Dynamic Thermal Rating Forecasting Methods: A Systematic Survey
Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implem...
Ausführliche Beschreibung
Autor*in: |
Olatunji Ahmed Lawal [verfasserIn] Jiashen Teh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 10(2022), Seite 65193-65205 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; pages:65193-65205 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2022.3183606 |
---|
Katalog-ID: |
DOAJ027698297 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ027698297 | ||
003 | DE-627 | ||
005 | 20230307120154.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2022.3183606 |2 doi | |
035 | |a (DE-627)DOAJ027698297 | ||
035 | |a (DE-599)DOAJc47a607010394984958c04af80e3f967 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Olatunji Ahmed Lawal |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamic Thermal Rating Forecasting Methods: A Systematic Survey |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer’s outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods’ evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting. | ||
650 | 4 | |a Dynamic thermal rating | |
650 | 4 | |a smart grids | |
650 | 4 | |a stochastic forecasts | |
650 | 4 | |a deep learning forecasts | |
650 | 4 | |a point forecast errors | |
650 | 4 | |a probabilistic forecast errors | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Jiashen Teh |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 10(2022), Seite 65193-65205 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g pages:65193-65205 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2022.3183606 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c47a607010394984958c04af80e3f967 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9797691/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |h 65193-65205 |
author_variant |
o a l oal j t jt |
---|---|
matchkey_str |
article:21693536:2022----::yaitemlaigoeatnmtos |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1109/ACCESS.2022.3183606 doi (DE-627)DOAJ027698297 (DE-599)DOAJc47a607010394984958c04af80e3f967 DE-627 ger DE-627 rakwb eng TK1-9971 Olatunji Ahmed Lawal verfasserin aut Dynamic Thermal Rating Forecasting Methods: A Systematic Survey 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer’s outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods’ evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting. Dynamic thermal rating smart grids stochastic forecasts deep learning forecasts point forecast errors probabilistic forecast errors Electrical engineering. Electronics. Nuclear engineering Jiashen Teh verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 65193-65205 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:65193-65205 https://doi.org/10.1109/ACCESS.2022.3183606 kostenfrei https://doaj.org/article/c47a607010394984958c04af80e3f967 kostenfrei https://ieeexplore.ieee.org/document/9797691/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 65193-65205 |
spelling |
10.1109/ACCESS.2022.3183606 doi (DE-627)DOAJ027698297 (DE-599)DOAJc47a607010394984958c04af80e3f967 DE-627 ger DE-627 rakwb eng TK1-9971 Olatunji Ahmed Lawal verfasserin aut Dynamic Thermal Rating Forecasting Methods: A Systematic Survey 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer’s outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods’ evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting. Dynamic thermal rating smart grids stochastic forecasts deep learning forecasts point forecast errors probabilistic forecast errors Electrical engineering. Electronics. Nuclear engineering Jiashen Teh verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 65193-65205 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:65193-65205 https://doi.org/10.1109/ACCESS.2022.3183606 kostenfrei https://doaj.org/article/c47a607010394984958c04af80e3f967 kostenfrei https://ieeexplore.ieee.org/document/9797691/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 65193-65205 |
allfields_unstemmed |
10.1109/ACCESS.2022.3183606 doi (DE-627)DOAJ027698297 (DE-599)DOAJc47a607010394984958c04af80e3f967 DE-627 ger DE-627 rakwb eng TK1-9971 Olatunji Ahmed Lawal verfasserin aut Dynamic Thermal Rating Forecasting Methods: A Systematic Survey 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer’s outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods’ evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting. Dynamic thermal rating smart grids stochastic forecasts deep learning forecasts point forecast errors probabilistic forecast errors Electrical engineering. Electronics. Nuclear engineering Jiashen Teh verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 65193-65205 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:65193-65205 https://doi.org/10.1109/ACCESS.2022.3183606 kostenfrei https://doaj.org/article/c47a607010394984958c04af80e3f967 kostenfrei https://ieeexplore.ieee.org/document/9797691/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 65193-65205 |
allfieldsGer |
10.1109/ACCESS.2022.3183606 doi (DE-627)DOAJ027698297 (DE-599)DOAJc47a607010394984958c04af80e3f967 DE-627 ger DE-627 rakwb eng TK1-9971 Olatunji Ahmed Lawal verfasserin aut Dynamic Thermal Rating Forecasting Methods: A Systematic Survey 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer’s outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods’ evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting. Dynamic thermal rating smart grids stochastic forecasts deep learning forecasts point forecast errors probabilistic forecast errors Electrical engineering. Electronics. Nuclear engineering Jiashen Teh verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 65193-65205 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:65193-65205 https://doi.org/10.1109/ACCESS.2022.3183606 kostenfrei https://doaj.org/article/c47a607010394984958c04af80e3f967 kostenfrei https://ieeexplore.ieee.org/document/9797691/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 65193-65205 |
allfieldsSound |
10.1109/ACCESS.2022.3183606 doi (DE-627)DOAJ027698297 (DE-599)DOAJc47a607010394984958c04af80e3f967 DE-627 ger DE-627 rakwb eng TK1-9971 Olatunji Ahmed Lawal verfasserin aut Dynamic Thermal Rating Forecasting Methods: A Systematic Survey 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer’s outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods’ evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting. Dynamic thermal rating smart grids stochastic forecasts deep learning forecasts point forecast errors probabilistic forecast errors Electrical engineering. Electronics. Nuclear engineering Jiashen Teh verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 65193-65205 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:65193-65205 https://doi.org/10.1109/ACCESS.2022.3183606 kostenfrei https://doaj.org/article/c47a607010394984958c04af80e3f967 kostenfrei https://ieeexplore.ieee.org/document/9797691/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 65193-65205 |
