Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature
Transpiration from rice (Oryza sativa L.) panicles can help lower the temperature of the panicle ( T p ), which is the susceptive organ for high temperature-induced spikelet sterility (HISS). By increasing the transpiration, the heat damage to the panicle predicted to occur due to global warming may...
Ausführliche Beschreibung
Autor*in: |
Minehiko Fukuoka [verfasserIn] Mayumi Yoshimoto [verfasserIn] Toshihiro Hasegawa [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Plant Production Science - Taylor & Francis Group, 2004, 15(2012), 4, Seite 258-264 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2012 ; number:4 ; pages:258-264 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1626/pps.15.258 |
---|
Katalog-ID: |
DOAJ026921154 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ026921154 | ||
003 | DE-627 | ||
005 | 20230307105552.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1626/pps.15.258 |2 doi | |
035 | |a (DE-627)DOAJ026921154 | ||
035 | |a (DE-599)DOAJeddaedc10a204c0492fb724fec00dbae | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a SB1-1110 | |
100 | 0 | |a Minehiko Fukuoka |e verfasserin |4 aut | |
245 | 1 | 0 | |a Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Transpiration from rice (Oryza sativa L.) panicles can help lower the temperature of the panicle ( T p ), which is the susceptive organ for high temperature-induced spikelet sterility (HISS). By increasing the transpiration, the heat damage to the panicle predicted to occur due to global warming may be avoided. To examine the possibility of genetic improvement in transpiration conductance of intact rice panicles (gpI ), we measured gpI at the time of flowering in the open field in 21 rice varieties of widely different origins. We observed a difference in gpI among the varieties and three series of experiments, ranging from 0.15 to 0.67 cm s- 1 . We also estimated its impact on the difference between Tp and air temperature ( T a ) (Δtp, Tp - Ta) using a micrometeorology model, where T a was given as 28°C or 35°C. The varietal range in gpI was estimated to correspond to the range of 2.1°C in ΔTp under a humid atmospheric condition and the range of 3.5°C in Δ t p under a dry atmospheric condition. The estimated ΔTp ranges due to varieties may be useful for improving heat avoidance capacity under excessive heat at the critical stage. The sensitivity analysis of ΔTp to ranging gpI suggested that g pI higher than the highest gpI observed in this study may not be effective for additional cooling of T p . Thus, the target of improvement in gpI against HISS should be set at the level of the existing varieties with the highest gpI. | ||
650 | 4 | |a High temperature-induced spikelet sterility | |
650 | 4 | |a Panicle transpiration | |
650 | 4 | |a Transpiration cooling | |
650 | 4 | |a Varietal difference | |
653 | 0 | |a Plant culture | |
700 | 0 | |a Mayumi Yoshimoto |e verfasserin |4 aut | |
700 | 0 | |a Toshihiro Hasegawa |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plant Production Science |d Taylor & Francis Group, 2004 |g 15(2012), 4, Seite 258-264 |w (DE-627)391333887 |w (DE-600)2152184-0 |x 13491008 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2012 |g number:4 |g pages:258-264 |
856 | 4 | 0 | |u https://doi.org/10.1626/pps.15.258 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/eddaedc10a204c0492fb724fec00dbae |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1626/pps.15.258 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1343-943X |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1349-1008 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2012 |e 4 |h 258-264 |
author_variant |
m f mf m y my t h th |
---|---|
matchkey_str |
article:13491008:2012----::aitlagitasiainodcacofoeigieailadti |
hierarchy_sort_str |
2012 |
callnumber-subject-code |
SB |
publishDate |
2012 |
allfields |
10.1626/pps.15.258 doi (DE-627)DOAJ026921154 (DE-599)DOAJeddaedc10a204c0492fb724fec00dbae DE-627 ger DE-627 rakwb eng SB1-1110 Minehiko Fukuoka verfasserin aut Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transpiration from rice (Oryza sativa L.) panicles can help lower the temperature of the panicle ( T p ), which is the susceptive organ for high temperature-induced spikelet sterility (HISS). By increasing the transpiration, the heat damage to the panicle predicted to occur due to global warming may be avoided. To examine the possibility of genetic improvement in transpiration conductance of intact rice panicles (gpI ), we measured gpI at the time of flowering in the open field in 21 rice varieties of widely different origins. We observed a difference in gpI among the varieties and three series of experiments, ranging from 0.15 to 0.67 cm s- 1 . We also estimated its impact on the difference between Tp and air temperature ( T a ) (Δtp, Tp - Ta) using a micrometeorology model, where T a was given as 28°C or 35°C. The varietal range in gpI was estimated to correspond to the range of 2.1°C in ΔTp under