Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP
Common ZnO particles was used to improve the flame retardancy of piperazine pyrophosphate/melamine polyphosphate (PPAP/MPP) in PP composites. 0.5 wt% ZnO exhibited an exceptional synergism by analyzing LOI determination, UL-94 test, and CCT. The LOI increased from 29.9% (no ZnO) to 32.3%. The corres...
Ausführliche Beschreibung
Autor*in: |
Chen Cheng [verfasserIn] Su Shuqian [verfasserIn] Sun Mingmei [verfasserIn] Wang Zhengwen [verfasserIn] Zhang Xingrong [verfasserIn] Tang Linsheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Polymer Testing - Elsevier, 2021, 117(2023), Seite 107878- |
---|---|
Übergeordnetes Werk: |
volume:117 ; year:2023 ; pages:107878- |
Links: |
---|
DOI / URN: |
10.1016/j.polymertesting.2022.107878 |
---|
Katalog-ID: |
DOAJ026489597 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ026489597 | ||
003 | DE-627 | ||
005 | 20230501183457.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.polymertesting.2022.107878 |2 doi | |
035 | |a (DE-627)DOAJ026489597 | ||
035 | |a (DE-599)DOAJb8792fcb189f486abe311d4ace60f045 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1080-1185 | |
100 | 0 | |a Chen Cheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Common ZnO particles was used to improve the flame retardancy of piperazine pyrophosphate/melamine polyphosphate (PPAP/MPP) in PP composites. 0.5 wt% ZnO exhibited an exceptional synergism by analyzing LOI determination, UL-94 test, and CCT. The LOI increased from 29.9% (no ZnO) to 32.3%. The corresponding flame-retardant rating was improved from UL-94 V-2 to V-0. Additionally, ZnO significantly inhibited the formation of the smoke and CO during the combustion process. The TGA, the component and the structure of the heated FRPP and CCT residues were studied by FTIR, EDS, SEM, Raman spectra and 31P Nuclear Magnetic Resonance, revealing that PPAP/MPP was dominant in the flame retardant process by condensed phase actions. Furthermore, ZnO obviously promoted the formation of the char layer and increased its graphitization degree. Thus, the thermal stability and the strength of the intumescent char layer were improved and then to reinforce the flame retardancy of flame retardant PP (FRPP). | ||
650 | 4 | |a Thermoplastic resin | |
650 | 4 | |a Flame retardancy | |
650 | 4 | |a Thermal analysis | |
650 | 4 | |a Microstructural analysis | |
653 | 0 | |a Polymers and polymer manufacture | |
700 | 0 | |a Su Shuqian |e verfasserin |4 aut | |
700 | 0 | |a Sun Mingmei |e verfasserin |4 aut | |
700 | 0 | |a Wang Zhengwen |e verfasserin |4 aut | |
700 | 0 | |a Zhang Xingrong |e verfasserin |4 aut | |
700 | 0 | |a Tang Linsheng |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Polymer Testing |d Elsevier, 2021 |g 117(2023), Seite 107878- |w (DE-627)320530280 |w (DE-600)2015673-X |x 18732348 |7 nnns |
773 | 1 | 8 | |g volume:117 |g year:2023 |g pages:107878- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.polymertesting.2022.107878 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b8792fcb189f486abe311d4ace60f045 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0142941822003993 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0142-9418 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 117 |j 2023 |h 107878- |
author_variant |
c c cc s s ss s m sm w z wz z x zx t l tl |
---|---|
matchkey_str |
article:18732348:2023----::yegsifaeeadnyfnwtpprznprpopaee |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TP |
publishDate |
2023 |
allfields |
10.1016/j.polymertesting.2022.107878 doi (DE-627)DOAJ026489597 (DE-599)DOAJb8792fcb189f486abe311d4ace60f045 DE-627 ger DE-627 rakwb eng TP1080-1185 Chen Cheng verfasserin aut Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Common ZnO particles was used to improve the flame retardancy of piperazine pyrophosphate/melamine polyphosphate (PPAP/MPP) in PP composites. 