Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current
Mathematical modeling of heat transfer in the film-substrate-thermostat system with a pulsed flow of high-density current through an electrically conductive film has been carried out. On the basis of the simulation, the analysis of the heating of a niobium nitride film with a high resistivity near t...
Ausführliche Beschreibung
Autor*in: |
Kuzmichev Nikolay D. [verfasserIn] Vasyutin Mikhael A. [verfasserIn] Danilova Ekaterina V. [verfasserIn] Lapshina Elena A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Russisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Журнал Средневолжского математического общества - National Research Mordovia State University, 2021, 23(2021), 1, Seite 82-90 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2021 ; number:1 ; pages:82-90 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.15507/2079-6900.23.202101.82–90 |
---|
Katalog-ID: |
DOAJ027843939 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ027843939 | ||
003 | DE-627 | ||
005 | 20230502222019.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.15507/2079-6900.23.202101.82–90 |2 doi | |
035 | |a (DE-627)DOAJ027843939 | ||
035 | |a (DE-599)DOAJcf7045ebd2704bb78eab2979134574a9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a rus | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Kuzmichev Nikolay D. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Mathematical modeling of heat transfer in the film-substrate-thermostat system with a pulsed flow of high-density current through an electrically conductive film has been carried out. On the basis of the simulation, the analysis of the heating of a niobium nitride film with a high resistivity near the critical temperature of the transition to the superconducting state is made. The inhomogeneous heat conduction equation which is solved numerically, simulates heat transfer in the film-substrate-thermostat system for the third on the left and the first on the right initial boundary value problem. Using the symmetry of the problem, the parameter $H$ is determined, which is equal to the ratio of the heat transfer of the film surface to its thermal conductivity; this parameter is necessary for effective heat removal. It is shown that effective heat removal from films can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes possible to study the current-voltage characteristics of superconductors near the critical transition temperature to the superconducting state with high-density currents $(10^4 - 10^5 A/cm^2)$ without significant heating of the samples. | ||
650 | 4 | |a inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Vasyutin Mikhael A. |e verfasserin |4 aut | |
700 | 0 | |a Danilova Ekaterina V. |e verfasserin |4 aut | |
700 | 0 | |a Lapshina Elena A. |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Журнал Средневолжского математического общества |d National Research Mordovia State University, 2021 |g 23(2021), 1, Seite 82-90 |w (DE-627)DOAJ078628733 |x 25877496 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2021 |g number:1 |g pages:82-90 |
856 | 4 | 0 | |u https://doi.org/10.15507/2079-6900.23.202101.82–90 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cf7045ebd2704bb78eab2979134574a9 |z kostenfrei |
856 | 4 | 0 | |u http://journal.svmo.ru/en/archive/article?id=1717 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-6900 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2587-7496 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 23 |j 2021 |e 1 |h 82-90 |
author_variant |
k n d knd v m a vma d e v dev l e a lea |
---|---|
matchkey_str |
article:25877496:2021----::ahmtcloeigfetrnfrnhflsbtaehrottytmuigetnoaeetialcnu |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QA |
publishDate |
2021 |
allfields |
10.15507/2079-6900.23.202101.82–90 doi (DE-627)DOAJ027843939 (DE-599)DOAJcf7045ebd2704bb78eab2979134574a9 DE-627 ger DE-627 rakwb eng rus QA1-939 Kuzmichev Nikolay D. verfasserin aut Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mathematical modeling of heat transfer in the film-substrate-thermostat system with a pulsed flow of high-density current through an electrically conductive film has been carried out. On the basis of the simulation, the analysis of the heating of a niobium nitride film with a high resistivity near the critical temperature of the transition to the superconducting state is made. The inhomogeneous heat conduction equation which is solved numerically, simulates heat transfer in the film-substrate-thermostat system for the third on the left and the first on the right initial boundary value problem. Using the symmetry of the problem, the parameter $H$ is determined, which is equal to the ratio of the heat transfer of the film surface to its thermal conductivity; this parameter is necessary for effective heat removal. It is shown that effective heat removal from films can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes possible to study the current-voltage characteristics of superconductors near the critical transition temperature to the superconducting state with high-density currents $(10^4 - 10^5 A/cm^2)$ without significant heating of the samples. inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current Mathematics Vasyutin Mikhael A. verfasserin aut Danilova Ekaterina V. verfasserin aut Lapshina Elena A. verfasserin aut In Журнал Средневолжского математического общества National Research Mordovia State University, 2021 23(2021), 1, Seite 82-90 (DE-627)DOAJ078628733 25877496 nnns volume:23 year:2021 number:1 pages:82-90 https://doi.org/10.15507/2079-6900.23.202101.82–90 kostenfrei https://doaj.org/article/cf7045ebd2704bb78eab2979134574a9 kostenfrei http://journal.svmo.ru/en/archive/article?id=1717 kostenfrei https://doaj.org/toc/2079-6900 Journal toc kostenfrei https://doaj.org/toc/2587-7496 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 23 2021 1 82-90 |
