Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains
Phospholipid (PL) membranes are ubiquitous in nature and their phase behavior has been extensively studied. Lipids assemble in a variety of structures and external stimuli can activate a quick switch between them. Amphiphilic block copolymers (BCPs) can self-organize in analogous structures but are...
Ausführliche Beschreibung
Autor*in: |
Yoo Kyung Go [verfasserIn] Nurila Kambar [verfasserIn] Cecilia Leal [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Polymers - MDPI AG, 2011, 12(2020), 6, p 1232 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2020 ; number:6, p 1232 |
Links: |
---|
DOI / URN: |
10.3390/polym12061232 |
---|
Katalog-ID: |
DOAJ027573818 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ027573818 | ||
003 | DE-627 | ||
005 | 20240412232830.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/polym12061232 |2 doi | |
035 | |a (DE-627)DOAJ027573818 | ||
035 | |a (DE-599)DOAJ3529ab3bb0284f3990fd700cb386be89 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD241-441 | |
100 | 0 | |a Yoo Kyung Go |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Phospholipid (PL) membranes are ubiquitous in nature and their phase behavior has been extensively studied. Lipids assemble in a variety of structures and external stimuli can activate a quick switch between them. Amphiphilic block copolymers (BCPs) can self-organize in analogous structures but are mechanically more robust and transformations are considerably slower. The combination of PL dynamical behavior with BCP chemical richness could lead to new materials for applications in bioinspired separation membranes and drug delivery. It is timely to underpin the phase behavior of these hybrid systems and a few recent studies have revealed that PL–BCP membranes display synergistic structural, phase-separation, and dynamical properties not seen in pure components. One example is phase-separation in the membrane plane, which seems to be strongly affected by the ability of the PL to form lamellar phases with ordered alkyl chains. In this paper we focus on a rather less explored design handle which is the crystalline properties of the BCP component. Using a combination of confocal laser scanning microscopy and X-ray scattering we show that hybrid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and methoxy-poly(ethylene glycol)-<i<b</i<-poly(ε-caprolactone) (mPEG-<i<b</i<-PCL) display BCP-rich and PL-rich domains when the BCP comprises crystalline moieties. The packing of the hydrophilic part of the BCP (PEG) favors mixing of DPPC at the molecular level or into nanoscale domains while semi-crystalline and hydrophobic PCL moieties bolster microscopic domain formation in the hybrid membrane plane. | ||
650 | 4 | |a giant hybrid vesicles | |
650 | 4 | |a phospholipids | |
650 | 4 | |a diblock copolymer | |
650 | 4 | |a semi-crystalline polymer | |
650 | 4 | |a phase-separation | |
653 | 0 | |a Organic chemistry | |
700 | 0 | |a Nurila Kambar |e verfasserin |4 aut | |
700 | 0 | |a Cecilia Leal |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Polymers |d MDPI AG, 2011 |g 12(2020), 6, p 1232 |w (DE-627)61409612X |w (DE-600)2527146-5 |x 20734360 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2020 |g number:6, p 1232 |
856 | 4 | 0 | |u https://doi.org/10.3390/polym12061232 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3529ab3bb0284f3990fd700cb386be89 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4360/12/6/1232 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4360 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2020 |e 6, p 1232 |
author_variant |
y k g ykg n k nk c l cl |
---|---|
matchkey_str |
article:20734360:2020----::yrdnlmlavsceopopoiisnbokooyesi |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QD |
publishDate |
2020 |
allfields |
10.3390/polym12061232 doi (DE-627)DOAJ027573818 (DE-599)DOAJ3529ab3bb0284f3990fd700cb386be89 DE-627 ger DE-627 rakwb eng QD241-441 Yoo Kyung Go verfasserin aut Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phospholipid (PL) membranes are ubiquitous in nature and their phase behavior has been extensively studied. Lipids assemble in a variety of structures and external stimuli can activate a quick switch between them. Amphiphilic block copolymers (BCPs) can self-organize in analogous structures but are mechanically more robust and transformations are considerably slower. The combination of PL dynamical behavior with BCP chemical richness could lead to new materials for applications in bioinspired separation membranes and drug delivery. It is timely to underpin the phase behavior of these hybrid systems and a few recent studies have revealed that PL–BCP membranes display synergistic structural, phase-separation, and dynamical properties not seen in pure components. One example is phase-separation in the membrane plane, which seems to be strongly affected by the ability of the PL to form lamellar phases with ordered alkyl chains. In this paper we focus on a rather less explored design handle which is the crystalline properties of the BCP component. Using a combination