151923 kostenfrei https://doaj.org/article/82aa4f73633b487580b9109ae08e4172 kostenfrei https://www.mdpi.com/2223-7747/11/15/1923 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 15, p 1923 |
allfieldsGer |
10.3390/plants11151923 doi (DE-627)DOAJ026116561 (DE-599)DOAJ82aa4f73633b487580b9109ae08e4172 DE-627 ger DE-627 rakwb eng QK1-989 Jiankun Ge verfasserin aut Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman–Monteith equation, but they are often inaccurate when applied to greenhouse crop evapotranspiration. The use of machine learning models to predict ET has gradually increased, but research into their application for greenhouse crops is relatively rare. We used experimental data for three years (2019–2021) to model the effects on ET of eight meteorological factors (net solar radiation (<i<R<sub<n</sub<</i<), mean temperature (<i<T<sub<a</sub<</i<), minimum temperature (<i<T<sub<amin</sub<</i<), maximum temperature (<i<T<sub<amax</sub<</i<), relative humidity (RH), minimum relative humidity (RH<sub<min</sub<), maximum relative humidity (RH<sub<max</sub<), and wind speed (V)) using a greenhouse drip irrigated tomato crop ET prediction model (XGBR-ET) that was based on XGBoost regression (XGBR). The model was compared with seven other common regression models (linear regression (LR), support vector regression (SVR), K neighbors regression (KNR), random forest regression (RFR), AdaBoost regression (ABR), bagging regression (BR), and gradient boosting regression (GBR)). The results showed that <i<R<sub<n</sub<</i<, <i<T<sub<a</sub<</i<, and <i<T<sub<amax</sub<</i< were positively correlated with ET, and that <i<T<sub<amin</sub<</i<, RH, RH<sub<min</sub<, RH<sub<max</sub<, and V were negatively correlated with ET. <i<R<sub<n</sub<</i< had the greatest correlation with ET (r = 0.89), and V had the least correlation with ET (r = 0.43). The eight models were ordered, in terms of prediction accuracy, XGBR-ET < GBR-ET < SVR-ET < ABR-ET < BR-ET < LR-ET < KNR-ET < RFR-ET. The statistical indicators mean square error (0.032), root mean square error (0.163), mean absolute error (0.132), mean absolute percentage error (4.47%), and coefficient of determination (0.981) of XGBR-ET showed that XGBR-ET modeled daily ET for greenhouse tomatoes well. The parameters of the XGBR-ET model were ablated to show that the order of importance of meteorological factors on XGBR-ET was <i<R<sub<n</sub<</i< < RH < RH<sub<min</sub<< <i<T<sub<amax</sub<</i<< RH<sub<max</sub<< <i<T<sub<amin</sub<</i<< <i<T<sub<a</sub<</i<< V. Selecting <i<R<sub<n</sub<</i<, RH, RH<sub<min</sub<, <i<T<sub<amax</sub<</i<, and <i<T<sub<amin</sub<</i< as model input variables using XGBR ensured the prediction accuracy of the model (mean square error 0.047). This study has value as a reference for the simplification of the calculation of evapotranspiration for drip irrigated greenhouse tomato crops using a novel application of machine learning as a basis for an effective irrigation program. XGBoost regression evapotranspiration solar greenhouse drip irrigated tomato machine learning Botany Linfeng Zhao verfasserin aut Zihui Yu verfasserin aut Huanhuan Liu verfasserin aut Lei Zhang verfasserin aut Xuewen Gong verfasserin aut Huaiwei Sun verfasserin aut In Plants MDPI AG, 2013 11(2022), 15, p 1923 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2022 number:15, p 1923 https://doi.org/10.3390/plants11151923 kostenfrei https://doaj.org/article/82aa4f73633b487580b9109ae08e4172 kostenfrei https://www.mdpi.com/2223-7747/11/15/1923 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 15, p 1923 |
allfieldsSound |
10.3390/plants11151923 doi (DE-627)DOAJ026116561 (DE-599)DOAJ82aa4f73633b487580b9109ae08e4172 DE-627 ger DE-627 rakwb eng QK1-989 Jiankun Ge verfasserin aut Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman–Monteith equation, but they are often inaccurate when applied to greenhouse crop evapotranspiration. The use of machine learning models to predict ET has gradually increased, but research into their application for greenhouse crops is relatively rare. We used experimental data for three years (2019–2021) to model the effects on ET of eight meteorological factors (net solar radiation (<i<R<sub<n</sub<</i<), mean temperature (<i<T<sub<a</sub<</i<), minimum temperature (<i<T<sub<amin</sub<</i<), maximum temperature (<i<T<sub<amax</sub<</i<), relative humidity (RH), minimum relative humidity (RH<sub<min</sub<), maximum relative