A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction
The development of new wake models is currently one of the key approaches envisioned to further improve the levelized cost of energy of wind power. While the wind energy literature abounds with operational wake models capable of predicting in fast-time the behavior of a wind turbine wake based on th...
Ausführliche Beschreibung
Autor*in: |
Maxime Lejeune [verfasserIn] Maud Moens [verfasserIn] Philippe Chatelain [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Energy Research - Frontiers Media S.A., 2014, 10(2022) |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/fenrg.2022.884068 |
---|
Katalog-ID: |
DOAJ027976947 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ027976947 | ||
003 | DE-627 | ||
005 | 20230307122331.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fenrg.2022.884068 |2 doi | |
035 | |a (DE-627)DOAJ027976947 | ||
035 | |a (DE-599)DOAJ399757d079cc43a78994163c42267dd4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Maxime Lejeune |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The development of new wake models is currently one of the key approaches envisioned to further improve the levelized cost of energy of wind power. While the wind energy literature abounds with operational wake models capable of predicting in fast-time the behavior of a wind turbine wake based on the measurements available (e.g., SCADA), only few account for dynamic wake effects. The present work capitalizes on the success gathered by the Dynamic Wake Meandering formulation and introduces a new operational dynamic wake modeling framework aimed at capturing the wake dynamic signature at a low computational cost while relying only on information gathered at the wind turbine location. In order to do so, the framework brings together flow sensing and Lagrangian flow modeling into a unified framework. The features of the inflow are first inferred from the turbine loads and operating settings: a Kalman filter coupled to a Blade Element Momentum theory solver is used to determine the rotor-normal flow velocity while a Multi-Layer Perceptron trained on high-fidelity numerical data estimates of the transverse wind velocity component. The information recovered is in turn fed to a Lagrangian flow model as a source condition and is propagated in a physics-informed fashion across the domain. The ensuing framework is presented and then deployed within a numerical wind farm where its performances are assessed. The computational affordability of the proposed model is first confirmed: 7 × 10−4 wall-clock seconds per simulation second are required to simulate a small 12 turbines wind farm. Large Eddy Simulations of wind farm using advanced actuator disks are then used as a baseline and a strong focus is laid on the study of the wake meandering features. Comparison against the Large Eddy Simulation baseline reveals that the proposed model achieves good estimates of the flow state in both low and high Turbulence Intensity configurations. The model distinctly provides additional insight into the wake physics when compared to the traditional steady state approach: the wake recovery is consistently accounted for and the wake meandering signature is captured as far as 12D downstream with a correlation score ranging from 0.50 to 0.85. | ||
650 | 4 | |a wake model | |
650 | 4 | |a wake meandering | |
650 | 4 | |a flow sensing | |
650 | 4 | |a Lagrangian flow model | |
650 | 4 | |a multi-layer perceptron (MLP) | |
650 | 4 | |a particle | |
653 | 0 | |a General Works | |
653 | 0 | |a A | |
700 | 0 | |a Maud Moens |e verfasserin |4 aut | |
700 | 0 | |a Philippe Chatelain |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Energy Research |d Frontiers Media S.A., 2014 |g 10(2022) |w (DE-627)768576768 |w (DE-600)2733788-1 |x 2296598X |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/fenrg.2022.884068 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/399757d079cc43a78994163c42267dd4 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fenrg.2022.884068/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-598X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |
author_variant |
m l ml m m mm p c pc |
---|---|
matchkey_str |
article:2296598X:2022----::madrncpuigaeoeculdooobsdlwesnfrprt |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3389/fenrg.2022.884068 doi (DE-627)DOAJ027976947 (DE-599)DOAJ399757d079cc43a78994163c42267dd4 DE-627 ger DE-627 rakwb eng Maxime Lejeune verfasserin aut A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of new wake models is currently one of the key approaches envisioned to further improve the levelized cost of energy of wind power. While the wind energy literature abounds with operational wake models capable of predicting in fast-time the behavior of a wind turbine wake based on the measurements available (e.g., SCADA), only few account for dynamic wake effects. The present work capitalizes on the success gathered by the Dynamic Wake Meandering formulation and introduces a new operational dynamic wake modeling framework aimed at capturing the wake dynamic signature at a low computational cost while relying only on information gathered at the wind turbine location. In order to do so, the framework brings together flow sensing and Lagrangian flow modeling into a unified framework. The features of the inflow are first inferred from the turbine loads and operating settings: a Kalman filter coupled to a Blade Element Momentum theory solver is used to determine the rotor-normal flow velocity while a Multi-Layer Perceptron trained on high-fidelity numerical data estimates of the transverse wind velocity component. The information recovered is in turn fed to a Lagrangian flow model as a source condition and is propagated in a physics-informed fashion across the domain. The ensuing framework is presented and then deployed within a numerical wind farm where its performances are assessed. The computational affordability of the proposed model is first confirmed: 7 × 10−4 wall-clock seconds per simulation second are required to simulate a small 12 turbines wind farm. Large Eddy Simulations of wind farm using advanced actuator disks are then used as a baseline and a strong focus is laid on the study of the wake meandering features. Comparison against the Large Eddy Simulation baseline reveals that the proposed model achieves good estimates of the flow state in both low and high Turbulence Intensity configurations. The model distinctly provides additional insight into the wake physics when compared to the traditional steady state approach: the wake recovery is consistently accounted for and the wake meandering signature is captured as far as 12D downstream with a correlation score ranging from 0.50 to 0.85. wake model wake meandering flow sensing Lagrangian flow model multi-layer perceptron (MLP) particle General Works A Maud Moens verfasserin aut Philippe Chatelain verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.884068 kostenfrei https://doaj.org/article/399757d079cc43a78994163c42267dd4 kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.884068/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