of confocal laser scanning microscopy and X-ray scattering we show that hybrid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and methoxy-poly(ethylene glycol)-<i<b</i<-poly(ε-caprolactone) (mPEG-<i<b</i<-PCL) display BCP-rich and PL-rich domains when the BCP comprises crystalline moieties. The packing of the hydrophilic part of the BCP (PEG) favors mixing of DPPC at the molecular level or into nanoscale domains while semi-crystalline and hydrophobic PCL moieties bolster microscopic domain formation in the hybrid membrane plane. giant hybrid vesicles phospholipids diblock copolymer semi-crystalline polymer phase-separation Organic chemistry Nurila Kambar verfasserin aut Cecilia Leal verfasserin aut In Polymers MDPI AG, 2011 12(2020), 6, p 1232 (DE-627)61409612X (DE-600)2527146-5 20734360 nnns volume:12 year:2020 number:6, p 1232 https://doi.org/10.3390/polym12061232 kostenfrei https://doaj.org/article/3529ab3bb0284f3990fd700cb386be89 kostenfrei https://www.mdpi.com/2073-4360/12/6/1232 kostenfrei https://doaj.org/toc/2073-4360 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 6, p 1232 |
spelling |
10.3390/polym12061232 doi (DE-627)DOAJ027573818 (DE-599)DOAJ3529ab3bb0284f3990fd700cb386be89 DE-627 ger DE-627 rakwb eng QD241-441 Yoo Kyung Go verfasserin aut Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phospholipid (PL) membranes are ubiquitous in nature and their phase behavior has been extensively studied. Lipids assemble in a variety of structures and external stimuli can activate a quick switch between them. Amphiphilic block copolymers (BCPs) can self-organize in analogous structures but are mechanically more robust and transformations are considerably slower. The combination of PL dynamical behavior with BCP chemical richness could lead to new materials for applications in bioinspired separation membranes and drug delivery. It is timely to underpin the phase behavior of these hybrid systems and a few recent studies have revealed that PL–BCP membranes display synergistic structural, phase-separation, and dynamical properties not seen in pure components. One example is phase-separation in the membrane plane, which seems to be strongly affected by the ability of the PL to form lamellar phases with ordered alkyl chains. In this paper we focus on a rather less explored design handle which is the crystalline properties of the BCP component. Using a combination of confocal laser scanning microscopy and X-ray scattering we show that hybrid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and methoxy-poly(ethylene glycol)-<i<b</i<-poly(ε-caprolactone) (mPEG-<i<b</i<-PCL) display BCP-rich and PL-rich domains when the BCP comprises crystalline moieties. The packing of the hydrophilic part of the BCP (PEG) favors mixing of DPPC at the molecular level or into nanoscale domains while semi-crystalline and hydrophobic PCL moieties bolster microscopic domain formation in the hybrid membrane plane. giant hybrid vesicles phospholipids diblock copolymer semi-crystalline polymer phase-separation Organic chemistry Nurila Kambar verfasserin aut Cecilia Leal verfasserin aut In Polymers MDPI AG, 2011 12(2020), 6, p 1232 (DE-627)61409612X (DE-600)2527146-5 20734360 nnns volume:12 year:2020 number:6, p 1232 https://doi.org/10.3390/polym12061232 kostenfrei https://doaj.org/article/3529ab3bb0284f3990fd700cb386be89 kostenfrei https://www.mdpi.com/2073-4360/12/6/1232 kostenfrei https://doaj.org/toc/2073-4360 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 6, p 1232 |
allfields_unstemmed |
10.3390/polym12061232 doi (DE-627)DOAJ027573818 (DE-599)DOAJ3529ab3bb0284f3990fd700cb386be89 DE-627 ger DE-627 rakwb eng QD241-441 Yoo Kyung Go verfasserin aut Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phospholipid (PL) membranes are ubiquitous in nature and their phase behavior has been extensively studied. Lipids assemble in a variety of structures and external stimuli can activate a quick switch between them. Amphiphilic block copolymers (BCPs) can self-organize in analogous structures but are mechanically more robust and transformations are considerably slower. The combination of PL dynamical behavior with BCP chemical richness could lead to new materials for applications in bioinspired separation membranes and drug delivery. It is timely to underpin the phase behavior of these hybrid systems and a few recent studies have revealed that PL–BCP membranes display synergistic structural, phase-separation, and dynamical properties not seen in pure components. One example is phase-separation in the membrane plane, which seems to be strongly affected by the ability of the PL to form lamellar phases with ordered alkyl chains. In this paper we focus on a rather less explored design handle which is the crystalline properties of the BCP component. Using a combination of confocal laser scanning microscopy and X-ray scattering we show that hybrid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and methoxy-poly(ethylene glycol)-<i<b</i<-poly(ε-caprolactone) (mPEG-<i<b</i<-PCL) display BCP-rich and PL-rich domains when the BCP comprises crystalline moieties. The packing