Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea
We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observ...
Ausführliche Beschreibung
Autor*in: |
Yujin J. Oak [verfasserIn] Rokjin J. Park [verfasserIn] Jason R. Schroeder [verfasserIn] James H. Crawford [verfasserIn] Donald R. Blake [verfasserIn] Andrew J. Weinheimer [verfasserIn] Jung-Hun Woo [verfasserIn] Sang-Woo Kim [verfasserIn] Huidong Yeo [verfasserIn] Alan Fried [verfasserIn] Armin Wisthaler [verfasserIn] William H. Brune [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Elementa: Science of the Anthropocene - BioOne, 2014, 7(2019), 1 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; number:1 |
Links: |
---|
DOI / URN: |
10.1525/elementa.394 |
---|
Katalog-ID: |
DOAJ027523829 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ027523829 | ||
003 | DE-627 | ||
005 | 20230307114648.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1525/elementa.394 |2 doi | |
035 | |a (DE-627)DOAJ027523829 | ||
035 | |a (DE-599)DOAJ445e451aa8944750b098f99e1a668a52 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a GE1-350 | |
100 | 0 | |a Yujin J. Oak |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea. | ||
650 | 4 | |a ozone | |
650 | 4 | |a ozone production efficiency (ope) | |
650 | 4 | |a korus-aq | |
650 | 4 | |a chemical transport model | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Rokjin J. Park |e verfasserin |4 aut | |
700 | 0 | |a Jason R. Schroeder |e verfasserin |4 aut | |
700 | 0 | |a James H. Crawford |e verfasserin |4 aut | |
700 | 0 | |a Donald R. Blake |e verfasserin |4 aut | |
700 | 0 | |a Andrew J. Weinheimer |e verfasserin |4 aut | |
700 | 0 | |a Jung-Hun Woo |e verfasserin |4 aut | |
700 | 0 | |a Sang-Woo Kim |e verfasserin |4 aut | |
700 | 0 | |a Huidong Yeo |e verfasserin |4 aut | |
700 | 0 | |a Alan Fried |e verfasserin |4 aut | |
700 | 0 | |a Armin Wisthaler |e verfasserin |4 aut | |
700 | 0 | |a William H. Brune |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Elementa: Science of the Anthropocene |d BioOne, 2014 |g 7(2019), 1 |w (DE-627)774106972 |w (DE-600)2745461-7 |x 23251026 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.1525/elementa.394 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/445e451aa8944750b098f99e1a668a52 |z kostenfrei |
856 | 4 | 0 | |u https://www.elementascience.org/articles/394 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2325-1026 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |e 1 |
author_variant |
y j o yjo r j p rjp j r s jrs j h c jhc d r b drb a j w ajw j h w jhw s w k swk h y hy a f af a w aw w h b whb |
---|---|
matchkey_str |
article:23251026:2019----::vlainfiuaeopoutoefcecdrnteouacmagipiainfrn |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
GE |
publishDate |
2019 |
allfields |
10.1525/elementa.394 doi (DE-627)DOAJ027523829 (DE-599)DOAJ445e451aa8944750b098f99e1a668a52 DE-627 ger DE-627 rakwb eng GE1-350 Yujin J. Oak verfasserin aut Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea. ozone ozone production efficiency (ope) korus-aq chemical transport model Environmental sciences Rokjin J. Park verfasserin aut Jason R. Schroeder verfasserin aut James H. Crawford verfasserin aut Donald R. Blake verfasserin aut Andrew J. Weinheimer verfasserin aut Jung-Hun Woo verfasserin aut Sang-Woo Kim verfasserin aut Huidong Yeo verfasserin aut Alan Fried verfasserin aut Armin Wisthaler verfasserin aut William H. Brune verfasserin aut In Elementa: Science of the Anthropocene BioOne, 2014 7(2019), 1 (DE-627)774106972 (DE-600)2745461-7 23251026 nnns volume:7 year:2019 number:1 https://doi.org/10.1525/elementa.394 kostenfrei https://doaj.org/article/445e451aa8944750b098f99e1a668a52 kostenfrei https://www.elementascience.org/articles/394 kostenfrei https://doaj.org/toc/2325-1026 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 1 |
spelling |
10.1525/elementa.394 doi (DE-627)DOAJ027523829 (DE-599)DOAJ445e451aa8944750b098f99e1a668a52 DE-627 ger DE-627 rakwb eng GE1-350 Yujin J. Oak verfasserin aut Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea. ozone ozone production efficiency (ope) korus-aq chemical transport model Environmental sciences Rokjin J. Park verfasserin aut Jason R. Schroeder verfasserin aut James H. Crawford verfasserin aut Donald R. Blake verfasserin aut Andrew J. Weinheimer verfasserin aut Jung-Hun Woo verfasserin aut Sang-Woo Kim verfasserin aut Huidong Yeo verfasserin aut Alan Fried verfasserin aut Armin Wisthaler verfasserin aut William H. Brune verfasserin aut In Elementa: Science of the Anthropocene BioOne, 2014 7(2019), 1 (DE-627)774106972 (DE-600)2745461-7 23251026 nnns volume:7 year:2019 number:1 https://doi.org/10.1525/elementa.394 kostenfrei https://doaj.org/article/445e451aa8944750b098f99e1a668a52 kostenfrei https://www.elementascience.org/articles/394 kostenfrei https://doaj.org/toc/2325-1026 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 1 |