0.5 wt% ZnO exhibited an exceptional synergism by analyzing LOI determination, UL-94 test, and CCT. The LOI increased from 29.9% (no ZnO) to 32.3%. The corresponding flame-retardant rating was improved from UL-94 V-2 to V-0. Additionally, ZnO significantly inhibited the formation of the smoke and CO during the combustion process. The TGA, the component and the structure of the heated FRPP and CCT residues were studied by FTIR, EDS, SEM, Raman spectra and 31P Nuclear Magnetic Resonance, revealing that PPAP/MPP was dominant in the flame retardant process by condensed phase actions. Furthermore, ZnO obviously promoted the formation of the char layer and increased its graphitization degree. Thus, the thermal stability and the strength of the intumescent char layer were improved and then to reinforce the flame retardancy of flame retardant PP (FRPP). Thermoplastic resin Flame retardancy Thermal analysis Microstructural analysis Polymers and polymer manufacture Su Shuqian verfasserin aut Sun Mingmei verfasserin aut Wang Zhengwen verfasserin aut Zhang Xingrong verfasserin aut Tang Linsheng verfasserin aut In Polymer Testing Elsevier, 2021 117(2023), Seite 107878- (DE-627)320530280 (DE-600)2015673-X 18732348 nnns volume:117 year:2023 pages:107878- https://doi.org/10.1016/j.polymertesting.2022.107878 kostenfrei https://doaj.org/article/b8792fcb189f486abe311d4ace60f045 kostenfrei http://www.sciencedirect.com/science/article/pii/S0142941822003993 kostenfrei https://doaj.org/toc/0142-9418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 117 2023 107878- |
spelling |
10.1016/j.polymertesting.2022.107878 doi (DE-627)DOAJ026489597 (DE-599)DOAJb8792fcb189f486abe311d4ace60f045 DE-627 ger DE-627 rakwb eng TP1080-1185 Chen Cheng verfasserin aut Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Common ZnO particles was used to improve the flame retardancy of piperazine pyrophosphate/melamine polyphosphate (PPAP/MPP) in PP composites. 0.5 wt% ZnO exhibited an exceptional synergism by analyzing LOI determination, UL-94 test, and CCT. The LOI increased from 29.9% (no ZnO) to 32.3%. The corresponding flame-retardant rating was improved from UL-94 V-2 to V-0. Additionally, ZnO significantly inhibited the formation of the smoke and CO during the combustion process. The TGA, the component and the structure of the heated FRPP and CCT residues were studied by FTIR, EDS, SEM, Raman spectra and 31P Nuclear Magnetic Resonance, revealing that PPAP/MPP was dominant in the flame retardant process by condensed phase actions. Furthermore, ZnO obviously promoted the formation of the char layer and increased its graphitization degree. Thus, the thermal stability and the strength of the intumescent char layer were improved and then to reinforce the flame retardancy of flame retardant PP (FRPP). Thermoplastic resin Flame retardancy Thermal analysis Microstructural analysis Polymers and polymer manufacture Su Shuqian verfasserin aut Sun Mingmei verfasserin aut Wang Zhengwen verfasserin aut Zhang Xingrong verfasserin aut Tang Linsheng verfasserin aut In Polymer Testing Elsevier, 2021 117(2023), Seite 107878- (DE-627)320530280 (DE-600)2015673-X 18732348 nnns volume:117 year:2023 pages:107878- https://doi.org/10.1016/j.polymertesting.2022.107878 kostenfrei https://doaj.org/article/b8792fcb189f486abe311d4ace60f045 kostenfrei http://www.sciencedirect.com/science/article/pii/S0142941822003993 kostenfrei https://doaj.org/toc/0142-9418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 117 2023 107878- |
allfields_unstemmed |
10.1016/j.polymertesting.2022.107878 doi (DE-627)DOAJ026489597 (DE-599)DOAJb8792fcb189f486abe311d4ace60f045 DE-627 ger DE-627 rakwb eng TP1080-1185 Chen Cheng verfasserin aut Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Common ZnO particles was used to improve the flame retardancy of piperazine pyrophosphate/melamine polyphosphate (PPAP/MPP) in PP composites. 0.5 wt% ZnO exhibited an exceptional synergism by analyzing LOI determination, UL-94 test, and CCT. The LOI increased from 29.9% (no ZnO) to 32.3%. The corresponding flame-retardant rating was improved from UL-94 V-2 to V-0. Additionally, ZnO significantly inhibited the formation of the smoke and CO during the combustion process. The TGA, the component and the structure of the heated FRPP and CCT residues were studied by FTIR, EDS, SEM, Raman spectra and 31P Nuclear Magnetic Resonance, revealing that PPAP/MPP was dominant in the flame retardant process by condensed phase actions. Furthermore, ZnO obviously promoted the formation of the char layer and increased its graphitization degree. Thus, the thermal stability and the strength of the intumescent char layer were improved and then to reinforce the flame retardancy of flame retardant PP (FRPP). Thermoplastic resin Flame retardancy Thermal analysis Microstructural analysis Polymers and polymer manufacture Su Shuqian verfasserin aut Sun Mingmei verfasserin aut Wang Zhengwen verfasserin aut Zhang Xingrong verfasserin aut Tang Linsheng verfasserin aut In Polymer Testing Elsevier, 2021 117(2023), Seite 107878- (DE-627)320530280 (DE-600)2015673-X 18732348 nnns volume:117 year:2023 pages:107878- https://doi.org/10.1016/j.polymertesting.2022.107878 kostenfrei https://doaj.org/article/b8792fcb189f486abe311d4ace60f045 kostenfrei http://www.sciencedirect.com/science/article/pii/S0142941822003993 kostenfrei https://doaj.org/toc/0142-9418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 117 2023 107878- |
allfieldsGer |
10.1016/j.polymertesting.2022.107878 doi (DE-627)DOAJ026489597 (DE-599)DOAJb8792fcb189f486abe311d4ace60f045 DE-627 ger DE-627 rakwb eng TP1080-1185 Chen Cheng verfasserin aut Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Common ZnO particles was used to improve the flame retardancy of piperazine pyrophosphate/melamine polyphosphate (PPAP/MPP) in PP composites. 0.5 wt% ZnO exhibited an exceptional synergism by analyzing LOI determination, UL-94 test, and CCT. The LOI increased from 29.9% (no ZnO) to 32.3%. The corresponding flame-retardant rating was improved from UL-94 V-2 to V-0. Additionally, ZnO significantly inhibited the formation of the smoke and CO during the combustion process. The TGA, the component and the structure of the heated FRPP and CCT residues were studied by FTIR, EDS, SEM, Raman spectra and 31P Nuclear Magnetic Resonance, revealing that PPAP/MPP was dominant in the flame retardant process by condensed phase actions. Furthermore, ZnO obviously promoted the formation of the char layer and increased its graphitization degree. Thus, the thermal stability and the strength of the intumescent char layer were improved and then to reinforce the flame retardancy of flame retardant PP (FRPP). Thermoplastic resin Flame retardancy Thermal analysis Microstructural analysis Polymers and polymer manufacture Su Shuqian verfasserin aut Sun Mingmei verfasserin aut Wang Zhengwen verfasserin aut Zhang Xingrong verfasserin aut Tang Linsheng verfasserin aut In Polymer Testing Elsevier, 2021 117(2023), Seite 107878- (DE-627)320530280 (DE-600)2015673-X 18732348 nnns volume:117 year:2023 pages:107878- https://doi.org/10.1016/j.polymertesting.2022.107878 kostenfrei https://doaj.org/article/b8792fcb189f486abe311d4ace60f045 kostenfrei http://www.sciencedirect.com/science/article/pii/S0142941822003993 kostenfrei https://doaj.org/toc/0142-9418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 117 2023 107878- |
allfieldsSound |
10.1016/j.polymertesting.2022.107878 doi (DE-627)DOAJ026489597 (DE-599)DOAJb8792fcb189f486abe311d4ace60f045 DE-627 ger DE-627 rakwb eng TP1080-1185 Chen Cheng verfasserin aut Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Common ZnO particles was used to improve the flame retardancy of piperazine pyrophosphate/melamine polyphosphate (PPAP/MPP) in PP composites. 0.5 wt% ZnO exhibited an exceptional synergism by analyzing LOI determination, UL-94 test, and CCT. The LOI increased from 29.9% (no ZnO) to 32.3%. The corresponding flame-retardant rating was improved from UL-94 V-2 to V-0. Additionally, ZnO significantly inhibited the formation of the smoke and CO during the combustion process. The TGA, the component and the structure of the heated FRPP and CCT residues were studied by FTIR, EDS, SEM, Raman spectra and 31P Nuclear Magnetic Resonance, revealing that PPAP/MPP was dominant in the flame retardant process by condensed phase actions. Furthermore, ZnO obviously promoted the formation of the char layer and increased its graphitization degree. Thus, the thermal stability and the strength of the intumescent char layer were improved and then to reinforce the flame retardancy of flame retardant PP (FRPP). Thermoplastic resin Flame retardancy Thermal analysis Microstructural analysis Polymers and polymer manufacture Su Shuqian verfasserin aut Sun Mingmei verfasserin aut Wang Zhengwen verfasserin aut Zhang Xingrong verfasserin aut Tang Linsheng verfasserin aut In Polymer Testing Elsevier, 2021 117(2023), Seite 107878- (DE-627)320530280 (DE-600)2015673-X 18732348 nnns volume:117 year:2023 pages:107878- https://doi.org/10.1016/j.polymertesting.2022.107878 kostenfrei https://doaj.org/article/b8792fcb189f486abe311d4ace60f045 kostenfrei http://www.sciencedirect.com/science/article/pii/S0142941822003993 kostenfrei https://doaj.org/toc/0142-9418 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 117 2023 107878- |