humidity (RH<sub<max</sub<), and wind speed (V)) using a greenhouse drip irrigated tomato crop ET prediction model (XGBR-ET) that was based on XGBoost regression (XGBR). The model was compared with seven other common regression models (linear regression (LR), support vector regression (SVR), K neighbors regression (KNR), random forest regression (RFR), AdaBoost regression (ABR), bagging regression (BR), and gradient boosting regression (GBR)). The results showed that <i<R<sub<n</sub<</i<, <i<T<sub<a</sub<</i<, and <i<T<sub<amax</sub<</i< were positively correlated with ET, and that <i<T<sub<amin</sub<</i<, RH, RH<sub<min</sub<, RH<sub<max</sub<, and V were negatively correlated with ET. <i<R<sub<n</sub<</i< had the greatest correlation with ET (r = 0.89), and V had the least correlation with ET (r = 0.43). The eight models were ordered, in terms of prediction accuracy, XGBR-ET < GBR-ET < SVR-ET < ABR-ET < BR-ET < LR-ET < KNR-ET < RFR-ET. The statistical indicators mean square error (0.032), root mean square error (0.163), mean absolute error (0.132), mean absolute percentage error (4.47%), and coefficient of determination (0.981) of XGBR-ET showed that XGBR-ET modeled daily ET for greenhouse tomatoes well. The parameters of the XGBR-ET model were ablated to show that the order of importance of meteorological factors on XGBR-ET was <i<R<sub<n</sub<</i< < RH < RH<sub<min</sub<< <i<T<sub<amax</sub<</i<< RH<sub<max</sub<< <i<T<sub<amin</sub<</i<< <i<T<sub<a</sub<</i<< V. Selecting <i<R<sub<n</sub<</i<, RH, RH<sub<min</sub<, <i<T<sub<amax</sub<</i<, and <i<T<sub<amin</sub<</i< as model input variables using XGBR ensured the prediction accuracy of the model (mean square error 0.047). This study has value as a reference for the simplification of the calculation of evapotranspiration for drip irrigated greenhouse tomato crops using a novel application of machine learning as a basis for an effective irrigation program. XGBoost regression evapotranspiration solar greenhouse drip irrigated tomato machine learning Botany Linfeng Zhao verfasserin aut Zihui Yu verfasserin aut Huanhuan Liu verfasserin aut Lei Zhang verfasserin aut Xuewen Gong verfasserin aut Huaiwei Sun verfasserin aut In Plants MDPI AG, 2013 11(2022), 15, p 1923 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:11 year:2022 number:15, p 1923 https://doi.org/10.3390/plants11151923 kostenfrei https://doaj.org/article/82aa4f73633b487580b9109ae08e4172 kostenfrei https://www.mdpi.com/2223-7747/11/15/1923 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 15, p 1923 |
language |
English |
source |
In Plants 11(2022), 15, p 1923 volume:11 year:2022 number:15, p 1923 |
sourceStr |
In Plants 11(2022), 15, p 1923 volume:11 year:2022 number:15, p 1923 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
XGBoost regression evapotranspiration solar greenhouse drip irrigated tomato machine learning Botany |
isfreeaccess_bool |
true |
container_title |
Plants |
authorswithroles_txt_mv |
Jiankun Ge @@aut@@ Linfeng Zhao @@aut@@ Zihui Yu @@aut@@ Huanhuan Liu @@aut@@ Lei Zhang @@aut@@ Xuewen Gong @@aut@@ Huaiwei Sun @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737288345 |
id |
DOAJ026116561 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ026116561</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414122350.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants11151923</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ026116561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ82aa4f73633b487580b9109ae08e4172</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiankun Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman–Monteith equation, but they are often inaccurate when applied to greenhouse crop evapotranspiration. The use of machine learning models to predict ET has gradually increased, but research into their application for greenhouse crops is relatively rare. We used experimental data for three years (2019–2021) to model the effects on ET of eight meteorological factors (net solar radiation (<i<R<sub<n</sub<</i<), mean temperature (<i<T<sub<a</sub<</i<), minimum temperature (<i<T<sub<amin</sub<</i<), maximum temperature (<i<T<sub<amax</sub<</i<), relative humidity (RH), minimum relative humidity (RH<sub<min</sub<), maximum relative humidity (RH<sub<max</sub<), and wind speed (V)) using a greenhouse drip irrigated tomato crop ET prediction model (XGBR-ET) that was based on XGBoost regression (XGBR). The model was