Human motion component and envelope characterization via wireless wearable sensors
Abstract Background The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often...
Ausführliche Beschreibung
Autor*in: |
Kaitlyn R. Ammann [verfasserIn] Touhid Ahamed [verfasserIn] Alice L. Sweedo [verfasserIn] Roozbeh Ghaffari [verfasserIn] Yonatan E. Weiner [verfasserIn] Rebecca C. Slepian [verfasserIn] Hongki Jo [verfasserIn] Marvin J. Slepian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: BMC Biomedical Engineering - BMC, 2019, 2(2020), 1, Seite 15 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2020 ; number:1 ; pages:15 |
Links: |
---|
DOI / URN: |
10.1186/s42490-020-0038-4 |
---|
Katalog-ID: |
DOAJ027104230 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ027104230 | ||
003 | DE-627 | ||
005 | 20230307111252.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s42490-020-0038-4 |2 doi | |
035 | |a (DE-627)DOAJ027104230 | ||
035 | |a (DE-599)DOAJf34b591804de4c21aaeaffcb9eee02fe | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP248.13-248.65 | |
050 | 0 | |a R855-855.5 | |
100 | 0 | |a Kaitlyn R. Ammann |e verfasserin |4 aut | |
245 | 1 | 0 | |a Human motion component and envelope characterization via wireless wearable sensors |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal “pattern” of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm. Results Each of the three motion regimes studied had a distinct pattern – with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a “motion envelope,” defining and quantifying motion (range and shape – including the outer perimeter of the extreme of motion – i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer. Conclusions A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital “motion biomarkers” of health and disease. | ||
650 | 4 | |a Accelerometers | |
650 | 4 | |a Biomechanics | |
650 | 4 | |a Biometrics | |
650 | 4 | |a Biotechnology | |
650 | 4 | |a Biosensors | |
650 | 4 | |a Biomedical measurement | |
653 | 0 | |a Medical technology | |
700 | 0 | |a Touhid Ahamed |e verfasserin |4 aut | |
700 | 0 | |a Alice L. Sweedo |e verfasserin |4 aut | |
700 | 0 | |a Roozbeh Ghaffari |e verfasserin |4 aut | |
700 | 0 | |a Yonatan E. Weiner |e verfasserin |4 aut | |
700 | 0 | |a Rebecca C. Slepian |e verfasserin |4 aut | |
700 | 0 | |a Hongki Jo |e verfasserin |4 aut | |
700 | 0 | |a Marvin J. Slepian |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Biomedical Engineering |d BMC, 2019 |g 2(2020), 1, Seite 15 |w (DE-627)1048331083 |x 25244426 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2020 |g number:1 |g pages:15 |
856 | 4 | 0 | |u https://doi.org/10.1186/s42490-020-0038-4 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f34b591804de4c21aaeaffcb9eee02fe |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s42490-020-0038-4 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2524-4426 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2020 |e 1 |h 15 |
author_variant |
k r a kra t a ta a l s als r g rg y e w yew r c s rcs h j hj m j s mjs |
---|---|
matchkey_str |
article:25244426:2020----::uamtocmoetnevlpcaatrztovaie |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TP |
publishDate |
2020 |
allfields |
10.1186/s42490-020-0038-4 doi (DE-627)DOAJ027104230 (DE-599)DOAJf34b591804de4c21aaeaffcb9eee02fe DE-627 ger DE-627 rakwb eng TP248.13-248.65 R855-855.5 Kaitlyn R. Ammann verfasserin aut Human motion component and envelope characterization via wireless wearable sensors 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal “pattern” of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm. Results Each of the three motion regimes studied had a distinct pattern – with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a “motion envelope,” defining and quantifying motion (range and shape – including the outer perimeter of the extreme of motion – i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer. Conclusions A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital “motion biomarkers” of health and disease. Accelerometers Biomechanics Biometrics Biotechnology Biosensors Biomedical measurement Medical technology Touhid Ahamed verfasserin aut Alice L. Sweedo verfasserin aut Roozbeh Ghaffari verfasserin aut Yonatan E. Weiner verfasserin aut Rebecca C. Slepian verfasserin aut Hongki Jo verfasserin aut Marvin J. Slepian verfasserin aut In BMC Biomedical Engineering BMC, 2019 2(2020), 1, Seite 15 (DE-627)1048331083 25244426 nnns volume:2 year:2020 number:1 pages:15 https://doi.org/10.1186/s42490-020-0038-4 kostenfrei https://doaj.org/article/f34b591804de4c21aaeaffcb9eee02fe kostenfrei http://link.springer.com/article/10.1186/s42490-020-0038-4 kostenfrei https://doaj.org/toc/2524-4426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2020 1 15 |