language |
English |
source |
In Polymer Testing 117(2023), Seite 107878- volume:117 year:2023 pages:107878- |
sourceStr |
In Polymer Testing 117(2023), Seite 107878- volume:117 year:2023 pages:107878- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thermoplastic resin Flame retardancy Thermal analysis Microstructural analysis Polymers and polymer manufacture |
isfreeaccess_bool |
true |
container_title |
Polymer Testing |
authorswithroles_txt_mv |
Chen Cheng @@aut@@ Su Shuqian @@aut@@ Sun Mingmei @@aut@@ Wang Zhengwen @@aut@@ Zhang Xingrong @@aut@@ Tang Linsheng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320530280 |
id |
DOAJ026489597 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ026489597</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501183457.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.polymertesting.2022.107878</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ026489597</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb8792fcb189f486abe311d4ace60f045</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1080-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chen Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Common ZnO particles was used to improve the flame retardancy of piperazine pyrophosphate/melamine polyphosphate (PPAP/MPP) in PP composites. 0.5 wt% ZnO exhibited an exceptional synergism by analyzing LOI determination, UL-94 test, and CCT. The LOI increased from 29.9% (no ZnO) to 32.3%. The corresponding flame-retardant rating was improved from UL-94 V-2 to V-0. Additionally, ZnO significantly inhibited the formation of the smoke and CO during the combustion process. The TGA, the component and the structure of the heated FRPP and CCT residues were studied by FTIR, EDS, SEM, Raman spectra and 31P Nuclear Magnetic Resonance, revealing that PPAP/MPP was dominant in the flame retardant process by condensed phase actions. Furthermore, ZnO obviously promoted the formation of the char layer and increased its graphitization degree. Thus, the thermal stability and the strength of the intumescent char layer were improved and then to reinforce the flame retardancy of flame retardant PP (FRPP).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoplastic resin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flame retardancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstructural analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Polymers and polymer manufacture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Su Shuqian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sun Mingmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Zhengwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhang Xingrong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tang Linsheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Polymer Testing</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">117(2023), Seite 107878-</subfield><subfield code="w">(DE-627)320530280</subfield><subfield code="w">(DE-600)2015673-X</subfield><subfield code="x">18732348</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:117</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:107878-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.polymertesting.2022.107878</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b8792fcb189f486abe311d4ace60f045</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0142941822003993</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0142-9418</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">117</subfield><subfield code="j">2023</subfield><subfield code="h">107878-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Chen Cheng |
spellingShingle |
Chen Cheng misc TP1080-1185 misc Thermoplastic resin misc Flame retardancy misc Thermal analysis misc Microstructural analysis misc Polymers and polymer manufacture Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP |
authorStr |
Chen Cheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320530280 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1080-1185 |