compared with seven other common regression models (linear regression (LR), support vector regression (SVR), K neighbors regression (KNR), random forest regression (RFR), AdaBoost regression (ABR), bagging regression (BR), and gradient boosting regression (GBR)). The results showed that <i<R<sub<n</sub<</i<, <i<T<sub<a</sub<</i<, and <i<T<sub<amax</sub<</i< were positively correlated with ET, and that <i<T<sub<amin</sub<</i<, RH, RH<sub<min</sub<, RH<sub<max</sub<, and V were negatively correlated with ET. <i<R<sub<n</sub<</i< had the greatest correlation with ET (r = 0.89), and V had the least correlation with ET (r = 0.43). The eight models were ordered, in terms of prediction accuracy, XGBR-ET < GBR-ET < SVR-ET < ABR-ET < BR-ET < LR-ET < KNR-ET < RFR-ET. The statistical indicators mean square error (0.032), root mean square error (0.163), mean absolute error (0.132), mean absolute percentage error (4.47%), and coefficient of determination (0.981) of XGBR-ET showed that XGBR-ET modeled daily ET for greenhouse tomatoes well. The parameters of the XGBR-ET model were ablated to show that the order of importance of meteorological factors on XGBR-ET was <i<R<sub<n</sub<</i< < RH < RH<sub<min</sub<< <i<T<sub<amax</sub<</i<< RH<sub<max</sub<< <i<T<sub<amin</sub<</i<< <i<T<sub<a</sub<</i<< V. Selecting <i<R<sub<n</sub<</i<, RH, RH<sub<min</sub<, <i<T<sub<amax</sub<</i<, and <i<T<sub<amin</sub<</i< as model input variables using XGBR ensured the prediction accuracy of the model (mean square error 0.047). This study has value as a reference for the simplification of the calculation of evapotranspiration for drip irrigated greenhouse tomato crops using a novel application of machine learning as a basis for an effective irrigation program.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XGBoost regression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">evapotranspiration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solar greenhouse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drip irrigated tomato</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linfeng Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zihui Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huanhuan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuewen Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaiwei Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 15, p 1923</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:15, p 1923</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants11151923</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/82aa4f73633b487580b9109ae08e4172</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/11/15/1923</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">15, p 1923</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Jiankun Ge |
spellingShingle |
Jiankun Ge misc QK1-989 misc XGBoost regression misc evapotranspiration misc solar greenhouse misc drip irrigated tomato misc machine learning misc Botany Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model |
authorStr |
Jiankun Ge |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737288345 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK1-989 |
illustrated |
Not Illustrated |
issn |
22237747 |
topic_title |
QK1-989 Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model XGBoost regression evapotranspiration solar greenhouse drip irrigated tomato machine learning |
topic |
misc QK1-989 misc XGBoost regression misc evapotranspiration misc solar greenhouse misc drip irrigated tomato misc machine learning misc Botany |
topic_unstemmed |
misc QK1-989 misc XGBoost regression misc evapotranspiration misc solar greenhouse misc drip irrigated tomato misc machine learning misc Botany |
topic_browse |
misc QK1-989 misc XGBoost regression misc evapotranspiration misc solar greenhouse misc drip irrigated tomato misc machine learning misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plants |
hierarchy_parent_id |
737288345 |
hierarchy_top_title |
Plants |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737288345 (DE-600)2704341-1 |
title |
Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model |
ctrlnum |
(DE-627)DOAJ026116561 (DE-599)DOAJ82aa4f73633b487580b9109ae08e4172 |
title_full |
Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model |
author_sort |
Jiankun Ge |
journal |
Plants |
journalStr |
Plants |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Jiankun Ge Linfeng Zhao Zihui Yu Huanhuan Liu Lei Zhang Xuewen Gong Huaiwei Sun |