language |
English |
source |
In IEEE Access 10(2022), Seite 65193-65205 volume:10 year:2022 pages:65193-65205 |
sourceStr |
In IEEE Access 10(2022), Seite 65193-65205 volume:10 year:2022 pages:65193-65205 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dynamic thermal rating smart grids stochastic forecasts deep learning forecasts point forecast errors probabilistic forecast errors Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Olatunji Ahmed Lawal @@aut@@ Jiashen Teh @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ027698297 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027698297</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307120154.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3183606</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027698297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc47a607010394984958c04af80e3f967</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Olatunji Ahmed Lawal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Thermal Rating Forecasting Methods: A Systematic Survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer’s outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods’ evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic thermal rating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart grids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic forecasts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning forecasts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">point forecast errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probabilistic forecast errors</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiashen Teh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 65193-65205</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:65193-65205</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3183606</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c47a607010394984958c04af80e3f967</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9797691/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">65193-65205</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Olatunji Ahmed Lawal |
spellingShingle |
Olatunji Ahmed Lawal misc TK1-9971 misc Dynamic thermal rating misc smart grids misc stochastic forecasts misc deep learning forecasts misc point forecast errors misc probabilistic forecast errors misc Electrical engineering. Electronics. Nuclear engineering Dynamic Thermal Rating Forecasting Methods: A Systematic Survey |
authorStr |
Olatunji Ahmed Lawal |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Dynamic Thermal Rating Forecasting Methods: A Systematic Survey Dynamic thermal rating smart grids stochastic forecasts deep learning forecasts point forecast errors probabilistic forecast errors |
topic |
misc TK1-9971 misc Dynamic thermal rating misc smart grids misc stochastic forecasts misc deep learning forecasts misc point forecast errors misc probabilistic forecast errors misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Dynamic thermal rating misc smart grids misc stochastic forecasts misc deep learning forecasts misc point forecast errors misc probabilistic forecast errors misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Dynamic thermal rating misc smart grids misc stochastic forecasts misc deep learning forecasts misc point forecast errors misc probabilistic forecast errors misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Dynamic Thermal Rating Forecasting Methods: A Systematic Survey |
ctrlnum |
(DE-627)DOAJ027698297 (DE-599)DOAJc47a607010394984958c04af80e3f967 |
title_full |
Dynamic Thermal Rating Forecasting Methods: A Systematic Survey |
author_sort |
Olatunji Ahmed Lawal |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
65193 |
author_browse |
Olatunji Ahmed Lawal Jiashen Teh |
container_volume |
10 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Olatunji Ahmed Lawal |
doi_str_mv |
10.1109/ACCESS.2022.3183606 |
author2-role |
verfasserin |
title_sort |
dynamic thermal rating forecasting methods: a systematic survey |
callnumber |
TK1-9971 |
title_auth |
Dynamic Thermal Rating Forecasting Methods: A Systematic Survey |
abstract |
Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer’s outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods’ evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting. |
abstractGer |
Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer’s outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods’ evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting. |
abstract_unstemmed |
Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer’s outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods’ evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Dynamic Thermal Rating Forecasting Methods: A Systematic Survey |
url |
https://doi.org/10.1109/ACCESS.2022.3183606 https://doaj.org/article/c47a607010394984958c04af80e3f967 https://ieeexplore.ieee.org/document/9797691/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Jiashen Teh |
author2Str |
Jiashen Teh |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2022.3183606 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T13:33:08.558Z |
_version_ |
1803564968651522048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027698297</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307120154.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3183606</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027698297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc47a607010394984958c04af80e3f967</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Olatunji Ahmed Lawal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Thermal Rating Forecasting Methods: A Systematic Survey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer’s outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods’ evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic thermal rating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart grids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic forecasts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning forecasts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">point forecast errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probabilistic forecast errors</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiashen Teh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 65193-65205</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:65193-65205</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3183606</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c47a607010394984958c04af80e3f967</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9797691/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">65193-65205</subfield></datafield></record></collection>
|
score |
7.4014072 |