illustrated |
Not Illustrated |
issn |
18732348 |
topic_title |
TP1080-1185 Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP Thermoplastic resin Flame retardancy Thermal analysis Microstructural analysis |
topic |
misc TP1080-1185 misc Thermoplastic resin misc Flame retardancy misc Thermal analysis misc Microstructural analysis misc Polymers and polymer manufacture |
topic_unstemmed |
misc TP1080-1185 misc Thermoplastic resin misc Flame retardancy misc Thermal analysis misc Microstructural analysis misc Polymers and polymer manufacture |
topic_browse |
misc TP1080-1185 misc Thermoplastic resin misc Flame retardancy misc Thermal analysis misc Microstructural analysis misc Polymers and polymer manufacture |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Polymer Testing |
hierarchy_parent_id |
320530280 |
hierarchy_top_title |
Polymer Testing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320530280 (DE-600)2015673-X |
title |
Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP |
ctrlnum |
(DE-627)DOAJ026489597 (DE-599)DOAJb8792fcb189f486abe311d4ace60f045 |
title_full |
Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP |
author_sort |
Chen Cheng |
journal |
Polymer Testing |
journalStr |
Polymer Testing |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
107878 |
author_browse |
Chen Cheng Su Shuqian Sun Mingmei Wang Zhengwen Zhang Xingrong Tang Linsheng |
container_volume |
117 |
class |
TP1080-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Chen Cheng |
doi_str_mv |
10.1016/j.polymertesting.2022.107878 |
author2-role |
verfasserin |
title_sort |
synergistic flame retardancy of zno with piperazine pyrophosphate/melamine polyphosphate in pp |
callnumber |
TP1080-1185 |
title_auth |
Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP |
abstract |
Common ZnO particles was used to improve the flame retardancy of piperazine pyrophosphate/melamine polyphosphate (PPAP/MPP) in PP composites. 0.5 wt% ZnO exhibited an exceptional synergism by analyzing LOI determination, UL-94 test, and CCT. The LOI increased from 29.9% (no ZnO) to 32.3%. The corresponding flame-retardant rating was improved from UL-94 V-2 to V-0. Additionally, ZnO significantly inhibited the formation of the smoke and CO during the combustion process. The TGA, the component and the structure of the heated FRPP and CCT residues were studied by FTIR, EDS, SEM, Raman spectra and 31P Nuclear Magnetic Resonance, revealing that PPAP/MPP was dominant in the flame retardant process by condensed phase actions. Furthermore, ZnO obviously promoted the formation of the char layer and increased its graphitization degree. Thus, the thermal stability and the strength of the intumescent char layer were improved and then to reinforce the flame retardancy of flame retardant PP (FRPP). |
abstractGer |
Common ZnO particles was used to improve the flame retardancy of piperazine pyrophosphate/melamine polyphosphate (PPAP/MPP) in PP composites. 0.5 wt% ZnO exhibited an exceptional synergism by analyzing LOI determination, UL-94 test, and CCT. The LOI increased from 29.9% (no ZnO) to 32.3%. The corresponding flame-retardant rating was improved from UL-94 V-2 to V-0. Additionally, ZnO significantly inhibited the formation of the smoke and CO during the combustion process. The TGA, the component and the structure of the heated FRPP and CCT residues were studied by FTIR, EDS, SEM, Raman spectra and 31P Nuclear Magnetic Resonance, revealing that PPAP/MPP was dominant in the flame retardant process by condensed phase actions. Furthermore, ZnO obviously promoted the formation of the char layer and increased its graphitization degree. Thus, the thermal stability and the strength of the intumescent char layer were improved and then to reinforce the flame retardancy of flame retardant PP (FRPP). |
abstract_unstemmed |