spelling |
10.15507/2079-6900.23.202101.82–90 doi (DE-627)DOAJ027843939 (DE-599)DOAJcf7045ebd2704bb78eab2979134574a9 DE-627 ger DE-627 rakwb eng rus QA1-939 Kuzmichev Nikolay D. verfasserin aut Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mathematical modeling of heat transfer in the film-substrate-thermostat system with a pulsed flow of high-density current through an electrically conductive film has been carried out. On the basis of the simulation, the analysis of the heating of a niobium nitride film with a high resistivity near the critical temperature of the transition to the superconducting state is made. The inhomogeneous heat conduction equation which is solved numerically, simulates heat transfer in the film-substrate-thermostat system for the third on the left and the first on the right initial boundary value problem. Using the symmetry of the problem, the parameter $H$ is determined, which is equal to the ratio of the heat transfer of the film surface to its thermal conductivity; this parameter is necessary for effective heat removal. It is shown that effective heat removal from films can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes possible to study the current-voltage characteristics of superconductors near the critical transition temperature to the superconducting state with high-density currents $(10^4 - 10^5 A/cm^2)$ without significant heating of the samples. inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current Mathematics Vasyutin Mikhael A. verfasserin aut Danilova Ekaterina V. verfasserin aut Lapshina Elena A. verfasserin aut In Журнал Средневолжского математического общества National Research Mordovia State University, 2021 23(2021), 1, Seite 82-90 (DE-627)DOAJ078628733 25877496 nnns volume:23 year:2021 number:1 pages:82-90 https://doi.org/10.15507/2079-6900.23.202101.82–90 kostenfrei https://doaj.org/article/cf7045ebd2704bb78eab2979134574a9 kostenfrei http://journal.svmo.ru/en/archive/article?id=1717 kostenfrei https://doaj.org/toc/2079-6900 Journal toc kostenfrei https://doaj.org/toc/2587-7496 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 23 2021 1 82-90 |
allfields_unstemmed |
10.15507/2079-6900.23.202101.82–90 doi (DE-627)DOAJ027843939 (DE-599)DOAJcf7045ebd2704bb78eab2979134574a9 DE-627 ger DE-627 rakwb eng rus QA1-939 Kuzmichev Nikolay D. verfasserin aut Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mathematical modeling of heat transfer in the film-substrate-thermostat system with a pulsed flow of high-density current through an electrically conductive film has been carried out. On the basis of the simulation, the analysis of the heating of a niobium nitride film with a high resistivity near the critical temperature of the transition to the superconducting state is made. The inhomogeneous heat conduction equation which is solved numerically, simulates heat transfer in the film-substrate-thermostat system for the third on the left and the first on the right initial boundary value problem. Using the symmetry of the problem, the parameter $H$ is determined, which is equal to the ratio of the heat transfer of the film surface to its thermal conductivity; this parameter is necessary for effective heat removal. It is shown that effective heat removal from films can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes possible to study the current-voltage characteristics of superconductors near the critical transition temperature to the superconducting state with high-density currents $(10^4 - 10^5 A/cm^2)$ without significant heating of the samples. inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current Mathematics Vasyutin Mikhael A. verfasserin aut Danilova Ekaterina V. verfasserin aut Lapshina Elena A. verfasserin aut In Журнал Средневолжского математического общества National Research Mordovia State University, 2021 23(2021), 1, Seite 82-90 (DE-627)DOAJ078628733 25877496 nnns volume:23 year:2021 number:1 pages:82-90 https://doi.org/10.15507/2079-6900.23.202101.82–90 kostenfrei https://doaj.org/article/cf7045ebd2704bb78eab2979134574a9 kostenfrei http://journal.svmo.ru/en/archive/article?id=1717 kostenfrei https://doaj.org/toc/2079-6900 Journal toc kostenfrei https://doaj.org/toc/2587-7496 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 23 2021 1 82-90 |
allfieldsGer |
