Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection
Introduction: Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would...
Ausführliche Beschreibung
Autor*in: |
Silvia Pineda [verfasserIn] Swastika Sur [verfasserIn] Tara Sigdel [verfasserIn] Mark Nguyen [verfasserIn] Elena Crespo [verfasserIn] Alba Torija [verfasserIn] Maria Meneghini [verfasserIn] Montse Gomà [verfasserIn] Marina Sirota [verfasserIn] Oriol Bestard [verfasserIn] Minnie M. Sarwal [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Kidney International Reports - Elsevier, 2016, 5(2020), 10, Seite 1706-1721 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2020 ; number:10 ; pages:1706-1721 |
Links: |
---|
DOI / URN: |
10.1016/j.ekir.2020.07.023 |
---|
Katalog-ID: |
DOAJ027690709 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ027690709 | ||
003 | DE-627 | ||
005 | 20230307120114.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ekir.2020.07.023 |2 doi | |
035 | |a (DE-627)DOAJ027690709 | ||
035 | |a (DE-599)DOAJ49752f661ab743359d583f76ea0b794e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC870-923 | |
100 | 0 | |a Silvia Pineda |e verfasserin |4 aut | |
245 | 1 | 0 | |a Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Introduction: Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would enable the identification of unique protein-coding and noncoding genes that may be able to segregate different rejection phenotypes. Methods: We evaluated 37 biopsy-paired PB samples from the discovery cohort, with stable (STA), antibody-mediated rejection (AMR), and T cell–mediated rejection (TCMR) by RNAseq. Advanced machine learning tools were used to perform 3-way differential gene expression analysis to identify gene signatures associated with rejection. We then performed functional in silico analysis and validation by Fluidigm (San Francisco, CA) in 62 samples from 2 independent kidney transplant cohorts. Results: We found 102 genes (63 coding genes and 39 noncoding genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and STA (25 upregulated) perfectly clustered with each rejection phenotype and highly correlated with main histologic lesions (ρ = 0.91). For the genes associated with AMR, we found enrichment in regulation of endoplasmic reticulum stress, adaptive immunity, and Ig class-switching. In the validation, we found that the SIGLEC17P pseudogene and 9 SIGLEC17P-related coding genes were highly expressed among AMR but not in TCMR and STA samples. Conclusions: This analysis identifies a critical gene signature in PB in kidney transplant patients undergoing AMR, sufficient to differentiate them from patients with TCMR and immunologically quiescent kidney allografts. Our findings provide the basis for new studies dissecting the role of noncoding genes in the pathophysiology of kidney allograft rejection and their potential value as noninvasive biomarkers of the rejection process. | ||
650 | 4 | |a antibody-mediated rejection | |
650 | 4 | |a kidney transplantation | |
650 | 4 | |a RNA sequencing | |
650 | 4 | |a systems biology | |
650 | 4 | |a T cell–mediated rejection | |
653 | 0 | |a Diseases of the genitourinary system. Urology | |
700 | 0 | |a Swastika Sur |e verfasserin |4 aut | |
700 | 0 | |a Tara Sigdel |e verfasserin |4 aut | |
700 | 0 | |a Mark Nguyen |e verfasserin |4 aut | |
700 | 0 | |a Elena Crespo |e verfasserin |4 aut | |
700 | 0 | |a Alba Torija |e verfasserin |4 aut | |
700 | 0 | |a Maria Meneghini |e verfasserin |4 aut | |
700 | 0 | |a Montse Gomà |e verfasserin |4 aut | |
700 | 0 | |a Marina Sirota |e verfasserin |4 aut | |
700 | 0 | |a Oriol Bestard |e verfasserin |4 aut | |
700 | 0 | |a Minnie M. Sarwal |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Kidney International Reports |d Elsevier, 2016 |g 5(2020), 10, Seite 1706-1721 |w (DE-627)881695580 |w (DE-600)2887223-X |x 24680249 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2020 |g number:10 |g pages:1706-1721 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ekir.2020.07.023 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/49752f661ab743359d583f76ea0b794e |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2468024920314224 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2468-0249 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2020 |e 10 |h 1706-1721 |
author_variant |
s p sp s s ss t s ts m n mn e c ec a t at m m mm m g mg m s ms o b ob m m s mms |
---|---|
matchkey_str |
article:24680249:2020----::eihrlloraeunignaesdfeetasgauefoignnnoigeebt |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