allfields_unstemmed |
10.1525/elementa.394 doi (DE-627)DOAJ027523829 (DE-599)DOAJ445e451aa8944750b098f99e1a668a52 DE-627 ger DE-627 rakwb eng GE1-350 Yujin J. Oak verfasserin aut Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea. ozone ozone production efficiency (ope) korus-aq chemical transport model Environmental sciences Rokjin J. Park verfasserin aut Jason R. Schroeder verfasserin aut James H. Crawford verfasserin aut Donald R. Blake verfasserin aut Andrew J. Weinheimer verfasserin aut Jung-Hun Woo verfasserin aut Sang-Woo Kim verfasserin aut Huidong Yeo verfasserin aut Alan Fried verfasserin aut Armin Wisthaler verfasserin aut William H. Brune verfasserin aut In Elementa: Science of the Anthropocene BioOne, 2014 7(2019), 1 (DE-627)774106972 (DE-600)2745461-7 23251026 nnns volume:7 year:2019 number:1 https://doi.org/10.1525/elementa.394 kostenfrei https://doaj.org/article/445e451aa8944750b098f99e1a668a52 kostenfrei https://www.elementascience.org/articles/394 kostenfrei https://doaj.org/toc/2325-1026 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 1 |
allfieldsGer |
10.1525/elementa.394 doi (DE-627)DOAJ027523829 (DE-599)DOAJ445e451aa8944750b098f99e1a668a52 DE-627 ger DE-627 rakwb eng GE1-350 Yujin J. Oak verfasserin aut Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea. ozone ozone production efficiency (ope) korus-aq chemical transport model Environmental sciences Rokjin J. Park verfasserin aut Jason R. Schroeder verfasserin aut James H. Crawford verfasserin aut Donald R. Blake verfasserin aut Andrew J. Weinheimer verfasserin aut Jung-Hun Woo verfasserin aut Sang-Woo Kim verfasserin aut Huidong Yeo verfasserin aut Alan Fried verfasserin aut Armin Wisthaler verfasserin aut William H. Brune verfasserin aut In Elementa: Science of the Anthropocene BioOne, 2014 7(2019), 1 (DE-627)774106972 (DE-600)2745461-7 23251026 nnns volume:7 year:2019 number:1 https://doi.org/10.1525/elementa.394 kostenfrei https://doaj.org/article/445e451aa8944750b098f99e1a668a52 kostenfrei https://www.elementascience.org/articles/394 kostenfrei https://doaj.org/toc/2325-1026 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 1 |
allfieldsSound |
10.1525/elementa.394 doi (DE-627)DOAJ027523829 (DE-599)DOAJ445e451aa8944750b098f99e1a668a52 DE-627 ger DE-627 rakwb eng GE1-350 Yujin J. Oak verfasserin aut Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea. ozone ozone production efficiency (ope) korus-aq chemical transport model Environmental sciences Rokjin J. Park verfasserin aut Jason R. Schroeder verfasserin aut James H. Crawford verfasserin aut Donald R. Blake verfasserin aut Andrew J. Weinheimer verfasserin aut Jung-Hun Woo verfasserin aut Sang-Woo Kim verfasserin aut Huidong Yeo verfasserin aut Alan Fried verfasserin aut Armin Wisthaler verfasserin aut William H. Brune verfasserin aut In Elementa: Science of the Anthropocene BioOne, 2014 7(2019), 1 (DE-627)774106972 (DE-600)2745461-7 23251026 nnns volume:7 year:2019 number:1 https://doi.org/10.1525/elementa.394 kostenfrei https://doaj.org/article/445e451aa8944750b098f99e1a668a52 kostenfrei https://www.elementascience.org/articles/394 kostenfrei https://doaj.org/toc/2325-1026 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 1 |
language |
English |
source |
In Elementa: Science of the Anthropocene 7(2019), 1 volume:7 year:2019 number:1 |
sourceStr |
In Elementa: Science of the Anthropocene 7(2019), 1 volume:7 year:2019 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ozone ozone production efficiency (ope) korus-aq chemical transport model Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Elementa: Science of the Anthropocene |
authorswithroles_txt_mv |
Yujin J. Oak @@aut@@ Rokjin J. Park @@aut@@ Jason R. Schroeder @@aut@@ James H. Crawford @@aut@@ Donald R. Blake @@aut@@ Andrew J. Weinheimer @@aut@@ Jung-Hun Woo @@aut@@ Sang-Woo Kim @@aut@@ Huidong Yeo @@aut@@ Alan Fried @@aut@@ Armin Wisthaler @@aut@@ William H. Brune @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
774106972 |
id |