10.15507/2079-6900.23.202101.82–90 doi (DE-627)DOAJ027843939 (DE-599)DOAJcf7045ebd2704bb78eab2979134574a9 DE-627 ger DE-627 rakwb eng rus QA1-939 Kuzmichev Nikolay D. verfasserin aut Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mathematical modeling of heat transfer in the film-substrate-thermostat system with a pulsed flow of high-density current through an electrically conductive film has been carried out. On the basis of the simulation, the analysis of the heating of a niobium nitride film with a high resistivity near the critical temperature of the transition to the superconducting state is made. The inhomogeneous heat conduction equation which is solved numerically, simulates heat transfer in the film-substrate-thermostat system for the third on the left and the first on the right initial boundary value problem. Using the symmetry of the problem, the parameter $H$ is determined, which is equal to the ratio of the heat transfer of the film surface to its thermal conductivity; this parameter is necessary for effective heat removal. It is shown that effective heat removal from films can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes possible to study the current-voltage characteristics of superconductors near the critical transition temperature to the superconducting state with high-density currents $(10^4 - 10^5 A/cm^2)$ without significant heating of the samples. inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current Mathematics Vasyutin Mikhael A. verfasserin aut Danilova Ekaterina V. verfasserin aut Lapshina Elena A. verfasserin aut In Журнал Средневолжского математического общества National Research Mordovia State University, 2021 23(2021), 1, Seite 82-90 (DE-627)DOAJ078628733 25877496 nnns volume:23 year:2021 number:1 pages:82-90 https://doi.org/10.15507/2079-6900.23.202101.82–90 kostenfrei https://doaj.org/article/cf7045ebd2704bb78eab2979134574a9 kostenfrei http://journal.svmo.ru/en/archive/article?id=1717 kostenfrei https://doaj.org/toc/2079-6900 Journal toc kostenfrei https://doaj.org/toc/2587-7496 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 23 2021 1 82-90 |
allfieldsSound |
10.15507/2079-6900.23.202101.82–90 doi (DE-627)DOAJ027843939 (DE-599)DOAJcf7045ebd2704bb78eab2979134574a9 DE-627 ger DE-627 rakwb eng rus QA1-939 Kuzmichev Nikolay D. verfasserin aut Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mathematical modeling of heat transfer in the film-substrate-thermostat system with a pulsed flow of high-density current through an electrically conductive film has been carried out. On the basis of the simulation, the analysis of the heating of a niobium nitride film with a high resistivity near the critical temperature of the transition to the superconducting state is made. The inhomogeneous heat conduction equation which is solved numerically, simulates heat transfer in the film-substrate-thermostat system for the third on the left and the first on the right initial boundary value problem. Using the symmetry of the problem, the parameter $H$ is determined, which is equal to the ratio of the heat transfer of the film surface to its thermal conductivity; this parameter is necessary for effective heat removal. It is shown that effective heat removal from films can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes possible to study the current-voltage characteristics of superconductors near the critical transition temperature to the superconducting state with high-density currents $(10^4 - 10^5 A/cm^2)$ without significant heating of the samples. inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current Mathematics Vasyutin Mikhael A. verfasserin aut Danilova Ekaterina V. verfasserin aut Lapshina Elena A. verfasserin aut In Журнал Средневолжского математического общества National Research Mordovia State University, 2021 23(2021), 1, Seite 82-90 (DE-627)DOAJ078628733 25877496 nnns volume:23 year:2021 number:1 pages:82-90 https://doi.org/10.15507/2079-6900.23.202101.82–90 kostenfrei https://doaj.org/article/cf7045ebd2704bb78eab2979134574a9 kostenfrei http://journal.svmo.ru/en/archive/article?id=1717 kostenfrei https://doaj.org/toc/2079-6900 Journal toc kostenfrei https://doaj.org/toc/2587-7496 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA AR 23 2021 1 82-90 |
language |
English Russian |
source |
In Журнал Средневолжского математического общества 23(2021), 1, Seite 82-90 volume:23 year:2021 number:1 pages:82-90 |
sourceStr |
In Журнал Средневолжского математического общества 23(2021), 1, Seite 82-90 volume:23 year:2021 number:1 pages:82-90 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current Mathematics |
isfreeaccess_bool |
true |
container_title |
Журнал Средневолжского математического общества |
authorswithroles_txt_mv |
Kuzmichev Nikolay D. @@aut@@ Vasyutin Mikhael A. @@aut@@ Danilova Ekaterina V. @@aut@@ Lapshina Elena A. @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
DOAJ078628733 |
id |
DOAJ027843939 |
language_de |
englisch russisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027843939</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502222019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.15507/2079-6900.23.202101.82–90</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027843939</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcf7045ebd2704bb78eab2979134574a9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kuzmichev Nikolay D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mathematical modeling of heat transfer in the film-substrate-thermostat system with a pulsed flow of high-density current through an electrically conductive film has been carried out. On the basis of the simulation, the analysis of the heating of a niobium nitride film with a high resistivity near the critical temperature of the transition to the superconducting state is made. The inhomogeneous heat conduction equation which is solved numerically, simulates heat transfer in the film-substrate-thermostat system for the third on the left and the first on the right initial boundary value problem. Using the symmetry of the problem, the parameter $H$ is determined, which is equal to the ratio of the heat transfer of the film surface to its