RC |
publishDate |
2020 |
allfields |
10.1016/j.ekir.2020.07.023 doi (DE-627)DOAJ027690709 (DE-599)DOAJ49752f661ab743359d583f76ea0b794e DE-627 ger DE-627 rakwb eng RC870-923 Silvia Pineda verfasserin aut Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would enable the identification of unique protein-coding and noncoding genes that may be able to segregate different rejection phenotypes. Methods: We evaluated 37 biopsy-paired PB samples from the discovery cohort, with stable (STA), antibody-mediated rejection (AMR), and T cell–mediated rejection (TCMR) by RNAseq. Advanced machine learning tools were used to perform 3-way differential gene expression analysis to identify gene signatures associated with rejection. We then performed functional in silico analysis and validation by Fluidigm (San Francisco, CA) in 62 samples from 2 independent kidney transplant cohorts. Results: We found 102 genes (63 coding genes and 39 noncoding genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and STA (25 upregulated) perfectly clustered with each rejection phenotype and highly correlated with main histologic lesions (ρ = 0.91). For the genes associated with AMR, we found enrichment in regulation of endoplasmic reticulum stress, adaptive immunity, and Ig class-switching. In the validation, we found that the SIGLEC17P pseudogene and 9 SIGLEC17P-related coding genes were highly expressed among AMR but not in TCMR and STA samples. Conclusions: This analysis identifies a critical gene signature in PB in kidney transplant patients undergoing AMR, sufficient to differentiate them from patients with TCMR and immunologically quiescent kidney allografts. Our findings provide the basis for new studies dissecting the role of noncoding genes in the pathophysiology of kidney allograft rejection and their potential value as noninvasive biomarkers of the rejection process. antibody-mediated rejection kidney transplantation RNA sequencing systems biology T cell–mediated rejection Diseases of the genitourinary system. Urology Swastika Sur verfasserin aut Tara Sigdel verfasserin aut Mark Nguyen verfasserin aut Elena Crespo verfasserin aut Alba Torija verfasserin aut Maria Meneghini verfasserin aut Montse Gomà verfasserin aut Marina Sirota verfasserin aut Oriol Bestard verfasserin aut Minnie M. Sarwal verfasserin aut In Kidney International Reports Elsevier, 2016 5(2020), 10, Seite 1706-1721 (DE-627)881695580 (DE-600)2887223-X 24680249 nnns volume:5 year:2020 number:10 pages:1706-1721 https://doi.org/10.1016/j.ekir.2020.07.023 kostenfrei https://doaj.org/article/49752f661ab743359d583f76ea0b794e kostenfrei http://www.sciencedirect.com/science/article/pii/S2468024920314224 kostenfrei https://doaj.org/toc/2468-0249 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 5 2020 10 1706-1721 |
spelling |
10.1016/j.ekir.2020.07.023 doi (DE-627)DOAJ027690709 (DE-599)DOAJ49752f661ab743359d583f76ea0b794e DE-627 ger DE-627 rakwb eng RC870-923 Silvia Pineda verfasserin aut Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would enable the identification of unique protein-coding and noncoding genes that may be able to segregate different rejection phenotypes. Methods: We evaluated 37 biopsy-paired PB samples from the discovery cohort, with stable (STA), antibody-mediated rejection (AMR), and T cell–mediated rejection (TCMR) by RNAseq. Advanced machine learning tools were used to perform 3-way differential gene expression analysis to identify gene signatures associated with rejection. We then performed functional in silico analysis and validation by Fluidigm (San Francisco, CA) in 62 samples from 2 independent kidney transplant cohorts. Results: We found 102 genes (63 coding genes and 39 noncoding genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and STA (25 upregulated) perfectly clustered with each rejection phenotype and highly correlated with main histologic lesions (ρ = 0.91). For the genes associated with AMR, we found enrichment in regulation of endoplasmic reticulum stress, adaptive immunity, and Ig class-switching. In the validation, we found that the SIGLEC17P pseudogene and 9 SIGLEC17P-related coding genes were highly expressed among AMR but not in TCMR and STA samples. Conclusions: This analysis identifies a critical gene signature in PB in kidney transplant patients undergoing AMR, sufficient to differentiate them from patients with TCMR and immunologically quiescent kidney allografts. Our findings