spelling |
10.1186/s42490-020-0038-4 doi (DE-627)DOAJ027104230 (DE-599)DOAJf34b591804de4c21aaeaffcb9eee02fe DE-627 ger DE-627 rakwb eng TP248.13-248.65 R855-855.5 Kaitlyn R. Ammann verfasserin aut Human motion component and envelope characterization via wireless wearable sensors 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal “pattern” of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm. Results Each of the three motion regimes studied had a distinct pattern – with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a “motion envelope,” defining and quantifying motion (range and shape – including the outer perimeter of the extreme of motion – i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer. Conclusions A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital “motion biomarkers” of health and disease. Accelerometers Biomechanics Biometrics Biotechnology Biosensors Biomedical measurement Medical technology Touhid Ahamed verfasserin aut Alice L. Sweedo verfasserin aut Roozbeh Ghaffari verfasserin aut Yonatan E. Weiner verfasserin aut Rebecca C. Slepian verfasserin aut Hongki Jo verfasserin aut Marvin J. Slepian verfasserin aut In BMC Biomedical Engineering BMC, 2019 2(2020), 1, Seite 15 (DE-627)1048331083 25244426 nnns volume:2 year:2020 number:1 pages:15 https://doi.org/10.1186/s42490-020-0038-4 kostenfrei https://doaj.org/article/f34b591804de4c21aaeaffcb9eee02fe kostenfrei http://link.springer.com/article/10.1186/s42490-020-0038-4 kostenfrei https://doaj.org/toc/2524-4426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2020 1 15 |
allfields_unstemmed |
10.1186/s42490-020-0038-4 doi (DE-627)DOAJ027104230 (DE-599)DOAJf34b591804de4c21aaeaffcb9eee02fe DE-627 ger DE-627 rakwb eng TP248.13-248.65 R855-855.5 Kaitlyn R. Ammann verfasserin aut Human motion component and envelope characterization via wireless wearable sensors 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal “pattern” of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm. Results Each of the three motion regimes studied had a distinct pattern – with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a “motion envelope,” defining and quantifying motion (range and shape – including the outer perimeter of the extreme of motion – i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer. Conclusions A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital “motion biomarkers” of health and disease. Accelerometers Biomechanics Biometrics Biotechnology Biosensors Biomedical measurement Medical technology Touhid Ahamed verfasserin aut Alice L. Sweedo verfasserin aut Roozbeh Ghaffari verfasserin aut Yonatan E. Weiner verfasserin aut Rebecca C. Slepian verfasserin aut Hongki Jo verfasserin aut Marvin J. Slepian verfasserin aut In BMC Biomedical Engineering BMC, 2019 2(2020), 1, Seite 15 (DE-627)1048331083 25244426 nnns volume:2 year:2020 number:1 pages:15 https://doi.org/10.1186/s42490-020-0038-4 kostenfrei https://doaj.org/article/f34b591804de4c21aaeaffcb9eee02fe kostenfrei http://link.springer.com/article/10.1186/s42490-020-0038-4 kostenfrei https://doaj.org/toc/2524-4426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2020 1 15 |
allfieldsGer |
10.1186/s42490-020-0038-4 doi (DE-627)DOAJ027104230 (DE-599)DOAJf34b591804de4c21aaeaffcb9eee02fe DE-627 ger DE-627 rakwb eng TP248.13-248.65 R855-855.5 Kaitlyn R. Ammann verfasserin aut Human motion component and envelope characterization via wireless wearable sensors 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal “pattern” of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm. Results Each of the three motion regimes studied had a distinct pattern – with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a “motion envelope,” defining and quantifying motion (range and shape – including the outer perimeter of the extreme of motion – i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer. Conclusions A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital “motion biomarkers” of health and disease. Accelerometers Biomechanics Biometrics Biotechnology Biosensors Biomedical measurement Medical technology Touhid Ahamed verfasserin aut Alice L. Sweedo verfasserin aut Roozbeh Ghaffari verfasserin aut Yonatan E. Weiner verfasserin aut Rebecca C. Slepian verfasserin aut Hongki Jo verfasserin aut Marvin J. Slepian verfasserin aut In BMC Biomedical Engineering BMC, 2019 2(2020), 1, Seite 15 (DE-627)1048331083 25244426 nnns volume:2 year:2020 number:1 pages:15 https://doi.org/10.1186/s42490-020-0038-4 kostenfrei https://doaj.org/article/f34b591804de4c21aaeaffcb9eee02fe kostenfrei http://link.springer.com/article/10.1186/s42490-020-0038-4 kostenfrei https://doaj.org/toc/2524-4426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2020 1 15 |