thermal conductivity; this parameter is necessary for effective heat removal. It is shown that effective heat removal from films can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes possible to study the current-voltage characteristics of superconductors near the critical transition temperature to the superconducting state with high-density currents $(10^4 - 10^5 A/cm^2)$ without significant heating of the samples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vasyutin Mikhael A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Danilova Ekaterina V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lapshina Elena A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Журнал Средневолжского математического общества</subfield><subfield code="d">National Research Mordovia State University, 2021</subfield><subfield code="g">23(2021), 1, Seite 82-90</subfield><subfield code="w">(DE-627)DOAJ078628733</subfield><subfield code="x">25877496</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:82-90</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.15507/2079-6900.23.202101.82–90</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cf7045ebd2704bb78eab2979134574a9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://journal.svmo.ru/en/archive/article?id=1717</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-6900</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2587-7496</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">82-90</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Kuzmichev Nikolay D. |
spellingShingle |
Kuzmichev Nikolay D. misc QA1-939 misc inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current misc Mathematics Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current |
authorStr |
Kuzmichev Nikolay D. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)DOAJ078628733 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
25877496 |
topic_title |
QA1-939 Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current |
topic |
misc QA1-939 misc inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current misc Mathematics |
topic_unstemmed |
misc QA1-939 misc inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current misc Mathematics |
topic_browse |
misc QA1-939 misc inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Журнал Средневолжского математического общества |
hierarchy_parent_id |
DOAJ078628733 |
hierarchy_top_title |
Журнал Средневолжского математического общества |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)DOAJ078628733 |
title |
Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current |
ctrlnum |
(DE-627)DOAJ027843939 (DE-599)DOAJcf7045ebd2704bb78eab2979134574a9 |
title_full |
Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current |
author_sort |
Kuzmichev Nikolay D. |
journal |
Журнал Средневолжского математического общества |
journalStr |
Журнал Средневолжского математического общества |
callnumber-first-code |
Q |
lang_code |
eng rus |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
82 |
author_browse |
Kuzmichev Nikolay D. Vasyutin Mikhael A. Danilova Ekaterina V. Lapshina Elena A. |
container_volume |
23 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Kuzmichev Nikolay D. |
doi_str_mv |
10.15507/2079-6900.23.202101.82–90 |
author2-role |
verfasserin |
title_sort |
mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current |
callnumber |
QA1-939 |
title_auth |
Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current |
abstract |
Mathematical modeling of heat transfer in the film-substrate-thermostat system with a pulsed flow of high-density current through an electrically conductive film has been carried out. On the basis of the simulation, the analysis of the heating of a niobium nitride film with a high resistivity near the critical temperature of the transition to the superconducting state is made. The inhomogeneous heat conduction equation which is solved numerically, simulates heat transfer in the film-substrate-thermostat system for the third on the left and the first on the right initial boundary value problem. Using the symmetry of the problem, the parameter $H$ is determined, which is equal to the ratio of the heat transfer of the film surface to its thermal conductivity; this parameter is necessary for effective heat removal. It is shown that effective heat removal from films can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes possible to study the current-voltage characteristics of superconductors near the critical transition temperature to the superconducting state with high-density currents $(10^4 - 10^5 A/cm^2)$ without significant heating of the samples. |
abstractGer |
Mathematical modeling of heat transfer in the film-substrate-thermostat system with a pulsed flow of high-density current through an electrically conductive film has been carried out. On the basis of the simulation, the analysis of the heating of a niobium nitride film with a high resistivity near the critical temperature of the transition to the superconducting state is made. The inhomogeneous heat conduction equation which is solved numerically, simulates heat transfer in the film-substrate-thermostat system for the third on the left and the first on the right initial boundary value problem. Using the symmetry of the problem, the parameter $H$ is determined, which is equal to the ratio of the heat transfer of the film surface to its thermal conductivity; this parameter is necessary for effective heat removal. It is shown that effective heat removal from films can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes possible to study the current-voltage characteristics of superconductors near the critical transition temperature to the superconducting state with high-density currents $(10^4 - 10^5 A/cm^2)$ without significant heating of the samples. |