provide the basis for new studies dissecting the role of noncoding genes in the pathophysiology of kidney allograft rejection and their potential value as noninvasive biomarkers of the rejection process. antibody-mediated rejection kidney transplantation RNA sequencing systems biology T cell–mediated rejection Diseases of the genitourinary system. Urology Swastika Sur verfasserin aut Tara Sigdel verfasserin aut Mark Nguyen verfasserin aut Elena Crespo verfasserin aut Alba Torija verfasserin aut Maria Meneghini verfasserin aut Montse Gomà verfasserin aut Marina Sirota verfasserin aut Oriol Bestard verfasserin aut Minnie M. Sarwal verfasserin aut In Kidney International Reports Elsevier, 2016 5(2020), 10, Seite 1706-1721 (DE-627)881695580 (DE-600)2887223-X 24680249 nnns volume:5 year:2020 number:10 pages:1706-1721 https://doi.org/10.1016/j.ekir.2020.07.023 kostenfrei https://doaj.org/article/49752f661ab743359d583f76ea0b794e kostenfrei http://www.sciencedirect.com/science/article/pii/S2468024920314224 kostenfrei https://doaj.org/toc/2468-0249 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 5 2020 10 1706-1721 |
allfields_unstemmed |
10.1016/j.ekir.2020.07.023 doi (DE-627)DOAJ027690709 (DE-599)DOAJ49752f661ab743359d583f76ea0b794e DE-627 ger DE-627 rakwb eng RC870-923 Silvia Pineda verfasserin aut Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would enable the identification of unique protein-coding and noncoding genes that may be able to segregate different rejection phenotypes. Methods: We evaluated 37 biopsy-paired PB samples from the discovery cohort, with stable (STA), antibody-mediated rejection (AMR), and T cell–mediated rejection (TCMR) by RNAseq. Advanced machine learning tools were used to perform 3-way differential gene expression analysis to identify gene signatures associated with rejection. We then performed functional in silico analysis and validation by Fluidigm (San Francisco, CA) in 62 samples from 2 independent kidney transplant cohorts. Results: We found 102 genes (63 coding genes and 39 noncoding genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and STA (25 upregulated) perfectly clustered with each rejection phenotype and highly correlated with main histologic lesions (ρ = 0.91). For the genes associated with AMR, we found enrichment in regulation of endoplasmic reticulum stress, adaptive immunity, and Ig class-switching. In the validation, we found that the SIGLEC17P pseudogene and 9 SIGLEC17P-related coding genes were highly expressed among AMR but not in TCMR and STA samples. Conclusions: This analysis identifies a critical gene signature in PB in kidney transplant patients undergoing AMR, sufficient to differentiate them from patients with TCMR and immunologically quiescent kidney allografts. Our findings provide the basis for new studies dissecting the role of noncoding genes in the pathophysiology of kidney allograft rejection and their potential value as noninvasive biomarkers of the rejection process. antibody-mediated rejection kidney transplantation RNA sequencing systems biology T cell–mediated rejection Diseases of the genitourinary system. Urology Swastika Sur verfasserin aut Tara Sigdel verfasserin aut Mark Nguyen verfasserin aut Elena Crespo verfasserin aut Alba Torija verfasserin aut Maria Meneghini verfasserin aut Montse Gomà verfasserin aut Marina Sirota verfasserin aut Oriol Bestard verfasserin aut Minnie M. Sarwal verfasserin aut In Kidney International Reports Elsevier, 2016 5(2020), 10, Seite 1706-1721 (DE-627)881695580 (DE-600)2887223-X 24680249 nnns volume:5 year:2020 number:10 pages:1706-1721 https://doi.org/10.1016/j.ekir.2020.07.023 kostenfrei https://doaj.org/article/49752f661ab743359d583f76ea0b794e kostenfrei http://www.sciencedirect.com/science/article/pii/S2468024920314224 kostenfrei https://doaj.org/toc/2468-0249 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 5 2020 10 1706-1721 |
allfieldsGer |