a humid atmospheric condition and the range of 3.5°C in Δ t p under a dry atmospheric condition. The estimated ΔTp ranges due to varieties may be useful for improving heat avoidance capacity under excessive heat at the critical stage. The sensitivity analysis of ΔTp to ranging gpI suggested that g pI higher than the highest gpI observed in this study may not be effective for additional cooling of T p . Thus, the target of improvement in gpI against HISS should be set at the level of the existing varieties with the highest gpI. High temperature-induced spikelet sterility Panicle transpiration Transpiration cooling Varietal difference Plant culture Mayumi Yoshimoto verfasserin aut Toshihiro Hasegawa verfasserin aut In Plant Production Science Taylor & Francis Group, 2004 15(2012), 4, Seite 258-264 (DE-627)391333887 (DE-600)2152184-0 13491008 nnns volume:15 year:2012 number:4 pages:258-264 https://doi.org/10.1626/pps.15.258 kostenfrei https://doaj.org/article/eddaedc10a204c0492fb724fec00dbae kostenfrei http://dx.doi.org/10.1626/pps.15.258 kostenfrei https://doaj.org/toc/1343-943X Journal toc kostenfrei https://doaj.org/toc/1349-1008 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2012 4 258-264 |
spelling |
10.1626/pps.15.258 doi (DE-627)DOAJ026921154 (DE-599)DOAJeddaedc10a204c0492fb724fec00dbae DE-627 ger DE-627 rakwb eng SB1-1110 Minehiko Fukuoka verfasserin aut Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transpiration from rice (Oryza sativa L.) panicles can help lower the temperature of the panicle ( T p ), which is the susceptive organ for high temperature-induced spikelet sterility (HISS). By increasing the transpiration, the heat damage to the panicle predicted to occur due to global warming may be avoided. To examine the possibility of genetic improvement in transpiration conductance of intact rice panicles (gpI ), we measured gpI at the time of flowering in the open field in 21 rice varieties of widely different origins. We observed a difference in gpI among the varieties and three series of experiments, ranging from 0.15 to 0.67 cm s- 1 . We also estimated its impact on the difference between Tp and air temperature ( T a ) (Δtp, Tp - Ta) using a micrometeorology model, where T a was given as 28°C or 35°C. The varietal range in gpI was estimated to correspond to the range of 2.1°C in ΔTp under a humid atmospheric condition and the range of 3.5°C in Δ t p under a dry atmospheric condition. The estimated ΔTp ranges due to varieties may be useful for improving heat avoidance capacity under excessive heat at the critical stage. The sensitivity analysis of ΔTp to ranging gpI suggested that g pI higher than the highest gpI observed in this study may not be effective for additional cooling of T p . Thus, the target of improvement in gpI against HISS should be set at the level of the existing varieties with the highest gpI. High temperature-induced spikelet sterility Panicle transpiration Transpiration cooling Varietal difference Plant culture Mayumi Yoshimoto verfasserin aut Toshihiro Hasegawa verfasserin aut In Plant Production Science Taylor & Francis Group, 2004 15(2012), 4, Seite 258-264 (DE-627)391333887 (DE-600)2152184-0 13491008 nnns volume:15 year:2012 number:4 pages:258-264 https://doi.org/10.1626/pps.15.258 kostenfrei https://doaj.org/article/eddaedc10a204c0492fb724fec00dbae kostenfrei http://dx.doi.org/10.1626/pps.15.258 kostenfrei https://doaj.org/toc/1343-943X Journal toc kostenfrei https://doaj.org/toc/1349-1008 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2012 4 258-264 |
allfields_unstemmed |
10.1626/pps.15.258 doi (DE-627)DOAJ026921154 (DE-599)DOAJeddaedc10a204c0492fb724fec00dbae DE-627 ger DE-627 rakwb eng SB1-1110 Minehiko Fukuoka verfasserin aut Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transpiration from rice (Oryza sativa L.) panicles can help lower the temperature of the panicle ( T p ), which is the susceptive organ for high temperature-induced spikelet sterility (HISS). By increasing the transpiration, the heat damage to the panicle predicted to occur due to global warming may be avoided. To examine the possibility of genetic improvement in transpiration conductance of intact rice panicles (gpI ), we measured gpI at the time of flowering in the open field in 21 rice varieties of widely different origins. We observed a difference in gpI among the varieties and three series of experiments, ranging from 0.15 to 0.67 cm s- 1 . We also estimated its impact on the difference between Tp and air temperature ( T a ) (Δtp, Tp - Ta) using a micrometeorology model, where T a was given as 28°C or 35°C. The varietal range in gpI was estimated to correspond to the range of 2.1°C in ΔTp under a humid atmospheric condition and the range of 3.5°C in Δ t p under a dry atmospheric condition. The estimated ΔTp ranges due to varieties may be useful for improving heat avoidance capacity under excessive heat at the critical stage. The sensitivity analysis of ΔTp to ranging gpI suggested that g pI higher than the highest gpI observed in this