allfieldsSound |
10.1186/s42490-020-0038-4 doi (DE-627)DOAJ027104230 (DE-599)DOAJf34b591804de4c21aaeaffcb9eee02fe DE-627 ger DE-627 rakwb eng TP248.13-248.65 R855-855.5 Kaitlyn R. Ammann verfasserin aut Human motion component and envelope characterization via wireless wearable sensors 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal “pattern” of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm. Results Each of the three motion regimes studied had a distinct pattern – with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a “motion envelope,” defining and quantifying motion (range and shape – including the outer perimeter of the extreme of motion – i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer. Conclusions A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital “motion biomarkers” of health and disease. Accelerometers Biomechanics Biometrics Biotechnology Biosensors Biomedical measurement Medical technology Touhid Ahamed verfasserin aut Alice L. Sweedo verfasserin aut Roozbeh Ghaffari verfasserin aut Yonatan E. Weiner verfasserin aut Rebecca C. Slepian verfasserin aut Hongki Jo verfasserin aut Marvin J. Slepian verfasserin aut In BMC Biomedical Engineering BMC, 2019 2(2020), 1, Seite 15 (DE-627)1048331083 25244426 nnns volume:2 year:2020 number:1 pages:15 https://doi.org/10.1186/s42490-020-0038-4 kostenfrei https://doaj.org/article/f34b591804de4c21aaeaffcb9eee02fe kostenfrei http://link.springer.com/article/10.1186/s42490-020-0038-4 kostenfrei https://doaj.org/toc/2524-4426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2020 1 15 |
language |
English |
source |
In BMC Biomedical Engineering 2(2020), 1, Seite 15 volume:2 year:2020 number:1 pages:15 |
sourceStr |
In BMC Biomedical Engineering 2(2020), 1, Seite 15 volume:2 year:2020 number:1 pages:15 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Accelerometers Biomechanics Biometrics Biotechnology Biosensors Biomedical measurement Medical technology |
isfreeaccess_bool |
true |
container_title |
BMC Biomedical Engineering |
authorswithroles_txt_mv |
Kaitlyn R. Ammann @@aut@@ Touhid Ahamed @@aut@@ Alice L. Sweedo @@aut@@ Roozbeh Ghaffari @@aut@@ Yonatan E. Weiner @@aut@@ Rebecca C. Slepian @@aut@@ Hongki Jo @@aut@@ Marvin J. Slepian @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
1048331083 |
id |
DOAJ027104230 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027104230</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307111252.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s42490-020-0038-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027104230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf34b591804de4c21aaeaffcb9eee02fe</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R855-855.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kaitlyn R. Ammann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Human motion component and envelope characterization via wireless wearable sensors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal “pattern” of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm. Results Each of the three motion regimes studied had a distinct pattern – with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a “motion envelope,” defining and quantifying motion (range and shape – including the outer perimeter of the extreme of motion – i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer. Conclusions A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital “motion biomarkers” of health and disease.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerometers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biometrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical measurement</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Touhid Ahamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alice L. Sweedo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roozbeh Ghaffari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yonatan E. Weiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rebecca C. Slepian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongki Jo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marvin J. Slepian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Biomedical Engineering</subfield><subfield code="d">BMC, 2019</subfield><subfield code="g">2(2020), 1, Seite 15</subfield><subfield code="w">(DE-627)1048331083</subfield><subfield code="x">25244426</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s42490-020-0038-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f34b591804de4c21aaeaffcb9eee02fe</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s42490-020-0038-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2524-4426</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">15</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Kaitlyn R. Ammann |