abstract_unstemmed |
Mathematical modeling of heat transfer in the film-substrate-thermostat system with a pulsed flow of high-density current through an electrically conductive film has been carried out. On the basis of the simulation, the analysis of the heating of a niobium nitride film with a high resistivity near the critical temperature of the transition to the superconducting state is made. The inhomogeneous heat conduction equation which is solved numerically, simulates heat transfer in the film-substrate-thermostat system for the third on the left and the first on the right initial boundary value problem. Using the symmetry of the problem, the parameter $H$ is determined, which is equal to the ratio of the heat transfer of the film surface to its thermal conductivity; this parameter is necessary for effective heat removal. It is shown that effective heat removal from films can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes possible to study the current-voltage characteristics of superconductors near the critical transition temperature to the superconducting state with high-density currents $(10^4 - 10^5 A/cm^2)$ without significant heating of the samples. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA |
container_issue |
1 |
title_short |
Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current |
url |
https://doi.org/10.15507/2079-6900.23.202101.82–90 https://doaj.org/article/cf7045ebd2704bb78eab2979134574a9 http://journal.svmo.ru/en/archive/article?id=1717 https://doaj.org/toc/2079-6900 https://doaj.org/toc/2587-7496 |
remote_bool |
true |
author2 |
Vasyutin Mikhael A. Danilova Ekaterina V. Lapshina Elena A. |
author2Str |
Vasyutin Mikhael A. Danilova Ekaterina V. Lapshina Elena A. |
ppnlink |
DOAJ078628733 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.15507/2079-6900.23.202101.82–90 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T14:19:42.503Z |
_version_ |
1803567898302611456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027843939</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502222019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.15507/2079-6900.23.202101.82–90</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027843939</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcf7045ebd2704bb78eab2979134574a9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kuzmichev Nikolay D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical modeling of heat transfer in the film-substrate-thermostat system during heating of an electrically conductive film by a high-density pulse current</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mathematical modeling of heat transfer in the film-substrate-thermostat system with a pulsed flow of high-density current through an electrically conductive film has been carried out. On the basis of the simulation, the analysis of the heating of a niobium nitride film with a high resistivity near the critical temperature of the transition to the superconducting state is made. The inhomogeneous heat conduction equation which is solved numerically, simulates heat transfer in the film-substrate-thermostat system for the third on the left and the first on the right initial boundary value problem. Using the symmetry of the problem, the parameter $H$ is determined, which is equal to the ratio of the heat transfer of the film surface to its thermal conductivity; this parameter is necessary for effective heat removal. It is shown that effective heat removal from films can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes possible to study the current-voltage characteristics of superconductors near the critical transition temperature to the superconducting state with high-density currents $(10^4 - 10^5 A/cm^2)$ without significant heating of the samples.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inhomogeneous heat conduction equation”, “1st initial-boundary value problem”, “3rd initial-boundary value problem”, “niobium nitride membrane”, “pulsed heating by current</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vasyutin Mikhael A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Danilova Ekaterina V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lapshina Elena A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Журнал Средневолжского математического общества</subfield><subfield code="d">National Research Mordovia State University, 2021</subfield><subfield code="g">23(2021), 1, Seite 82-90</subfield><subfield code="w">(DE-627)DOAJ078628733</subfield><subfield code="x">25877496</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:82-90</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.15507/2079-6900.23.202101.82–90</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cf7045ebd2704bb78eab2979134574a9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://journal.svmo.ru/en/archive/article?id=1717</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-6900</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2587-7496</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">82-90</subfield></datafield></record></collection>
|
score |
7.4013834 |