study may not be effective for additional cooling of T p . Thus, the target of improvement in gpI against HISS should be set at the level of the existing varieties with the highest gpI. High temperature-induced spikelet sterility Panicle transpiration Transpiration cooling Varietal difference Plant culture Mayumi Yoshimoto verfasserin aut Toshihiro Hasegawa verfasserin aut In Plant Production Science Taylor & Francis Group, 2004 15(2012), 4, Seite 258-264 (DE-627)391333887 (DE-600)2152184-0 13491008 nnns volume:15 year:2012 number:4 pages:258-264 https://doi.org/10.1626/pps.15.258 kostenfrei https://doaj.org/article/eddaedc10a204c0492fb724fec00dbae kostenfrei http://dx.doi.org/10.1626/pps.15.258 kostenfrei https://doaj.org/toc/1343-943X Journal toc kostenfrei https://doaj.org/toc/1349-1008 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2012 4 258-264 |
allfieldsGer |
10.1626/pps.15.258 doi (DE-627)DOAJ026921154 (DE-599)DOAJeddaedc10a204c0492fb724fec00dbae DE-627 ger DE-627 rakwb eng SB1-1110 Minehiko Fukuoka verfasserin aut Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transpiration from rice (Oryza sativa L.) panicles can help lower the temperature of the panicle ( T p ), which is the susceptive organ for high temperature-induced spikelet sterility (HISS). By increasing the transpiration, the heat damage to the panicle predicted to occur due to global warming may be avoided. To examine the possibility of genetic improvement in transpiration conductance of intact rice panicles (gpI ), we measured gpI at the time of flowering in the open field in 21 rice varieties of widely different origins. We observed a difference in gpI among the varieties and three series of experiments, ranging from 0.15 to 0.67 cm s- 1 . We also estimated its impact on the difference between Tp and air temperature ( T a ) (Δtp, Tp - Ta) using a micrometeorology model, where T a was given as 28°C or 35°C. The varietal range in gpI was estimated to correspond to the range of 2.1°C in ΔTp under a humid atmospheric condition and the range of 3.5°C in Δ t p under a dry atmospheric condition. The estimated ΔTp ranges due to varieties may be useful for improving heat avoidance capacity under excessive heat at the critical stage. The sensitivity analysis of ΔTp to ranging gpI suggested that g pI higher than the highest gpI observed in this study may not be effective for additional cooling of T p . Thus, the target of improvement in gpI against HISS should be set at the level of the existing varieties with the highest gpI. High temperature-induced spikelet sterility Panicle transpiration Transpiration cooling Varietal difference Plant culture Mayumi Yoshimoto verfasserin aut Toshihiro Hasegawa verfasserin aut In Plant Production Science Taylor & Francis Group, 2004 15(2012), 4, Seite 258-264 (DE-627)391333887 (DE-600)2152184-0 13491008 nnns volume:15 year:2012 number:4 pages:258-264 https://doi.org/10.1626/pps.15.258 kostenfrei https://doaj.org/article/eddaedc10a204c0492fb724fec00dbae kostenfrei http://dx.doi.org/10.1626/pps.15.258 kostenfrei https://doaj.org/toc/1343-943X Journal toc kostenfrei https://doaj.org/toc/1349-1008 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2012 4 258-264 |
allfieldsSound |
10.1626/pps.15.258 doi (DE-627)DOAJ026921154 (DE-599)DOAJeddaedc10a204c0492fb724fec00dbae DE-627 ger DE-627 rakwb eng SB1-1110 Minehiko Fukuoka verfasserin aut Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transpiration from rice (Oryza sativa L.) panicles can help lower the temperature of the panicle ( T p ), which is the susceptive organ for high temperature-induced spikelet sterility (HISS). By increasing the transpiration, the heat damage to the panicle predicted to occur due to global warming may be avoided. To examine the possibility of genetic improvement in transpiration conductance of intact rice panicles (gpI ), we measured gpI at the time of flowering in the open field in 21 rice varieties of widely different origins. We observed a difference in gpI among the varieties and three series of experiments, ranging from 0.15 to 0.67 cm s- 1 . We also estimated its impact on the difference between Tp and air temperature ( T a ) (Δtp, Tp - Ta) using a micrometeorology model, where T a was given as 28°C or 35°C. The varietal range in gpI was estimated to correspond to the range of 2.1°C in ΔTp under a humid atmospheric condition and the range of 3.5°C in Δ t p under a dry atmospheric condition. The estimated ΔTp ranges due to varieties may be useful for improving heat avoidance capacity under excessive heat at the critical stage. The sensitivity analysis of ΔTp to ranging gpI suggested that g pI higher than the highest gpI observed in this study may not be effective for additional cooling of T p . Thus, the target of improvement in gpI against HISS should be set at the level of the existing varieties with the highest gpI. High temperature-induced spikelet sterility Panicle transpiration Transpiration cooling Varietal difference Plant culture Mayumi Yoshimoto verfasserin aut Toshihiro Hasegawa verfasserin aut In Plant Production Science Taylor & Francis Group, 2004 15(2012), 4, Seite 258-264 (DE-627)391333887 (DE-600)2152184-0 13491008 nnns volume:15 year:2012 number:4 pages:258-264 https://doi.org/10.1626/pps.15.258 kostenfrei https://doaj.org/article/eddaedc10a204c0492fb724fec00dbae kostenfrei http://dx.doi.org/10.1626/pps.15.258 kostenfrei https://doaj.org/toc/1343-943X Journal toc kostenfrei https://doaj.org/toc/1349-1008 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 15 2012 4 258-264 |