of the hydrophilic part of the BCP (PEG) favors mixing of DPPC at the molecular level or into nanoscale domains while semi-crystalline and hydrophobic PCL moieties bolster microscopic domain formation in the hybrid membrane plane. giant hybrid vesicles phospholipids diblock copolymer semi-crystalline polymer phase-separation Organic chemistry Nurila Kambar verfasserin aut Cecilia Leal verfasserin aut In Polymers MDPI AG, 2011 12(2020), 6, p 1232 (DE-627)61409612X (DE-600)2527146-5 20734360 nnns volume:12 year:2020 number:6, p 1232 https://doi.org/10.3390/polym12061232 kostenfrei https://doaj.org/article/3529ab3bb0284f3990fd700cb386be89 kostenfrei https://www.mdpi.com/2073-4360/12/6/1232 kostenfrei https://doaj.org/toc/2073-4360 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 6, p 1232 |
allfieldsGer |
10.3390/polym12061232 doi (DE-627)DOAJ027573818 (DE-599)DOAJ3529ab3bb0284f3990fd700cb386be89 DE-627 ger DE-627 rakwb eng QD241-441 Yoo Kyung Go verfasserin aut Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phospholipid (PL) membranes are ubiquitous in nature and their phase behavior has been extensively studied. Lipids assemble in a variety of structures and external stimuli can activate a quick switch between them. Amphiphilic block copolymers (BCPs) can self-organize in analogous structures but are mechanically more robust and transformations are considerably slower. The combination of PL dynamical behavior with BCP chemical richness could lead to new materials for applications in bioinspired separation membranes and drug delivery. It is timely to underpin the phase behavior of these hybrid systems and a few recent studies have revealed that PL–BCP membranes display synergistic structural, phase-separation, and dynamical properties not seen in pure components. One example is phase-separation in the membrane plane, which seems to be strongly affected by the ability of the PL to form lamellar phases with ordered alkyl chains. In this paper we focus on a rather less explored design handle which is the crystalline properties of the BCP component. Using a combination of confocal laser scanning microscopy and X-ray scattering we show that hybrid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and methoxy-poly(ethylene glycol)-<i<b</i<-poly(ε-caprolactone) (mPEG-<i<b</i<-PCL) display BCP-rich and PL-rich domains when the BCP comprises crystalline moieties. The packing of the hydrophilic part of the BCP (PEG) favors mixing of DPPC at the molecular level or into nanoscale domains while semi-crystalline and hydrophobic PCL moieties bolster microscopic domain formation in the hybrid membrane plane. giant hybrid vesicles phospholipids diblock copolymer semi-crystalline polymer phase-separation Organic chemistry Nurila Kambar verfasserin aut Cecilia Leal verfasserin aut In Polymers MDPI AG, 2011 12(2020), 6, p 1232 (DE-627)61409612X (DE-600)2527146-5 20734360 nnns volume:12 year:2020 number:6, p 1232 https://doi.org/10.3390/polym12061232 kostenfrei https://doaj.org/article/3529ab3bb0284f3990fd700cb386be89 kostenfrei https://www.mdpi.com/2073-4360/12/6/1232 kostenfrei https://doaj.org/toc/2073-4360 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 6, p 1232 |
allfieldsSound |
10.3390/polym12061232 doi (DE-627)DOAJ027573818 (DE-599)DOAJ3529ab3bb0284f3990fd700cb386be89 DE-627 ger DE-627 rakwb eng QD241-441 Yoo Kyung Go verfasserin aut Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Phospholipid (PL) membranes are ubiquitous in nature and their phase behavior has been extensively studied. Lipids assemble in a variety of structures and external stimuli can activate a quick switch between them. Amphiphilic block copolymers (BCPs) can self-organize in analogous structures but are mechanically more robust and transformations are considerably slower. The combination of PL dynamical behavior with BCP chemical richness could lead to new materials for applications in bioinspired separation membranes and drug delivery. It is timely to underpin the phase behavior of these hybrid systems and a few recent studies have revealed that PL–BCP membranes display synergistic structural, phase-separation, and dynamical properties not seen in pure components. One example is phase-separation in the membrane plane, which seems to be strongly affected by the ability of the PL to form lamellar phases with ordered alkyl chains. In this paper we focus on a rather less explored design handle which is the crystalline properties of the BCP component. Using a combination of confocal laser scanning microscopy and X-ray scattering we show that hybrid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and methoxy-poly(ethylene glycol)-<i<b</i<-poly(ε-caprolactone) (mPEG-<i<b</i<-PCL) display BCP-rich and PL-rich domains when the BCP comprises crystalline moieties. The packing of the hydrophilic part of the BCP (PEG) favors mixing of DPPC at the molecular level or into nanoscale domains while semi-crystalline and hydrophobic PCL moieties bolster microscopic domain formation in the hybrid membrane plane. giant hybrid vesicles phospholipids diblock copolymer semi-crystalline polymer phase-separation Organic chemistry Nurila Kambar verfasserin aut Cecilia Leal verfasserin aut In Polymers MDPI AG, 2011 12(2020), 6, p 1232 (DE-627)61409612X (DE-600)2527146-5 20734360 nnns volume:12 year:2020 number:6, p 1232 https://doi.org/10.3390/polym12061232 kostenfrei https://doaj.org/article/3529ab3bb0284f3990fd700cb386be89 kostenfrei https://www.mdpi.com/2073-4360/12/6/1232 kostenfrei https://doaj.org/toc/2073-4360 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 6, p 1232 |