DOAJ027523829 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027523829</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307114648.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1525/elementa.394</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027523829</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ445e451aa8944750b098f99e1a668a52</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yujin J. Oak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ozone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ozone production efficiency (ope)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">korus-aq</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical transport model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rokjin J. Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jason R. Schroeder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">James H. Crawford</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Donald R. Blake</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrew J. Weinheimer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jung-Hun Woo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sang-Woo Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huidong Yeo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alan Fried</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Armin Wisthaler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">William H. Brune</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Elementa: Science of the Anthropocene</subfield><subfield code="d">BioOne, 2014</subfield><subfield code="g">7(2019), 1</subfield><subfield code="w">(DE-627)774106972</subfield><subfield code="w">(DE-600)2745461-7</subfield><subfield code="x">23251026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1525/elementa.394</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/445e451aa8944750b098f99e1a668a52</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.elementascience.org/articles/394</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2325-1026</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Yujin J. Oak |
spellingShingle |
Yujin J. Oak misc GE1-350 misc ozone misc ozone production efficiency (ope) misc korus-aq misc chemical transport model misc Environmental sciences Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea |
authorStr |
Yujin J. Oak |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)774106972 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GE1-350 |
illustrated |
Not Illustrated |
issn |
23251026 |
topic_title |
GE1-350 Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea ozone ozone production efficiency (ope) korus-aq chemical transport model |
topic |
misc GE1-350 misc ozone misc ozone production efficiency (ope) misc korus-aq misc chemical transport model misc Environmental sciences |
topic_unstemmed |
misc GE1-350 misc ozone misc ozone production efficiency (ope) misc korus-aq misc chemical transport model misc Environmental sciences |
topic_browse |
misc GE1-350 misc ozone misc ozone production efficiency (ope) misc korus-aq misc chemical transport model misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Elementa: Science of the Anthropocene |
hierarchy_parent_id |
774106972 |
hierarchy_top_title |
Elementa: Science of the Anthropocene |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)774106972 (DE-600)2745461-7 |
title |
Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea |
ctrlnum |
(DE-627)DOAJ027523829 (DE-599)DOAJ445e451aa8944750b098f99e1a668a52 |
title_full |
Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea |
author_sort |
Yujin J. Oak |
journal |
Elementa: Science of the Anthropocene |
journalStr |
Elementa: Science of the Anthropocene |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Yujin J. Oak Rokjin J. Park Jason R. Schroeder James H. Crawford Donald R. Blake Andrew J. Weinheimer Jung-Hun Woo Sang-Woo Kim Huidong Yeo Alan Fried Armin Wisthaler William H. Brune |
container_volume |
7 |
class |
GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Yujin J. Oak |
doi_str_mv |
10.1525/elementa.394 |
author2-role |
verfasserin |
title_sort |
evaluation of simulated o3 production efficiency during the korus-aq campaign: implications for anthropogenic nox emissions in korea |
callnumber |
GE1-350 |
title_auth |
Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea |
abstract |
We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea. |
abstractGer |
We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea. |
abstract_unstemmed |
We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea |
url |
https://doi.org/10.1525/elementa.394 https://doaj.org/article/445e451aa8944750b098f99e1a668a52 https://www.elementascience.org/articles/394 https://doaj.org/toc/2325-1026 |
remote_bool |