language |
English |
source |
In Plant Production Science 15(2012), 4, Seite 258-264 volume:15 year:2012 number:4 pages:258-264 |
sourceStr |
In Plant Production Science 15(2012), 4, Seite 258-264 volume:15 year:2012 number:4 pages:258-264 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
High temperature-induced spikelet sterility Panicle transpiration Transpiration cooling Varietal difference Plant culture |
isfreeaccess_bool |
true |
container_title |
Plant Production Science |
authorswithroles_txt_mv |
Minehiko Fukuoka @@aut@@ Mayumi Yoshimoto @@aut@@ Toshihiro Hasegawa @@aut@@ |
publishDateDaySort_date |
2012-01-01T00:00:00Z |
hierarchy_top_id |
391333887 |
id |
DOAJ026921154 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ026921154</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307105552.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1626/pps.15.258</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ026921154</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJeddaedc10a204c0492fb724fec00dbae</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Minehiko Fukuoka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Transpiration from rice (Oryza sativa L.) panicles can help lower the temperature of the panicle ( T p ), which is the susceptive organ for high temperature-induced spikelet sterility (HISS). By increasing the transpiration, the heat damage to the panicle predicted to occur due to global warming may be avoided. To examine the possibility of genetic improvement in transpiration conductance of intact rice panicles (gpI ), we measured gpI at the time of flowering in the open field in 21 rice varieties of widely different origins. We observed a difference in gpI among the varieties and three series of experiments, ranging from 0.15 to 0.67 cm s- 1 . We also estimated its impact on the difference between Tp and air temperature ( T a ) (Δtp, Tp - Ta) using a micrometeorology model, where T a was given as 28°C or 35°C. The varietal range in gpI was estimated to correspond to the range of 2.1°C in ΔTp under a humid atmospheric condition and the range of 3.5°C in Δ t p under a dry atmospheric condition. The estimated ΔTp ranges due to varieties may be useful for improving heat avoidance capacity under excessive heat at the critical stage. The sensitivity analysis of ΔTp to ranging gpI suggested that g pI higher than the highest gpI observed in this study may not be effective for additional cooling of T p . Thus, the target of improvement in gpI against HISS should be set at the level of the existing varieties with the highest gpI.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High temperature-induced spikelet sterility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Panicle transpiration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transpiration cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Varietal difference</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mayumi Yoshimoto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshihiro Hasegawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plant Production Science</subfield><subfield code="d">Taylor & Francis Group, 2004</subfield><subfield code="g">15(2012), 4, Seite 258-264</subfield><subfield code="w">(DE-627)391333887</subfield><subfield code="w">(DE-600)2152184-0</subfield><subfield code="x">13491008</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:258-264</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1626/pps.15.258</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/eddaedc10a204c0492fb724fec00dbae</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1626/pps.15.258</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1343-943X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1349-1008</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="h">258-264</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Minehiko Fukuoka |
spellingShingle |
Minehiko Fukuoka misc SB1-1110 misc High temperature-induced spikelet sterility misc Panicle transpiration misc Transpiration cooling misc Varietal difference misc Plant culture Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature |
authorStr |
Minehiko Fukuoka |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)391333887 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
SB1-1110 |
illustrated |
Not Illustrated |
issn |
13491008 |
topic_title |
SB1-1110 Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature High temperature-induced spikelet sterility Panicle transpiration Transpiration cooling Varietal difference |