container_volume |
11 |
class |
QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Jiankun Ge |
doi_str_mv |
10.3390/plants11151923 |
author2-role |
verfasserin |
title_sort |
prediction of greenhouse tomato crop evapotranspiration using xgboost machine learning model |
callnumber |
QK1-989 |
title_auth |
Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model |
abstract |
Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman–Monteith equation, but they are often inaccurate when applied to greenhouse crop evapotranspiration. The use of machine learning models to predict ET has gradually increased, but research into their application for greenhouse crops is relatively rare. We used experimental data for three years (2019–2021) to model the effects on ET of eight meteorological factors (net solar radiation (<i<R<sub<n</sub<</i<), mean temperature (<i<T<sub<a</sub<</i<), minimum temperature (<i<T<sub<amin</sub<</i<), maximum temperature (<i<T<sub<amax</sub<</i<), relative humidity (RH), minimum relative humidity (RH<sub<min</sub<), maximum relative humidity (RH<sub<max</sub<), and wind speed (V)) using a greenhouse drip irrigated tomato crop ET prediction model (XGBR-ET) that was based on XGBoost regression (XGBR). The model was compared with seven other common regression models (linear regression (LR), support vector regression (SVR), K neighbors regression (KNR), random forest regression (RFR), AdaBoost regression (ABR), bagging regression (BR), and gradient boosting regression (GBR)). The results showed that <i<R<sub<n</sub<</i<, <i<T<sub<a</sub<</i<, and <i<T<sub<amax</sub<</i< were positively correlated with ET, and that <i<T<sub<amin</sub<</i<, RH, RH<sub<min</sub<, RH<sub<max</sub<, and V were negatively correlated with ET. <i<R<sub<n</sub<</i< had the greatest correlation with ET (r = 0.89), and V had the least correlation with ET (r = 0.43). The eight models were ordered, in terms of prediction accuracy, XGBR-ET < GBR-ET < SVR-ET < ABR-ET < BR-ET < LR-ET < KNR-ET < RFR-ET. The statistical indicators mean square error (0.032), root mean square error (0.163), mean absolute error (0.132), mean absolute percentage error (4.47%), and coefficient of determination (0.981) of XGBR-ET showed that XGBR-ET modeled daily ET for greenhouse tomatoes well. The parameters of the XGBR-ET model were ablated to show that the order of importance of meteorological factors on XGBR-ET was <i<R<sub<n</sub<</i< < RH < RH<sub<min</sub<< <i<T<sub<amax</sub<</i<< RH<sub<max</sub<< <i<T<sub<amin</sub<</i<< <i<T<sub<a</sub<</i<< V. Selecting <i<R<sub<n</sub<</i<, RH, RH<sub<min</sub<, <i<T<sub<amax</sub<</i<, and <i<T<sub<amin</sub<</i< as model input variables using XGBR ensured the prediction accuracy of the model (mean square error 0.047). This study has value as a reference for the simplification of the calculation of evapotranspiration for drip irrigated greenhouse tomato crops using a novel application of machine learning as a basis for an effective irrigation program. |
abstractGer |
Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman–Monteith equation, but they are often inaccurate when applied to greenhouse crop evapotranspiration. The use of machine learning models to predict ET has gradually increased, but research into their application for greenhouse crops is relatively rare. We used experimental data for three years (2019–2021) to model the effects on ET of eight meteorological factors (net solar radiation (<i<R<sub<n</sub<</i<), mean temperature (<i<T<sub<a</sub<</i<), minimum temperature (<i<T<sub<amin</sub<</i<), maximum temperature (<i<T<sub<amax</sub<</i<), relative humidity (RH), minimum relative humidity (RH<sub<min</sub<), maximum relative humidity (RH<sub<max</sub<), and wind speed (V)) using a greenhouse drip irrigated tomato crop ET prediction model (XGBR-ET) that was based on XGBoost regression (XGBR). The model was compared with seven other common regression models (linear regression (LR), support vector regression (SVR), K neighbors regression (KNR), random forest regression (RFR), AdaBoost regression (ABR), bagging regression (BR), and gradient boosting regression (GBR)). The results showed that <i<R<sub<n</sub<</i<, <i<T<sub<a</sub<</i<, and <i<T<sub<amax</sub<</i< were positively correlated with ET, and that <i<T<sub<amin</sub<</i<, RH, RH<sub<min</sub<, RH<sub<max</sub<, and V were negatively correlated with