language |
English |
source |
In Polymers 12(2020), 6, p 1232 volume:12 year:2020 number:6, p 1232 |
sourceStr |
In Polymers 12(2020), 6, p 1232 volume:12 year:2020 number:6, p 1232 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
giant hybrid vesicles phospholipids diblock copolymer semi-crystalline polymer phase-separation Organic chemistry |
isfreeaccess_bool |
true |
container_title |
Polymers |
authorswithroles_txt_mv |
Yoo Kyung Go @@aut@@ Nurila Kambar @@aut@@ Cecilia Leal @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
61409612X |
id |
DOAJ027573818 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027573818</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412232830.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/polym12061232</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027573818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3529ab3bb0284f3990fd700cb386be89</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yoo Kyung Go</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phospholipid (PL) membranes are ubiquitous in nature and their phase behavior has been extensively studied. Lipids assemble in a variety of structures and external stimuli can activate a quick switch between them. Amphiphilic block copolymers (BCPs) can self-organize in analogous structures but are mechanically more robust and transformations are considerably slower. The combination of PL dynamical behavior with BCP chemical richness could lead to new materials for applications in bioinspired separation membranes and drug delivery. It is timely to underpin the phase behavior of these hybrid systems and a few recent studies have revealed that PL–BCP membranes display synergistic structural, phase-separation, and dynamical properties not seen in pure components. One example is phase-separation in the membrane plane, which seems to be strongly affected by the ability of the PL to form lamellar phases with ordered alkyl chains. In this paper we focus on a rather less explored design handle which is the crystalline properties of the BCP component. Using a combination of confocal laser scanning microscopy and X-ray scattering we show that hybrid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and methoxy-poly(ethylene glycol)-<i<b</i<-poly(ε-caprolactone) (mPEG-<i<b</i<-PCL) display BCP-rich and PL-rich domains when the BCP comprises crystalline moieties. The packing of the hydrophilic part of the BCP (PEG) favors mixing of DPPC at the molecular level or into nanoscale domains while semi-crystalline and hydrophobic PCL moieties bolster microscopic domain formation in the hybrid membrane plane.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">giant hybrid vesicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phospholipids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diblock copolymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semi-crystalline polymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase-separation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nurila Kambar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cecilia Leal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Polymers</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2020), 6, p 1232</subfield><subfield code="w">(DE-627)61409612X</subfield><subfield code="w">(DE-600)2527146-5</subfield><subfield code="x">20734360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6, p 1232</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/polym12061232</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3529ab3bb0284f3990fd700cb386be89</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4360/12/6/1232</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4360</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">6, p 1232</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yoo Kyung Go |
spellingShingle |
Yoo Kyung Go misc QD241-441 misc giant hybrid vesicles misc phospholipids misc diblock copolymer misc semi-crystalline polymer misc phase-separation misc Organic chemistry Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains |
authorStr |
Yoo Kyung Go |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)61409612X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD241-441 |
illustrated |
Not Illustrated |
issn |
20734360 |
topic_title |
QD241-441 Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains giant hybrid vesicles phospholipids diblock copolymer semi-crystalline polymer phase-separation |
topic |
misc QD241-441 misc giant hybrid vesicles misc phospholipids misc diblock copolymer misc semi-crystalline polymer misc phase-separation misc Organic chemistry |