true |
author2 |
Rokjin J. Park Jason R. Schroeder James H. Crawford Donald R. Blake Andrew J. Weinheimer Jung-Hun Woo Sang-Woo Kim Huidong Yeo Alan Fried Armin Wisthaler William H. Brune |
author2Str |
Rokjin J. Park Jason R. Schroeder James H. Crawford Donald R. Blake Andrew J. Weinheimer Jung-Hun Woo Sang-Woo Kim Huidong Yeo Alan Fried Armin Wisthaler William H. Brune |
ppnlink |
774106972 |
callnumber-subject |
GE - Environmental Sciences |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1525/elementa.394 |
callnumber-a |
GE1-350 |
up_date |
2024-07-04T02:01:23.472Z |
_version_ |
1803612044367233024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027523829</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307114648.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1525/elementa.394</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027523829</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ445e451aa8944750b098f99e1a668a52</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yujin J. Oak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We examine O3 production and its sensitivity to precursor gases and boundary layer mixing in Korea by using a 3-D global chemistry transport model and extensive observations during the KORea-US cooperative Air Quality field study in Korea, which occurred in May–June 2016. During the campaign, observed aromatic species onboard the NASA DC-8 aircraft, especially toluene, showed high mixing ratios of up to 10 ppbv, emphasizing the importance of aromatic chemistry in O3 production. To examine the role of VOCs and NOx in O3 chemistry, we first implement a detailed aromatic chemistry scheme in the model, which reduces the normalized mean bias of simulated O3 mixing ratios from –26% to –13%. Aromatic chemistry also increases the average net O3 production in Korea by 37%. Corrections of daytime PBL heights, which are overestimated in the model compared to lidar observations, increase the net O3 production rate by ~10%. In addition, increasing NOx emissions by 50% in the model shows best performance in reproducing O3 production characteristics, which implies that NOx emissions are underestimated in the current emissions inventory. Sensitivity tests show that a 30% decrease in anthropogenic NOx emissions in Korea increases the O3 production efficiency throughout the country, making rural regions ~2 times more efficient in producing O3 per NOx consumed. Simulated O3 levels overall decrease in the peninsula except for urban and other industrial areas, with the largest increase (~6 ppbv) in the Seoul Metropolitan Area (SMA). However, with simultaneous reductions in both NOx and VOCs emissions by 30%, O3 decreases in most of the country, including the SMA. This implies the importance of concurrent emission reductions for both NOx and VOCs in order to effectively reduce O3 levels in Korea.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ozone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ozone production efficiency (ope)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">korus-aq</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical transport model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rokjin J. Park</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jason R. Schroeder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">James H. Crawford</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Donald R. Blake</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrew J. Weinheimer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jung-Hun Woo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sang-Woo Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huidong Yeo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alan Fried</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Armin Wisthaler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">William H. Brune</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Elementa: Science of the Anthropocene</subfield><subfield code="d">BioOne, 2014</subfield><subfield code="g">7(2019), 1</subfield><subfield code="w">(DE-627)774106972</subfield><subfield code="w">(DE-600)2745461-7</subfield><subfield code="x">23251026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1525/elementa.394</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/445e451aa8944750b098f99e1a668a52</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.elementascience.org/articles/394</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2325-1026</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.399617 |