topic |
misc SB1-1110 misc High temperature-induced spikelet sterility misc Panicle transpiration misc Transpiration cooling misc Varietal difference misc Plant culture |
topic_unstemmed |
misc SB1-1110 misc High temperature-induced spikelet sterility misc Panicle transpiration misc Transpiration cooling misc Varietal difference misc Plant culture |
topic_browse |
misc SB1-1110 misc High temperature-induced spikelet sterility misc Panicle transpiration misc Transpiration cooling misc Varietal difference misc Plant culture |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plant Production Science |
hierarchy_parent_id |
391333887 |
hierarchy_top_title |
Plant Production Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)391333887 (DE-600)2152184-0 |
title |
Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature |
ctrlnum |
(DE-627)DOAJ026921154 (DE-599)DOAJeddaedc10a204c0492fb724fec00dbae |
title_full |
Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature |
author_sort |
Minehiko Fukuoka |
journal |
Plant Production Science |
journalStr |
Plant Production Science |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
258 |
author_browse |
Minehiko Fukuoka Mayumi Yoshimoto Toshihiro Hasegawa |
container_volume |
15 |
class |
SB1-1110 |
format_se |
Elektronische Aufsätze |
author-letter |
Minehiko Fukuoka |
doi_str_mv |
10.1626/pps.15.258 |
author2-role |
verfasserin |
title_sort |
varietal range in transpiration conductance of flowering rice panicle and its impact on panicle temperature |
callnumber |
SB1-1110 |
title_auth |
Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature |
abstract |
Transpiration from rice (Oryza sativa L.) panicles can help lower the temperature of the panicle ( T p ), which is the susceptive organ for high temperature-induced spikelet sterility (HISS). By increasing the transpiration, the heat damage to the panicle predicted to occur due to global warming may be avoided. To examine the possibility of genetic improvement in transpiration conductance of intact rice panicles (gpI ), we measured gpI at the time of flowering in the open field in 21 rice varieties of widely different origins. We observed a difference in gpI among the varieties and three series of experiments, ranging from 0.15 to 0.67 cm s- 1 . We also estimated its impact on the difference between Tp and air temperature ( T a ) (Δtp, Tp - Ta) using a micrometeorology model, where T a was given as 28°C or 35°C. The varietal range in gpI was estimated to correspond to the range of 2.1°C in ΔTp under a humid atmospheric condition and the range of 3.5°C in Δ t p under a dry atmospheric condition. The estimated ΔTp ranges due to varieties may be useful for improving heat avoidance capacity under excessive heat at the critical stage. The sensitivity analysis of ΔTp to ranging gpI suggested that g pI higher than the highest gpI observed in this study may not be effective for additional cooling of T p . Thus, the target of improvement in gpI against HISS should be set at the level of the existing varieties with the highest gpI. |
abstractGer |
Transpiration from rice (Oryza sativa L.) panicles can help lower the temperature of the panicle ( T p ), which is the susceptive organ for high temperature-induced spikelet sterility (HISS). By increasing the transpiration, the heat damage to the panicle predicted to occur due to global warming may be avoided. To examine the possibility of genetic improvement in transpiration conductance of intact rice panicles (gpI ), we measured gpI at the time of flowering in the open field in 21 rice varieties of widely different origins. We observed a difference in gpI among the varieties and three series of experiments, ranging from 0.15 to 0.67 cm s- 1 . We also estimated its impact on the difference between Tp and air temperature ( T a ) (Δtp, Tp - Ta) using a micrometeorology model, where T a was given as 28°C or 35°C. The varietal range in gpI was estimated to correspond to the range of 2.1°C in ΔTp under a humid atmospheric condition and the range of 3.5°C in Δ t p under a dry atmospheric condition. The estimated ΔTp ranges due to varieties may be useful for improving heat avoidance capacity under excessive heat at the critical stage. The sensitivity analysis of ΔTp to ranging gpI suggested that g pI higher than the highest gpI observed in this study may not be effective for additional cooling of T p . Thus, the target of improvement in gpI against HISS should be set at the level of the existing varieties with the highest gpI. |
abstract_unstemmed |