10.1016/j.ekir.2020.07.023 doi (DE-627)DOAJ027690709 (DE-599)DOAJ49752f661ab743359d583f76ea0b794e DE-627 ger DE-627 rakwb eng RC870-923 Silvia Pineda verfasserin aut Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would enable the identification of unique protein-coding and noncoding genes that may be able to segregate different rejection phenotypes. Methods: We evaluated 37 biopsy-paired PB samples from the discovery cohort, with stable (STA), antibody-mediated rejection (AMR), and T cell–mediated rejection (TCMR) by RNAseq. Advanced machine learning tools were used to perform 3-way differential gene expression analysis to identify gene signatures associated with rejection. We then performed functional in silico analysis and validation by Fluidigm (San Francisco, CA) in 62 samples from 2 independent kidney transplant cohorts. Results: We found 102 genes (63 coding genes and 39 noncoding genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and STA (25 upregulated) perfectly clustered with each rejection phenotype and highly correlated with main histologic lesions (ρ = 0.91). For the genes associated with AMR, we found enrichment in regulation of endoplasmic reticulum stress, adaptive immunity, and Ig class-switching. In the validation, we found that the SIGLEC17P pseudogene and 9 SIGLEC17P-related coding genes were highly expressed among AMR but not in TCMR and STA samples. Conclusions: This analysis identifies a critical gene signature in PB in kidney transplant patients undergoing AMR, sufficient to differentiate them from patients with TCMR and immunologically quiescent kidney allografts. Our findings provide the basis for new studies dissecting the role of noncoding genes in the pathophysiology of kidney allograft rejection and their potential value as noninvasive biomarkers of the rejection process. antibody-mediated rejection kidney transplantation RNA sequencing systems biology T cell–mediated rejection Diseases of the genitourinary system. Urology Swastika Sur verfasserin aut Tara Sigdel verfasserin aut Mark Nguyen verfasserin aut Elena Crespo verfasserin aut Alba Torija verfasserin aut Maria Meneghini verfasserin aut Montse Gomà verfasserin aut Marina Sirota verfasserin aut Oriol Bestard verfasserin aut Minnie M. Sarwal verfasserin aut In Kidney International Reports Elsevier, 2016 5(2020), 10, Seite 1706-1721 (DE-627)881695580 (DE-600)2887223-X 24680249 nnns volume:5 year:2020 number:10 pages:1706-1721 https://doi.org/10.1016/j.ekir.2020.07.023 kostenfrei https://doaj.org/article/49752f661ab743359d583f76ea0b794e kostenfrei http://www.sciencedirect.com/science/article/pii/S2468024920314224 kostenfrei https://doaj.org/toc/2468-0249 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 5 2020 10 1706-1721 |
allfieldsSound |
10.1016/j.ekir.2020.07.023 doi (DE-627)DOAJ027690709 (DE-599)DOAJ49752f661ab743359d583f76ea0b794e DE-627 ger DE-627 rakwb eng RC870-923 Silvia Pineda verfasserin aut Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would enable the identification of unique protein-coding and noncoding genes that may be able to segregate different rejection phenotypes. Methods: We evaluated 37 biopsy-paired PB samples from the discovery cohort, with stable (STA), antibody-mediated rejection (AMR), and T cell–mediated rejection (TCMR) by RNAseq. Advanced machine learning tools were used to perform 3-way differential gene expression analysis to identify gene signatures associated with rejection. We then performed functional in silico analysis and validation by Fluidigm (San Francisco, CA) in 62 samples from 2 independent kidney transplant cohorts. Results: We found 102 genes (63 coding genes and 39 noncoding genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and STA (25 upregulated) perfectly clustered with each rejection phenotype and highly correlated with main histologic lesions (ρ = 0.91). For the genes associated with AMR, we found enrichment in regulation of endoplasmic reticulum stress, adaptive immunity, and Ig class-switching. In the validation, we found that the SIGLEC17P pseudogene and 9 SIGLEC17P-related coding genes were highly expressed among AMR but not in TCMR and STA samples. Conclusions: This analysis identifies a critical gene signature in PB in kidney transplant patients undergoing AMR, sufficient to differentiate them from patients with TCMR and immunologically quiescent kidney allografts. Our findings provide the basis for new studies dissecting the role of noncoding genes in the pathophysiology of kidney allograft rejection and their potential value as noninvasive biomarkers of the rejection process. antibody-mediated rejection kidney transplantation RNA sequencing systems biology T cell–mediated rejection Diseases of the genitourinary system. Urology Swastika Sur verfasserin aut Tara Sigdel verfasserin aut Mark Nguyen verfasserin aut Elena Crespo verfasserin aut Alba Torija verfasserin aut Maria Meneghini verfasserin aut Montse Gomà verfasserin aut Marina Sirota verfasserin aut Oriol Bestard verfasserin aut Minnie M. Sarwal verfasserin aut In Kidney International Reports Elsevier, 2016 5(2020), 10, Seite 1706-1721 (DE-627)881695580 (DE-600)2887223-X 24680249 nnns volume:5 year:2020 number:10 pages:1706-1721 https://doi.org/10.1016/j.ekir.2020.07.023 kostenfrei https://doaj.org/article/49752f661ab743359d583f76ea0b794e kostenfrei http://www.sciencedirect.com/science/article/pii/S2468024920314224 kostenfrei https://doaj.org/toc/2468-0249 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 5 2020 10 1706-1721 |