topic_unstemmed |
misc QD241-441 misc giant hybrid vesicles misc phospholipids misc diblock copolymer misc semi-crystalline polymer misc phase-separation misc Organic chemistry |
topic_browse |
misc QD241-441 misc giant hybrid vesicles misc phospholipids misc diblock copolymer misc semi-crystalline polymer misc phase-separation misc Organic chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Polymers |
hierarchy_parent_id |
61409612X |
hierarchy_top_title |
Polymers |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)61409612X (DE-600)2527146-5 |
title |
Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains |
ctrlnum |
(DE-627)DOAJ027573818 (DE-599)DOAJ3529ab3bb0284f3990fd700cb386be89 |
title_full |
Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains |
author_sort |
Yoo Kyung Go |
journal |
Polymers |
journalStr |
Polymers |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Yoo Kyung Go Nurila Kambar Cecilia Leal |
container_volume |
12 |
class |
QD241-441 |
format_se |
Elektronische Aufsätze |
author-letter |
Yoo Kyung Go |
doi_str_mv |
10.3390/polym12061232 |
author2-role |
verfasserin |
title_sort |
hybrid unilamellar vesicles of phospholipids and block copolymers with crystalline domains |
callnumber |
QD241-441 |
title_auth |
Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains |
abstract |
Phospholipid (PL) membranes are ubiquitous in nature and their phase behavior has been extensively studied. Lipids assemble in a variety of structures and external stimuli can activate a quick switch between them. Amphiphilic block copolymers (BCPs) can self-organize in analogous structures but are mechanically more robust and transformations are considerably slower. The combination of PL dynamical behavior with BCP chemical richness could lead to new materials for applications in bioinspired separation membranes and drug delivery. It is timely to underpin the phase behavior of these hybrid systems and a few recent studies have revealed that PL–BCP membranes display synergistic structural, phase-separation, and dynamical properties not seen in pure components. One example is phase-separation in the membrane plane, which seems to be strongly affected by the ability of the PL to form lamellar phases with ordered alkyl chains. In this paper we focus on a rather less explored design handle which is the crystalline properties of the BCP component. Using a combination of confocal laser scanning microscopy and X-ray scattering we show that hybrid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and methoxy-poly(ethylene glycol)-<i<b</i<-poly(ε-caprolactone) (mPEG-<i<b</i<-PCL) display BCP-rich and PL-rich domains when the BCP comprises crystalline moieties. The packing of the hydrophilic part of the BCP (PEG) favors mixing of DPPC at the molecular level or into nanoscale domains while semi-crystalline and hydrophobic PCL moieties bolster microscopic domain formation in the hybrid membrane plane. |
abstractGer |
Phospholipid (PL) membranes are ubiquitous in nature and their phase behavior has been extensively studied. Lipids assemble in a variety of structures and external stimuli can activate a quick switch between them. Amphiphilic block copolymers (BCPs) can self-organize in analogous structures but are mechanically more robust and transformations are considerably slower. The combination of PL dynamical behavior with BCP chemical richness could lead to new materials for applications in bioinspired separation membranes and drug delivery. It is timely to underpin the phase behavior of these hybrid systems and a few recent studies have revealed that PL–BCP membranes display synergistic structural, phase-separation, and dynamical properties not seen in pure components. One example is phase-separation in the membrane plane, which seems to be strongly affected by the ability of the PL to form lamellar phases with ordered alkyl chains. In this paper we focus on a rather less explored design handle which is the crystalline properties of the BCP component. Using a combination of confocal laser scanning microscopy and X-ray scattering we show that hybrid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and methoxy-poly(ethylene glycol)-<i<b</i<-poly(ε-caprolactone) (mPEG-<i<b</i<-PCL) display BCP-rich and PL-rich domains when the BCP comprises crystalline moieties. The packing of the hydrophilic part of the BCP (PEG) favors mixing of DPPC at the molecular level or into nanoscale domains while semi-crystalline and hydrophobic PCL moieties bolster microscopic domain formation in the hybrid membrane plane. |
abstract_unstemmed |