ET. <i<R<sub<n</sub<</i< had the greatest correlation with ET (r = 0.89), and V had the least correlation with ET (r = 0.43). The eight models were ordered, in terms of prediction accuracy, XGBR-ET < GBR-ET < SVR-ET < ABR-ET < BR-ET < LR-ET < KNR-ET < RFR-ET. The statistical indicators mean square error (0.032), root mean square error (0.163), mean absolute error (0.132), mean absolute percentage error (4.47%), and coefficient of determination (0.981) of XGBR-ET showed that XGBR-ET modeled daily ET for greenhouse tomatoes well. The parameters of the XGBR-ET model were ablated to show that the order of importance of meteorological factors on XGBR-ET was <i<R<sub<n</sub<</i< < RH < RH<sub<min</sub<< <i<T<sub<amax</sub<</i<< RH<sub<max</sub<< <i<T<sub<amin</sub<</i<< <i<T<sub<a</sub<</i<< V. Selecting <i<R<sub<n</sub<</i<, RH, RH<sub<min</sub<, <i<T<sub<amax</sub<</i<, and <i<T<sub<amin</sub<</i< as model input variables using XGBR ensured the prediction accuracy of the model (mean square error 0.047). This study has value as a reference for the simplification of the calculation of evapotranspiration for drip irrigated greenhouse tomato crops using a novel application of machine learning as a basis for an effective irrigation program. |
abstract_unstemmed |
Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman–Monteith equation, but they are often inaccurate when applied to greenhouse crop evapotranspiration. The use of machine learning models to predict ET has gradually increased, but research into their application for greenhouse crops is relatively rare. We used experimental data for three years (2019–2021) to model the effects on ET of eight meteorological factors (net solar radiation (<i<R<sub<n</sub<</i<), mean temperature (<i<T<sub<a</sub<</i<), minimum temperature (<i<T<sub<amin</sub<</i<), maximum temperature (<i<T<sub<amax</sub<</i<), relative humidity (RH), minimum relative humidity (RH<sub<min</sub<), maximum relative humidity (RH<sub<max</sub<), and wind speed (V)) using a greenhouse drip irrigated tomato crop ET prediction model (XGBR-ET) that was based on XGBoost regression (XGBR). The model was compared with seven other common regression models (linear regression (LR), support vector regression (SVR), K neighbors regression (KNR), random forest regression (RFR), AdaBoost regression (ABR), bagging regression (BR), and gradient boosting regression (GBR)). The results showed that <i<R<sub<n</sub<</i<, <i<T<sub<a</sub<</i<, and <i<T<sub<amax</sub<</i< were positively correlated with ET, and that <i<T<sub<amin</sub<</i<, RH, RH<sub<min</sub<, RH<sub<max</sub<, and V were negatively correlated with ET. <i<R<sub<n</sub<</i< had the greatest correlation with ET (r = 0.89), and V had the least correlation with ET (r = 0.43). The eight models were ordered, in terms of prediction accuracy, XGBR-ET < GBR-ET < SVR-ET < ABR-ET < BR-ET < LR-ET < KNR-ET < RFR-ET. The statistical indicators mean square error (0.032), root mean square error (0.163), mean absolute error (0.132), mean absolute percentage error (4.47%), and coefficient of determination (0.981) of XGBR-ET showed that XGBR-ET modeled daily ET for greenhouse tomatoes well. The parameters of the XGBR-ET model were ablated to show that the order of importance of meteorological factors on XGBR-ET was <i<R<sub<n</sub<</i< < RH < RH<sub<min</sub<< <i<T<sub<amax</sub<</i<< RH<sub<max</sub<< <i<T<sub<amin</sub<</i<< <i<T<sub<a</sub<</i<< V. Selecting <i<R<sub<n</sub<</i<, RH, RH<sub<min</sub<, <i<T<sub<amax</sub<</i<, and <i<T<sub<amin</sub<</i< as model input variables using XGBR ensured the prediction accuracy of the model (mean square error 0.047). This study has value as a reference for the simplification of the calculation of evapotranspiration for drip irrigated greenhouse tomato crops using a novel application of machine learning as a basis for an effective irrigation program. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
15, p 1923 |
title_short |
Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model |
url |
https://doi.org/10.3390/plants11151923 https://doaj.org/article/82aa4f73633b487580b9109ae08e4172 https://www.mdpi.com/2223-7747/11/15/1923 https://doaj.org/toc/2223-7747 |
remote_bool |
true |
author2 |
Linfeng Zhao Zihui Yu Huanhuan Liu Lei Zhang Xuewen Gong Huaiwei Sun |
author2Str |
Linfeng Zhao Zihui Yu Huanhuan Liu Lei Zhang Xuewen Gong Huaiwei Sun |
ppnlink |
737288345 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/plants11151923 |