language |
English |
source |
In Kidney International Reports 5(2020), 10, Seite 1706-1721 volume:5 year:2020 number:10 pages:1706-1721 |
sourceStr |
In Kidney International Reports 5(2020), 10, Seite 1706-1721 volume:5 year:2020 number:10 pages:1706-1721 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
antibody-mediated rejection kidney transplantation RNA sequencing systems biology T cell–mediated rejection Diseases of the genitourinary system. Urology |
isfreeaccess_bool |
true |
container_title |
Kidney International Reports |
authorswithroles_txt_mv |
Silvia Pineda @@aut@@ Swastika Sur @@aut@@ Tara Sigdel @@aut@@ Mark Nguyen @@aut@@ Elena Crespo @@aut@@ Alba Torija @@aut@@ Maria Meneghini @@aut@@ Montse Gomà @@aut@@ Marina Sirota @@aut@@ Oriol Bestard @@aut@@ Minnie M. Sarwal @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
881695580 |
id |
DOAJ027690709 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027690709</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307120114.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ekir.2020.07.023</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027690709</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ49752f661ab743359d583f76ea0b794e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC870-923</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Silvia Pineda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction: Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would enable the identification of unique protein-coding and noncoding genes that may be able to segregate different rejection phenotypes. Methods: We evaluated 37 biopsy-paired PB samples from the discovery cohort, with stable (STA), antibody-mediated rejection (AMR), and T cell–mediated rejection (TCMR) by RNAseq. Advanced machine learning tools were used to perform 3-way differential gene expression analysis to identify gene signatures associated with rejection. We then performed functional in silico analysis and validation by Fluidigm (San Francisco, CA) in 62 samples from 2 independent kidney transplant cohorts. Results: We found 102 genes (63 coding genes and 39 noncoding genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and STA (25 upregulated) perfectly clustered with each rejection phenotype and highly correlated with main histologic lesions (ρ = 0.91). For the genes associated with AMR, we found enrichment in regulation of endoplasmic reticulum stress, adaptive immunity, and Ig class-switching. In the validation, we found that the SIGLEC17P pseudogene and 9 SIGLEC17P-related coding genes were highly expressed among AMR but not in TCMR and STA samples. Conclusions: This analysis identifies a critical gene signature in PB in kidney transplant patients undergoing AMR, sufficient to differentiate them from patients with TCMR and immunologically quiescent kidney allografts. Our findings provide the basis for new studies dissecting the role of noncoding genes in the pathophysiology of kidney allograft rejection and their potential value as noninvasive biomarkers of the rejection process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antibody-mediated rejection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kidney transplantation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">systems biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">T cell–mediated rejection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the genitourinary system. Urology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Swastika Sur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tara Sigdel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mark Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elena Crespo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alba Torija</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Meneghini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Montse Gomà</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marina Sirota</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oriol