Milk Protein-Based Nanohydrogels: Current Status and Applications
Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are th...
Ausführliche Beschreibung
Autor*in: |
Manpreet Kaur [verfasserIn] Aarti Bains [verfasserIn] Prince Chawla [verfasserIn] Rahul Yadav [verfasserIn] Anil Kumar [verfasserIn] Baskaran Stephen Inbaraj [verfasserIn] Kandi Sridhar [verfasserIn] Minaxi Sharma [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Gels - MDPI AG, 2015, 8(2022), 7, p 432 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; number:7, p 432 |
Links: |
---|
DOI / URN: |
10.3390/gels8070432 |
---|
Katalog-ID: |
DOAJ026208512 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ026208512 | ||
003 | DE-627 | ||
005 | 20240414113500.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/gels8070432 |2 doi | |
035 | |a (DE-627)DOAJ026208512 | ||
035 | |a (DE-599)DOAJb5ed0997308e4f139d74d979a9d8f757 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
050 | 0 | |a QD146-197 | |
050 | 0 | |a QD1-65 | |
100 | 0 | |a Manpreet Kaur |e verfasserin |4 aut | |
245 | 1 | 0 | |a Milk Protein-Based Nanohydrogels: Current Status and Applications |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry. | ||
650 | 4 | |a nanohydrogel | |
650 | 4 | |a milk proteins | |
650 | 4 | |a characteristics of milk-protein-based nanohydrogels | |
650 | 4 | |a food applications | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Chemistry | |
653 | 0 | |a Inorganic chemistry | |
653 | 0 | |a General. Including alchemy | |
700 | 0 | |a Aarti Bains |e verfasserin |4 aut | |
700 | 0 | |a Prince Chawla |e verfasserin |4 aut | |
700 | 0 | |a Rahul Yadav |e verfasserin |4 aut | |
700 | 0 | |a Anil Kumar |e verfasserin |4 aut | |
700 | 0 | |a Baskaran Stephen Inbaraj |e verfasserin |4 aut | |
700 | 0 | |a Kandi Sridhar |e verfasserin |4 aut | |
700 | 0 | |a Minaxi Sharma |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Gels |d MDPI AG, 2015 |g 8(2022), 7, p 432 |w (DE-627)820684147 |w (DE-600)2813982-3 |x 23102861 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g number:7, p 432 |
856 | 4 | 0 | |u https://doi.org/10.3390/gels8070432 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b5ed0997308e4f139d74d979a9d8f757 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2310-2861/8/7/432 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2310-2861 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |e 7, p 432 |
author_variant |
m k mk a b ab p c pc r y ry a k ak b s i bsi k s ks m s ms |
---|---|
matchkey_str |
article:23102861:2022----::ikrtibsdaoyrglcrettts |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QD |
publishDate |
2022 |
allfields |
10.3390/gels8070432 doi (DE-627)DOAJ026208512 (DE-599)DOAJb5ed0997308e4f139d74d979a9d8f757 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Manpreet Kaur verfasserin aut Milk Protein-Based Nanohydrogels: Current Status and Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry. nanohydrogel milk proteins characteristics of milk-protein-based nanohydrogels food applications Science Q Chemistry Inorganic chemistry General. Including alchemy Aarti Bains verfasserin aut Prince Chawla verfasserin aut Rahul Yadav verfasserin aut Anil Kumar verfasserin aut Baskaran Stephen Inbaraj verfasserin aut Kandi Sridhar verfasserin aut Minaxi Sharma verfasserin aut In Gels MDPI AG, 2015 8(2022), 7, p 432 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:8 year:2022 number:7, p 432 https://doi.org/10.3390/gels8070432 kostenfrei https://doaj.org/article/b5ed0997308e4f139d74d979a9d8f757 kostenfrei https://www.mdpi.com/2310-2861/8/7/432 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 7, p 432 |
spelling |
10.3390/gels8070432 doi (DE-627)DOAJ026208512 (DE-599)DOAJb5ed0997308e4f139d74d979a9d8f757 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Manpreet Kaur verfasserin aut Milk Protein-Based Nanohydrogels: Current Status and Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry. nanohydrogel milk proteins characteristics of milk-protein-based nanohydrogels food applications Science Q Chemistry Inorganic chemistry General. Including alchemy Aarti Bains verfasserin aut Prince Chawla verfasserin aut Rahul Yadav verfasserin aut Anil Kumar verfasserin aut Baskaran Stephen Inbaraj verfasserin aut Kandi Sridhar verfasserin aut Minaxi Sharma verfasserin aut In Gels MDPI AG, 2015 8(2022), 7, p 432 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:8 year:2022 number:7, p 432 https://doi.org/10.3390/gels8070432 kostenfrei https://doaj.org/article/b5ed0997308e4f139d74d979a9d8f757 kostenfrei https://www.mdpi.com/2310-2861/8/7/432 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 7, p 432 |
allfields_unstemmed |
10.3390/gels8070432 doi (DE-627)DOAJ026208512 (DE-599)DOAJb5ed0997308e4f139d74d979a9d8f757 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Manpreet Kaur verfasserin aut Milk Protein-Based Nanohydrogels: Current Status and Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry. nanohydrogel milk proteins characteristics of milk-protein-based nanohydrogels food applications Science Q Chemistry Inorganic chemistry General. Including alchemy Aarti Bains verfasserin aut Prince Chawla verfasserin aut Rahul Yadav verfasserin aut Anil Kumar verfasserin aut Baskaran Stephen Inbaraj verfasserin aut Kandi Sridhar verfasserin aut Minaxi Sharma verfasserin aut In Gels MDPI AG, 2015 8(2022), 7, p 432 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:8 year:2022 number:7, p 432 https://doi.org/10.3390/gels8070432 kostenfrei https://doaj.org/article/b5ed0997308e4f139d74d979a9d8f757 kostenfrei https://www.mdpi.com/2310-2861/8/7/432 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 7, p 432 |