Common ZnO particles was used to improve the flame retardancy of piperazine pyrophosphate/melamine polyphosphate (PPAP/MPP) in PP composites. 0.5 wt% ZnO exhibited an exceptional synergism by analyzing LOI determination, UL-94 test, and CCT. The LOI increased from 29.9% (no ZnO) to 32.3%. The corresponding flame-retardant rating was improved from UL-94 V-2 to V-0. Additionally, ZnO significantly inhibited the formation of the smoke and CO during the combustion process. The TGA, the component and the structure of the heated FRPP and CCT residues were studied by FTIR, EDS, SEM, Raman spectra and 31P Nuclear Magnetic Resonance, revealing that PPAP/MPP was dominant in the flame retardant process by condensed phase actions. Furthermore, ZnO obviously promoted the formation of the char layer and increased its graphitization degree. Thus, the thermal stability and the strength of the intumescent char layer were improved and then to reinforce the flame retardancy of flame retardant PP (FRPP). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP |
url |
https://doi.org/10.1016/j.polymertesting.2022.107878 https://doaj.org/article/b8792fcb189f486abe311d4ace60f045 http://www.sciencedirect.com/science/article/pii/S0142941822003993 https://doaj.org/toc/0142-9418 |
remote_bool |
true |
author2 |
Su Shuqian Sun Mingmei Wang Zhengwen Zhang Xingrong Tang Linsheng |
author2Str |
Su Shuqian Sun Mingmei Wang Zhengwen Zhang Xingrong Tang Linsheng |
ppnlink |
320530280 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.polymertesting.2022.107878 |
callnumber-a |
TP1080-1185 |
up_date |
2024-07-03T21:18:44.455Z |
_version_ |
1803594261551120384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ026489597</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501183457.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.polymertesting.2022.107878</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ026489597</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb8792fcb189f486abe311d4ace60f045</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1080-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chen Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synergistic flame retardancy of ZnO with piperazine pyrophosphate/melamine polyphosphate in PP</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Common ZnO particles was used to improve the flame retardancy of piperazine pyrophosphate/melamine polyphosphate (PPAP/MPP) in PP composites. 0.5 wt% ZnO exhibited an exceptional synergism by analyzing LOI determination, UL-94 test, and CCT. The LOI increased from 29.9% (no ZnO) to 32.3%. The corresponding flame-retardant rating was improved from UL-94 V-2 to V-0. Additionally, ZnO significantly inhibited the formation of the smoke and CO during the combustion process. The TGA, the component and the structure of the heated FRPP and CCT residues were studied by FTIR, EDS, SEM, Raman spectra and 31P Nuclear Magnetic Resonance, revealing that PPAP/MPP was dominant in the flame retardant process by condensed phase actions. Furthermore, ZnO obviously promoted the formation of the char layer and increased its graphitization degree. Thus, the thermal stability and the strength of the intumescent char layer were improved and then to reinforce the flame retardancy of flame retardant PP (FRPP).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoplastic resin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flame retardancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstructural analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Polymers and polymer manufacture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Su Shuqian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sun Mingmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Zhengwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhang Xingrong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tang Linsheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Polymer Testing</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">117(2023), Seite 107878-</subfield><subfield code="w">(DE-627)320530280</subfield><subfield code="w">(DE-600)2015673-X</subfield><subfield code="x">18732348</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:117</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:107878-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.polymertesting.2022.107878</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b8792fcb189f486abe311d4ace60f045</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0142941822003993</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0142-9418</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">117</subfield><subfield code="j">2023</subfield><subfield code="h">107878-</subfield></datafield></record></collection>
|
score |
7.4016523 |