Phospholipid (PL) membranes are ubiquitous in nature and their phase behavior has been extensively studied. Lipids assemble in a variety of structures and external stimuli can activate a quick switch between them. Amphiphilic block copolymers (BCPs) can self-organize in analogous structures but are mechanically more robust and transformations are considerably slower. The combination of PL dynamical behavior with BCP chemical richness could lead to new materials for applications in bioinspired separation membranes and drug delivery. It is timely to underpin the phase behavior of these hybrid systems and a few recent studies have revealed that PL–BCP membranes display synergistic structural, phase-separation, and dynamical properties not seen in pure components. One example is phase-separation in the membrane plane, which seems to be strongly affected by the ability of the PL to form lamellar phases with ordered alkyl chains. In this paper we focus on a rather less explored design handle which is the crystalline properties of the BCP component. Using a combination of confocal laser scanning microscopy and X-ray scattering we show that hybrid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and methoxy-poly(ethylene glycol)-<i<b</i<-poly(ε-caprolactone) (mPEG-<i<b</i<-PCL) display BCP-rich and PL-rich domains when the BCP comprises crystalline moieties. The packing of the hydrophilic part of the BCP (PEG) favors mixing of DPPC at the molecular level or into nanoscale domains while semi-crystalline and hydrophobic PCL moieties bolster microscopic domain formation in the hybrid membrane plane. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 1232 |
title_short |
Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains |
url |
https://doi.org/10.3390/polym12061232 https://doaj.org/article/3529ab3bb0284f3990fd700cb386be89 https://www.mdpi.com/2073-4360/12/6/1232 https://doaj.org/toc/2073-4360 |
remote_bool |
true |
author2 |
Nurila Kambar Cecilia Leal |
author2Str |
Nurila Kambar Cecilia Leal |
ppnlink |
61409612X |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/polym12061232 |
callnumber-a |
QD241-441 |
up_date |
2024-07-04T02:12:06.150Z |
_version_ |
1803612718263959552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027573818</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412232830.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/polym12061232</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027573818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3529ab3bb0284f3990fd700cb386be89</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD241-441</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yoo Kyung Go</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phospholipid (PL) membranes are ubiquitous in nature and their phase behavior has been extensively studied. Lipids assemble in a variety of structures and external stimuli can activate a quick switch between them. Amphiphilic block copolymers (BCPs) can self-organize in analogous structures but are mechanically more robust and transformations are considerably slower. The combination of PL dynamical behavior with BCP chemical richness could lead to new materials for applications in bioinspired separation membranes and drug delivery. It is timely to underpin the phase behavior of these hybrid systems and a few recent studies have revealed that PL–BCP membranes display synergistic structural, phase-separation, and dynamical properties not seen in pure components. One example is phase-separation in the membrane plane, which seems to be strongly affected by the ability of the PL to form lamellar phases with ordered alkyl chains. In this paper we focus on a rather less explored design handle which is the crystalline properties of the BCP component. Using a combination of confocal laser scanning microscopy and X-ray scattering we show that hybrid membranes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and methoxy-poly(ethylene glycol)-<i<b</i<-poly(ε-caprolactone) (mPEG-<i<b</i<-PCL) display BCP-rich and PL-rich domains when the BCP comprises crystalline moieties. The packing of the hydrophilic part of the BCP (PEG) favors mixing of DPPC at the molecular level or into nanoscale domains while semi-crystalline and hydrophobic PCL moieties bolster microscopic domain formation in the hybrid membrane plane.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">giant hybrid vesicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phospholipids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">diblock copolymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semi-crystalline polymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase-separation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Organic chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nurila Kambar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cecilia Leal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Polymers</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2020), 6, p 1232</subfield><subfield code="w">(DE-627)61409612X</subfield><subfield code="w">(DE-600)2527146-5</subfield><subfield code="x">20734360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6, p 1232</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/polym12061232</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3529ab3bb0284f3990fd700cb386be89</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4360/12/6/1232</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4360</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">6, p 1232</subfield></datafield></record></collection>
|
score |
7.4006233 |