allfieldsGer |
10.3390/gels8070432 doi (DE-627)DOAJ026208512 (DE-599)DOAJb5ed0997308e4f139d74d979a9d8f757 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Manpreet Kaur verfasserin aut Milk Protein-Based Nanohydrogels: Current Status and Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry. nanohydrogel milk proteins characteristics of milk-protein-based nanohydrogels food applications Science Q Chemistry Inorganic chemistry General. Including alchemy Aarti Bains verfasserin aut Prince Chawla verfasserin aut Rahul Yadav verfasserin aut Anil Kumar verfasserin aut Baskaran Stephen Inbaraj verfasserin aut Kandi Sridhar verfasserin aut Minaxi Sharma verfasserin aut In Gels MDPI AG, 2015 8(2022), 7, p 432 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:8 year:2022 number:7, p 432 https://doi.org/10.3390/gels8070432 kostenfrei https://doaj.org/article/b5ed0997308e4f139d74d979a9d8f757 kostenfrei https://www.mdpi.com/2310-2861/8/7/432 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 7, p 432 |
allfieldsSound |
10.3390/gels8070432 doi (DE-627)DOAJ026208512 (DE-599)DOAJb5ed0997308e4f139d74d979a9d8f757 DE-627 ger DE-627 rakwb eng QD1-999 QD146-197 QD1-65 Manpreet Kaur verfasserin aut Milk Protein-Based Nanohydrogels: Current Status and Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry. nanohydrogel milk proteins characteristics of milk-protein-based nanohydrogels food applications Science Q Chemistry Inorganic chemistry General. Including alchemy Aarti Bains verfasserin aut Prince Chawla verfasserin aut Rahul Yadav verfasserin aut Anil Kumar verfasserin aut Baskaran Stephen Inbaraj verfasserin aut Kandi Sridhar verfasserin aut Minaxi Sharma verfasserin aut In Gels MDPI AG, 2015 8(2022), 7, p 432 (DE-627)820684147 (DE-600)2813982-3 23102861 nnns volume:8 year:2022 number:7, p 432 https://doi.org/10.3390/gels8070432 kostenfrei https://doaj.org/article/b5ed0997308e4f139d74d979a9d8f757 kostenfrei https://www.mdpi.com/2310-2861/8/7/432 kostenfrei https://doaj.org/toc/2310-2861 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 7, p 432 |
language |
English |
source |
In Gels 8(2022), 7, p 432 volume:8 year:2022 number:7, p 432 |
sourceStr |
In Gels 8(2022), 7, p 432 volume:8 year:2022 number:7, p 432 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nanohydrogel milk proteins characteristics of milk-protein-based nanohydrogels food applications Science Q Chemistry Inorganic chemistry General. Including alchemy |
isfreeaccess_bool |
true |
container_title |
Gels |
authorswithroles_txt_mv |
Manpreet Kaur @@aut@@ Aarti Bains @@aut@@ Prince Chawla @@aut@@ Rahul Yadav @@aut@@ Anil Kumar @@aut@@ Baskaran Stephen Inbaraj @@aut@@ Kandi Sridhar @@aut@@ Minaxi Sharma @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
820684147 |
id |
DOAJ026208512 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ026208512</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414113500.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/gels8070432</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ026208512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb5ed0997308e4f139d74d979a9d8f757</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD146-197</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Manpreet Kaur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Milk Protein-Based Nanohydrogels: Current Status and Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanohydrogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">milk proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">characteristics of milk-protein-based nanohydrogels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">food applications</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Inorganic chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General. Including alchemy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aarti Bains</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prince Chawla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rahul Yadav</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anil Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baskaran Stephen Inbaraj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kandi Sridhar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minaxi Sharma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Gels</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">8(2022), 7, p 432</subfield><subfield code="w">(DE-627)820684147</subfield><subfield code="w">(DE-600)2813982-3</subfield><subfield code="x">23102861</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7, p 432</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/gels8070432</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b5ed0997308e4f139d74d979a9d8f757</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2310-2861/8/7/432</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2310-2861</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">7, p 432</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Manpreet Kaur |
spellingShingle |