Bestard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minnie M. Sarwal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Kidney International Reports</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">5(2020), 10, Seite 1706-1721</subfield><subfield code="w">(DE-627)881695580</subfield><subfield code="w">(DE-600)2887223-X</subfield><subfield code="x">24680249</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:1706-1721</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ekir.2020.07.023</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/49752f661ab743359d583f76ea0b794e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2468024920314224</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2468-0249</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2020</subfield><subfield code="e">10</subfield><subfield code="h">1706-1721</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Silvia Pineda |
spellingShingle |
Silvia Pineda misc RC870-923 misc antibody-mediated rejection misc kidney transplantation misc RNA sequencing misc systems biology misc T cell–mediated rejection misc Diseases of the genitourinary system. Urology Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection |
authorStr |
Silvia Pineda |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)881695580 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC870-923 |
illustrated |
Not Illustrated |
issn |
24680249 |
topic_title |
RC870-923 Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection antibody-mediated rejection kidney transplantation RNA sequencing systems biology T cell–mediated rejection |
topic |
misc RC870-923 misc antibody-mediated rejection misc kidney transplantation misc RNA sequencing misc systems biology misc T cell–mediated rejection misc Diseases of the genitourinary system. Urology |
topic_unstemmed |
misc RC870-923 misc antibody-mediated rejection misc kidney transplantation misc RNA sequencing misc systems biology misc T cell–mediated rejection misc Diseases of the genitourinary system. Urology |
topic_browse |
misc RC870-923 misc antibody-mediated rejection misc kidney transplantation misc RNA sequencing misc systems biology misc T cell–mediated rejection misc Diseases of the genitourinary system. Urology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Kidney International Reports |
hierarchy_parent_id |
881695580 |
hierarchy_top_title |
Kidney International Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)881695580 (DE-600)2887223-X |
title |
Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection |
ctrlnum |
(DE-627)DOAJ027690709 (DE-599)DOAJ49752f661ab743359d583f76ea0b794e |
title_full |
Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection |
author_sort |
Silvia Pineda |
journal |
Kidney International Reports |
journalStr |
Kidney International Reports |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1706 |
author_browse |
Silvia Pineda Swastika Sur Tara Sigdel Mark Nguyen Elena Crespo Alba Torija Maria Meneghini Montse Gomà Marina Sirota Oriol Bestard Minnie M. Sarwal |
container_volume |
5 |
class |
RC870-923 |
format_se |
Elektronische Aufsätze |
author-letter |
Silvia Pineda |
doi_str_mv |
10.1016/j.ekir.2020.07.023 |
author2-role |
verfasserin |
title_sort |
peripheral blood rna sequencing unravels a differential signature of coding and noncoding genes by types of kidney allograft rejection |
callnumber |
RC870-923 |
title_auth |
Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection |
abstract |
Introduction: Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would enable the identification of unique protein-coding and noncoding genes that may be able to segregate different rejection phenotypes. Methods: We evaluated 37 biopsy-paired PB samples from the discovery cohort, with stable (STA), antibody-mediated rejection (AMR), and T cell–mediated rejection (TCMR) by RNAseq. Advanced machine learning tools were used to perform 3-way differential gene expression analysis to identify gene signatures associated with rejection. We then performed functional in silico analysis and validation by Fluidigm (San Francisco, CA) in 62 samples from 2 independent kidney transplant cohorts. Results: We found 102 genes (63 coding genes and 39 noncoding genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and STA (25 upregulated) perfectly clustered with each rejection phenotype and highly correlated with main histologic lesions (ρ = 0.91). For the genes associated with AMR, we found enrichment in regulation