Transpiration from rice (Oryza sativa L.) panicles can help lower the temperature of the panicle ( T p ), which is the susceptive organ for high temperature-induced spikelet sterility (HISS). By increasing the transpiration, the heat damage to the panicle predicted to occur due to global warming may be avoided. To examine the possibility of genetic improvement in transpiration conductance of intact rice panicles (gpI ), we measured gpI at the time of flowering in the open field in 21 rice varieties of widely different origins. We observed a difference in gpI among the varieties and three series of experiments, ranging from 0.15 to 0.67 cm s- 1 . We also estimated its impact on the difference between Tp and air temperature ( T a ) (Δtp, Tp - Ta) using a micrometeorology model, where T a was given as 28°C or 35°C. The varietal range in gpI was estimated to correspond to the range of 2.1°C in ΔTp under a humid atmospheric condition and the range of 3.5°C in Δ t p under a dry atmospheric condition. The estimated ΔTp ranges due to varieties may be useful for improving heat avoidance capacity under excessive heat at the critical stage. The sensitivity analysis of ΔTp to ranging gpI suggested that g pI higher than the highest gpI observed in this study may not be effective for additional cooling of T p . Thus, the target of improvement in gpI against HISS should be set at the level of the existing varieties with the highest gpI. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature |
url |
https://doi.org/10.1626/pps.15.258 https://doaj.org/article/eddaedc10a204c0492fb724fec00dbae http://dx.doi.org/10.1626/pps.15.258 https://doaj.org/toc/1343-943X https://doaj.org/toc/1349-1008 |
remote_bool |
true |
author2 |
Mayumi Yoshimoto Toshihiro Hasegawa |
author2Str |
Mayumi Yoshimoto Toshihiro Hasegawa |
ppnlink |
391333887 |
callnumber-subject |
SB - Plant Culture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1626/pps.15.258 |
callnumber-a |
SB1-1110 |
up_date |
2024-07-03T23:36:58.254Z |
_version_ |
1803602958227603456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ026921154</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307105552.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1626/pps.15.258</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ026921154</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJeddaedc10a204c0492fb724fec00dbae</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB1-1110</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Minehiko Fukuoka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Varietal Range in Transpiration Conductance of Flowering Rice Panicle and Its Impact on Panicle Temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Transpiration from rice (Oryza sativa L.) panicles can help lower the temperature of the panicle ( T p ), which is the susceptive organ for high temperature-induced spikelet sterility (HISS). By increasing the transpiration, the heat damage to the panicle predicted to occur due to global warming may be avoided. To examine the possibility of genetic improvement in transpiration conductance of intact rice panicles (gpI ), we measured gpI at the time of flowering in the open field in 21 rice varieties of widely different origins. We observed a difference in gpI among the varieties and three series of experiments, ranging from 0.15 to 0.67 cm s- 1 . We also estimated its impact on the difference between Tp and air temperature ( T a ) (Δtp, Tp - Ta) using a micrometeorology model, where T a was given as 28°C or 35°C. The varietal range in gpI was estimated to correspond to the range of 2.1°C in ΔTp under a humid atmospheric condition and the range of 3.5°C in Δ t p under a dry atmospheric condition. The estimated ΔTp ranges due to varieties may be useful for improving heat avoidance capacity under excessive heat at the critical stage. The sensitivity analysis of ΔTp to ranging gpI suggested that g pI higher than the highest gpI observed in this study may not be effective for additional cooling of T p . Thus, the target of improvement in gpI against HISS should be set at the level of the existing varieties with the highest gpI.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High temperature-induced spikelet sterility</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Panicle transpiration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transpiration cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Varietal difference</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mayumi Yoshimoto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshihiro Hasegawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plant Production Science</subfield><subfield code="d">Taylor & Francis Group, 2004</subfield><subfield code="g">15(2012), 4, Seite 258-264</subfield><subfield code="w">(DE-627)391333887</subfield><subfield code="w">(DE-600)2152184-0</subfield><subfield code="x">13491008</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:258-264</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1626/pps.15.258</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/eddaedc10a204c0492fb724fec00dbae</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1626/pps.15.258</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1343-943X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1349-1008</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="h">258-264</subfield></datafield></record></collection>
|
score |
7.4009056 |