spellingShingle |
Kaitlyn R. Ammann misc TP248.13-248.65 misc R855-855.5 misc Accelerometers misc Biomechanics misc Biometrics misc Biotechnology misc Biosensors misc Biomedical measurement misc Medical technology Human motion component and envelope characterization via wireless wearable sensors |
authorStr |
Kaitlyn R. Ammann |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1048331083 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP248 |
illustrated |
Not Illustrated |
issn |
25244426 |
topic_title |
TP248.13-248.65 R855-855.5 Human motion component and envelope characterization via wireless wearable sensors Accelerometers Biomechanics Biometrics Biotechnology Biosensors Biomedical measurement |
topic |
misc TP248.13-248.65 misc R855-855.5 misc Accelerometers misc Biomechanics misc Biometrics misc Biotechnology misc Biosensors misc Biomedical measurement misc Medical technology |
topic_unstemmed |
misc TP248.13-248.65 misc R855-855.5 misc Accelerometers misc Biomechanics misc Biometrics misc Biotechnology misc Biosensors misc Biomedical measurement misc Medical technology |
topic_browse |
misc TP248.13-248.65 misc R855-855.5 misc Accelerometers misc Biomechanics misc Biometrics misc Biotechnology misc Biosensors misc Biomedical measurement misc Medical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Biomedical Engineering |
hierarchy_parent_id |
1048331083 |
hierarchy_top_title |
BMC Biomedical Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1048331083 |
title |
Human motion component and envelope characterization via wireless wearable sensors |
ctrlnum |
(DE-627)DOAJ027104230 (DE-599)DOAJf34b591804de4c21aaeaffcb9eee02fe |
title_full |
Human motion component and envelope characterization via wireless wearable sensors |
author_sort |
Kaitlyn R. Ammann |
journal |
BMC Biomedical Engineering |
journalStr |
BMC Biomedical Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
15 |
author_browse |
Kaitlyn R. Ammann Touhid Ahamed Alice L. Sweedo Roozbeh Ghaffari Yonatan E. Weiner Rebecca C. Slepian Hongki Jo Marvin J. Slepian |
container_volume |
2 |
class |
TP248.13-248.65 R855-855.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Kaitlyn R. Ammann |
doi_str_mv |
10.1186/s42490-020-0038-4 |
author2-role |
verfasserin |
title_sort |
human motion component and envelope characterization via wireless wearable sensors |
callnumber |
TP248.13-248.65 |
title_auth |
Human motion component and envelope characterization via wireless wearable sensors |
abstract |
Abstract Background The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal “pattern” of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm. Results Each of the three motion regimes studied had a distinct pattern – with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a “motion envelope,” defining and quantifying motion (range and shape – including the outer perimeter of the extreme of motion – i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer. Conclusions A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital “motion biomarkers” of health and disease. |
abstractGer |
Abstract Background The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal “pattern” of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm. Results Each of the three motion regimes studied had a distinct pattern – with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a “motion envelope,” defining and quantifying motion (range and shape – including the outer perimeter of the extreme of motion – i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer. Conclusions A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital “motion biomarkers” of health and disease. |
abstract_unstemmed |
Abstract Background The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal “pattern” of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm. Results Each of the three motion regimes studied had a distinct pattern – with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a “motion envelope,” defining and quantifying motion (range and shape – including the outer perimeter of the extreme of motion – i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer. Conclusions A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital “motion biomarkers” of health and disease. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Human motion component and envelope characterization via wireless wearable sensors |
url |
https://doi.org/10.1186/s42490-020-0038-4 https://doaj.org/article/f34b591804de4c21aaeaffcb9eee02fe http://link.springer.com/article/10.1186/s42490-020-0038-4 https://doaj.org/toc/2524-4426 |