of endoplasmic reticulum stress, adaptive immunity, and Ig class-switching. In the validation, we found that the SIGLEC17P pseudogene and 9 SIGLEC17P-related coding genes were highly expressed among AMR but not in TCMR and STA samples. Conclusions: This analysis identifies a critical gene signature in PB in kidney transplant patients undergoing AMR, sufficient to differentiate them from patients with TCMR and immunologically quiescent kidney allografts. Our findings provide the basis for new studies dissecting the role of noncoding genes in the pathophysiology of kidney allograft rejection and their potential value as noninvasive biomarkers of the rejection process. |
abstractGer |
Introduction: Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would enable the identification of unique protein-coding and noncoding genes that may be able to segregate different rejection phenotypes. Methods: We evaluated 37 biopsy-paired PB samples from the discovery cohort, with stable (STA), antibody-mediated rejection (AMR), and T cell–mediated rejection (TCMR) by RNAseq. Advanced machine learning tools were used to perform 3-way differential gene expression analysis to identify gene signatures associated with rejection. We then performed functional in silico analysis and validation by Fluidigm (San Francisco, CA) in 62 samples from 2 independent kidney transplant cohorts. Results: We found 102 genes (63 coding genes and 39 noncoding genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and STA (25 upregulated) perfectly clustered with each rejection phenotype and highly correlated with main histologic lesions (ρ = 0.91). For the genes associated with AMR, we found enrichment in regulation of endoplasmic reticulum stress, adaptive immunity, and Ig class-switching. In the validation, we found that the SIGLEC17P pseudogene and 9 SIGLEC17P-related coding genes were highly expressed among AMR but not in TCMR and STA samples. Conclusions: This analysis identifies a critical gene signature in PB in kidney transplant patients undergoing AMR, sufficient to differentiate them from patients with TCMR and immunologically quiescent kidney allografts. Our findings provide the basis for new studies dissecting the role of noncoding genes in the pathophysiology of kidney allograft rejection and their potential value as noninvasive biomarkers of the rejection process. |
abstract_unstemmed |
Introduction: Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would enable the identification of unique protein-coding and noncoding genes that may be able to segregate different rejection phenotypes. Methods: We evaluated 37 biopsy-paired PB samples from the discovery cohort, with stable (STA), antibody-mediated rejection (AMR), and T cell–mediated rejection (TCMR) by RNAseq. Advanced machine learning tools were used to perform 3-way differential gene expression analysis to identify gene signatures associated with rejection. We then performed functional in silico analysis and validation by Fluidigm (San Francisco, CA) in 62 samples from 2 independent kidney transplant cohorts. Results: We found 102 genes (63 coding genes and 39 noncoding genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and STA (25 upregulated) perfectly clustered with each rejection phenotype and highly correlated with main histologic lesions (ρ = 0.91). For the genes associated with AMR, we found enrichment in regulation of endoplasmic reticulum stress, adaptive immunity, and Ig class-switching. In the validation, we found that the SIGLEC17P pseudogene and 9 SIGLEC17P-related coding genes were highly expressed among AMR but not in TCMR and STA samples. Conclusions: This analysis identifies a critical gene signature in PB in kidney transplant patients undergoing AMR, sufficient to differentiate them from patients with TCMR and immunologically quiescent kidney allografts. Our findings provide the basis for new studies dissecting the role of noncoding genes in the pathophysiology of kidney allograft rejection and their potential value as noninvasive biomarkers of the rejection process. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
10 |
title_short |
Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection |
url |
https://doi.org/10.1016/j.ekir.2020.07.023 https://doaj.org/article/49752f661ab743359d583f76ea0b794e http://www.sciencedirect.com/science/article/pii/S2468024920314224 https://doaj.org/toc/2468-0249 |
remote_bool |
true |
author2 |