Manpreet Kaur misc QD1-999 misc QD146-197 misc QD1-65 misc nanohydrogel misc milk proteins misc characteristics of milk-protein-based nanohydrogels misc food applications misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy Milk Protein-Based Nanohydrogels: Current Status and Applications |
authorStr |
Manpreet Kaur |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820684147 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
23102861 |
topic_title |
QD1-999 QD146-197 QD1-65 Milk Protein-Based Nanohydrogels: Current Status and Applications nanohydrogel milk proteins characteristics of milk-protein-based nanohydrogels food applications |
topic |
misc QD1-999 misc QD146-197 misc QD1-65 misc nanohydrogel misc milk proteins misc characteristics of milk-protein-based nanohydrogels misc food applications misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy |
topic_unstemmed |
misc QD1-999 misc QD146-197 misc QD1-65 misc nanohydrogel misc milk proteins misc characteristics of milk-protein-based nanohydrogels misc food applications misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy |
topic_browse |
misc QD1-999 misc QD146-197 misc QD1-65 misc nanohydrogel misc milk proteins misc characteristics of milk-protein-based nanohydrogels misc food applications misc Science misc Q misc Chemistry misc Inorganic chemistry misc General. Including alchemy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Gels |
hierarchy_parent_id |
820684147 |
hierarchy_top_title |
Gels |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820684147 (DE-600)2813982-3 |
title |
Milk Protein-Based Nanohydrogels: Current Status and Applications |
ctrlnum |
(DE-627)DOAJ026208512 (DE-599)DOAJb5ed0997308e4f139d74d979a9d8f757 |
title_full |
Milk Protein-Based Nanohydrogels: Current Status and Applications |
author_sort |
Manpreet Kaur |
journal |
Gels |
journalStr |
Gels |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Manpreet Kaur Aarti Bains Prince Chawla Rahul Yadav Anil Kumar Baskaran Stephen Inbaraj Kandi Sridhar Minaxi Sharma |
container_volume |
8 |
class |
QD1-999 QD146-197 QD1-65 |
format_se |
Elektronische Aufsätze |
author-letter |
Manpreet Kaur |
doi_str_mv |
10.3390/gels8070432 |
author2-role |
verfasserin |
title_sort |
milk protein-based nanohydrogels: current status and applications |
callnumber |
QD1-999 |
title_auth |
Milk Protein-Based Nanohydrogels: Current Status and Applications |
abstract |
Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry. |
abstractGer |
Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry. |
abstract_unstemmed |
Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 432 |
title_short |
Milk Protein-Based Nanohydrogels: Current Status and Applications |
url |
https://doi.org/10.3390/gels8070432 https://doaj.org/article/b5ed0997308e4f139d74d979a9d8f757 https://www.mdpi.com/2310-2861/8/7/432 https://doaj.org/toc/2310-2861 |
remote_bool |
true |
author2 |
Aarti Bains Prince Chawla Rahul Yadav Anil Kumar Baskaran Stephen Inbaraj Kandi Sridhar Minaxi Sharma |
author2Str |
Aarti Bains Prince Chawla Rahul Yadav Anil Kumar Baskaran Stephen Inbaraj Kandi Sridhar Minaxi Sharma |
ppnlink |
820684147 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/gels8070432 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T19:39:41.202Z |
_version_ |
1803588029599711233 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ026208512</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414113500.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/gels8070432</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ026208512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb5ed0997308e4f139d74d979a9d8f757</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD146-197</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Manpreet Kaur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Milk Protein-Based Nanohydrogels: Current Status and Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanohydrogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">milk proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">characteristics of milk-protein-based nanohydrogels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">food applications</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Inorganic chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General. Including alchemy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aarti Bains</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prince Chawla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rahul Yadav</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anil Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baskaran Stephen Inbaraj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kandi Sridhar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minaxi Sharma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Gels</subfield><subfield code="d">MDPI AG, 2015</subfield><subfield code="g">8(2022), 7, p 432</subfield><subfield code="w">(DE-627)820684147</subfield><subfield code="w">(DE-600)2813982-3</subfield><subfield code="x">23102861</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7, p 432</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/gels8070432</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b5ed0997308e4f139d74d979a9d8f757</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2310-2861/8/7/432</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2310-2861</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">7, p 432</subfield></datafield></record></collection>
|
score |
7.401 |