remote_bool |
true |
author2 |
Touhid Ahamed Alice L. Sweedo Roozbeh Ghaffari Yonatan E. Weiner Rebecca C. Slepian Hongki Jo Marvin J. Slepian |
author2Str |
Touhid Ahamed Alice L. Sweedo Roozbeh Ghaffari Yonatan E. Weiner Rebecca C. Slepian Hongki Jo Marvin J. Slepian |
ppnlink |
1048331083 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s42490-020-0038-4 |
callnumber-a |
TP248.13-248.65 |
up_date |
2024-07-04T00:23:27.867Z |
_version_ |
1803605883349893121 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027104230</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307111252.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s42490-020-0038-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027104230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf34b591804de4c21aaeaffcb9eee02fe</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R855-855.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kaitlyn R. Ammann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Human motion component and envelope characterization via wireless wearable sensors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background The characterization of limb biomechanics has broad implications for analyzing and managing motion in aging, sports, and disease. Motion capture videography and on-body wearable sensors are powerful tools for characterizing linear and angular motions of the body, though are often cumbersome, limited in detection, and largely non-portable. Here we examine the feasibility of utilizing an advanced wearable sensor, fabricated with stretchable electronics, to characterize linear and angular movements of the human arm for clinical feedback. A wearable skin-adhesive patch with embedded accelerometer and gyroscope (BioStampRC, MC10 Inc.) was applied to the volar surface of the forearm of healthy volunteers. Arms were extended/flexed for the range of motion of three different regimes: 1) horizontal adduction/abduction 2) flexion/extension 3) vertical abduction. Data were streamed and recorded revealing the signal “pattern” of movement in three separate axes. Additional signal processing and filtering afforded the ability to visualize these motions in each plane of the body; and the 3-dimensional motion envelope of the arm. Results Each of the three motion regimes studied had a distinct pattern – with identifiable qualitative and quantitative differences. Integration of all three movement regimes allowed construction of a “motion envelope,” defining and quantifying motion (range and shape – including the outer perimeter of the extreme of motion – i.e. the envelope) of the upper extremity. The linear and rotational motion results from multiple arm motions match measurements taken with videography and benchtop goniometer. Conclusions A conformal, stretchable electronic motion sensor effectively captures limb motion in multiple degrees of freedom, allowing generation of characteristic signatures which may be readily recorded, stored, and analyzed. Wearable conformal skin adherent sensor patchs allow on-body, mobile, personalized determination of motion and flexibility parameters. These sensors allow motion assessment while mobile, free of a fixed laboratory environment, with utility in the field, home, or hospital. These sensors and mode of analysis hold promise for providing digital “motion biomarkers” of health and disease.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerometers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biometrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical measurement</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Touhid Ahamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alice L. Sweedo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roozbeh Ghaffari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yonatan E. Weiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rebecca C. Slepian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongki Jo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marvin J. Slepian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Biomedical Engineering</subfield><subfield code="d">BMC, 2019</subfield><subfield code="g">2(2020), 1, Seite 15</subfield><subfield code="w">(DE-627)1048331083</subfield><subfield code="x">25244426</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s42490-020-0038-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f34b591804de4c21aaeaffcb9eee02fe</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s42490-020-0038-4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2524-4426</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">15</subfield></datafield></record></collection>
|
score |
7.40086 |