Swastika Sur Tara Sigdel Mark Nguyen Elena Crespo Alba Torija Maria Meneghini Montse Gomà Marina Sirota Oriol Bestard Minnie M. Sarwal |
author2Str |
Swastika Sur Tara Sigdel Mark Nguyen Elena Crespo Alba Torija Maria Meneghini Montse Gomà Marina Sirota Oriol Bestard Minnie M. Sarwal |
ppnlink |
881695580 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ekir.2020.07.023 |
callnumber-a |
RC870-923 |
up_date |
2024-07-03T13:30:43.631Z |
_version_ |
1803564816674062336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027690709</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307120114.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ekir.2020.07.023</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027690709</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ49752f661ab743359d583f76ea0b794e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC870-923</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Silvia Pineda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction: Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would enable the identification of unique protein-coding and noncoding genes that may be able to segregate different rejection phenotypes. Methods: We evaluated 37 biopsy-paired PB samples from the discovery cohort, with stable (STA), antibody-mediated rejection (AMR), and T cell–mediated rejection (TCMR) by RNAseq. Advanced machine learning tools were used to perform 3-way differential gene expression analysis to identify gene signatures associated with rejection. We then performed functional in silico analysis and validation by Fluidigm (San Francisco, CA) in 62 samples from 2 independent kidney transplant cohorts. Results: We found 102 genes (63 coding genes and 39 noncoding genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and STA (25 upregulated) perfectly clustered with each rejection phenotype and highly correlated with main histologic lesions (ρ = 0.91). For the genes associated with AMR, we found enrichment in regulation of endoplasmic reticulum stress, adaptive immunity, and Ig class-switching. In the validation, we found that the SIGLEC17P pseudogene and 9 SIGLEC17P-related coding genes were highly expressed among AMR but not in TCMR and STA samples. Conclusions: This analysis identifies a critical gene signature in PB in kidney transplant patients undergoing AMR, sufficient to differentiate them from patients with TCMR and immunologically quiescent kidney allografts. Our findings provide the basis for new studies dissecting the role of noncoding genes in the pathophysiology of kidney allograft rejection and their potential value as noninvasive biomarkers of the rejection process.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antibody-mediated rejection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kidney transplantation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">systems biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">T cell–mediated rejection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the genitourinary system. Urology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Swastika Sur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tara Sigdel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mark Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elena Crespo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alba Torija</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Meneghini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Montse Gomà</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marina Sirota</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oriol Bestard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minnie M. Sarwal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Kidney International Reports</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">5(2020), 10, Seite 1706-1721</subfield><subfield code="w">(DE-627)881695580</subfield><subfield code="w">(DE-600)2887223-X</subfield><subfield code="x">24680249</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:1706-1721</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ekir.2020.07.023</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/49752f661ab743359d583f76ea0b794e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2468024920314224</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2468-0249</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2020</subfield><subfield code="e">10</subfield><subfield code="h">1706-1721</subfield></datafield></record></collection>
|
score |
7.40158 |