callnumber-a |
QK1-989 |
up_date |
2024-07-03T19:06:31.754Z |
_version_ |
1803585943508090880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ026116561</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414122350.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants11151923</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ026116561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ82aa4f73633b487580b9109ae08e4172</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiankun Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Crop evapotranspiration estimation is a key parameter for achieving functional irrigation systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation model to obtain ET. There are many ways to calculate ET, most of which use models based on the Penman–Monteith equation, but they are often inaccurate when applied to greenhouse crop evapotranspiration. The use of machine learning models to predict ET has gradually increased, but research into their application for greenhouse crops is relatively rare. We used experimental data for three years (2019–2021) to model the effects on ET of eight meteorological factors (net solar radiation (<i<R<sub<n</sub<</i<), mean temperature (<i<T<sub<a</sub<</i<), minimum temperature (<i<T<sub<amin</sub<</i<), maximum temperature (<i<T<sub<amax</sub<</i<), relative humidity (RH), minimum relative humidity (RH<sub<min</sub<), maximum relative humidity (RH<sub<max</sub<), and wind speed (V)) using a greenhouse drip irrigated tomato crop ET prediction model (XGBR-ET) that was based on XGBoost regression (XGBR). The model was compared with seven other common regression models (linear regression (LR), support vector regression (SVR), K neighbors regression (KNR), random forest regression (RFR), AdaBoost regression (ABR), bagging regression (BR), and gradient boosting regression (GBR)). The results showed that <i<R<sub<n</sub<</i<, <i<T<sub<a</sub<</i<, and <i<T<sub<amax</sub<</i< were positively correlated with ET, and that <i<T<sub<amin</sub<</i<, RH, RH<sub<min</sub<, RH<sub<max</sub<, and V were negatively correlated with ET. <i<R<sub<n</sub<</i< had the greatest correlation with ET (r = 0.89), and V had the least correlation with ET (r = 0.43). The eight models were ordered, in terms of prediction accuracy, XGBR-ET < GBR-ET < SVR-ET < ABR-ET < BR-ET < LR-ET < KNR-ET < RFR-ET. The statistical indicators mean square error (0.032), root mean square error (0.163), mean absolute error (0.132), mean absolute percentage error (4.47%), and coefficient of determination (0.981) of XGBR-ET showed that XGBR-ET modeled daily ET for greenhouse tomatoes well. The parameters of the XGBR-ET model were ablated to show that the order of importance of meteorological factors on XGBR-ET was <i<R<sub<n</sub<</i< < RH < RH<sub<min</sub<< <i<T<sub<amax</sub<</i<< RH<sub<max</sub<< <i<T<sub<amin</sub<</i<< <i<T<sub<a</sub<</i<< V. Selecting <i<R<sub<n</sub<</i<, RH, RH<sub<min</sub<, <i<T<sub<amax</sub<</i<, and <i<T<sub<amin</sub<</i< as model input variables using XGBR ensured the prediction accuracy of the model (mean square error 0.047). This study has value as a reference for the simplification of the calculation of evapotranspiration for drip irrigated greenhouse tomato crops using a novel application of machine learning as a basis for an effective irrigation program.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XGBoost regression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">evapotranspiration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solar greenhouse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drip irrigated tomato</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linfeng Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zihui Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huanhuan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuewen Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaiwei Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 15, p 1923</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:15, p 1923</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants11151923</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/82aa4f73633b487580b9109ae08e4172</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/11/15/1923</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">15, p 1923</subfield></datafield></record></collection>
|
score |
7.400058 |