spelling |
10.3389/fenrg.2022.884068 doi (DE-627)DOAJ027976947 (DE-599)DOAJ399757d079cc43a78994163c42267dd4 DE-627 ger DE-627 rakwb eng Maxime Lejeune verfasserin aut A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of new wake models is currently one of the key approaches envisioned to further improve the levelized cost of energy of wind power. While the wind energy literature abounds with operational wake models capable of predicting in fast-time the behavior of a wind turbine wake based on the measurements available (e.g., SCADA), only few account for dynamic wake effects. The present work capitalizes on the success gathered by the Dynamic Wake Meandering formulation and introduces a new operational dynamic wake modeling framework aimed at capturing the wake dynamic signature at a low computational cost while relying only on information gathered at the wind turbine location. In order to do so, the framework brings together flow sensing and Lagrangian flow modeling into a unified framework. The features of the inflow are first inferred from the turbine loads and operating settings: a Kalman filter coupled to a Blade Element Momentum theory solver is used to determine the rotor-normal flow velocity while a Multi-Layer Perceptron trained on high-fidelity numerical data estimates of the transverse wind velocity component. The information recovered is in turn fed to a Lagrangian flow model as a source condition and is propagated in a physics-informed fashion across the domain. The ensuing framework is presented and then deployed within a numerical wind farm where its performances are assessed. The computational affordability of the proposed model is first confirmed: 7 × 10−4 wall-clock seconds per simulation second are required to simulate a small 12 turbines wind farm. Large Eddy Simulations of wind farm using advanced actuator disks are then used as a baseline and a strong focus is laid on the study of the wake meandering features. Comparison against the Large Eddy Simulation baseline reveals that the proposed model achieves good estimates of the flow state in both low and high Turbulence Intensity configurations. The model distinctly provides additional insight into the wake physics when compared to the traditional steady state approach: the wake recovery is consistently accounted for and the wake meandering signature is captured as far as 12D downstream with a correlation score ranging from 0.50 to 0.85. wake model wake meandering flow sensing Lagrangian flow model multi-layer perceptron (MLP) particle General Works A Maud Moens verfasserin aut Philippe Chatelain verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.884068 kostenfrei https://doaj.org/article/399757d079cc43a78994163c42267dd4 kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.884068/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfields_unstemmed |
10.3389/fenrg.2022.884068 doi (DE-627)DOAJ027976947 (DE-599)DOAJ399757d079cc43a78994163c42267dd4 DE-627 ger DE-627 rakwb eng Maxime Lejeune verfasserin aut A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of new wake models is currently one of the key approaches envisioned to further improve the levelized cost of energy of wind power. While the wind energy literature abounds with operational wake models capable of predicting in fast-time the behavior of a wind turbine wake based on the measurements available (e.g., SCADA), only few account for dynamic wake effects. The present work capitalizes on the success gathered by the Dynamic Wake Meandering formulation and introduces a new operational dynamic wake modeling framework aimed at capturing the wake dynamic signature at a low computational cost while relying only on information gathered at the wind turbine location. In order to do so, the framework brings together flow sensing and Lagrangian flow modeling into a unified framework. The features of the inflow are first inferred from the turbine loads and operating settings: a Kalman filter coupled to a Blade Element Momentum theory solver is used to determine the rotor-normal flow velocity while a Multi-Layer Perceptron trained on high-fidelity numerical data estimates of the transverse wind velocity component. The information recovered is in turn fed to a Lagrangian flow model as a source condition and is propagated in a physics-informed fashion across the domain. The ensuing framework is presented and then deployed within a numerical wind farm where its performances are assessed. The computational affordability of the proposed model is first confirmed: 7 × 10−4 wall-clock seconds per simulation second are required to simulate a small 12 turbines wind farm. Large Eddy Simulations of wind farm using advanced actuator disks are then used as a baseline and a strong focus is laid on the study of the wake meandering features. Comparison against the Large Eddy Simulation baseline reveals that the proposed model achieves good estimates of the flow state in both low and high Turbulence Intensity configurations. The model distinctly provides additional insight into the wake physics when compared to the traditional steady state approach: the wake recovery is consistently accounted for and the wake meandering signature is captured as far as 12D downstream with a correlation score ranging from 0.50 to 0.85. wake model wake meandering flow sensing Lagrangian flow model multi-layer perceptron (MLP) particle General Works A Maud Moens verfasserin aut Philippe Chatelain verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.884068 kostenfrei https://doaj.org/article/399757d079cc43a78994163c42267dd4 kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.884068/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsGer |
10.3389/fenrg.2022.884068 doi (DE-627)DOAJ027976947 (DE-599)DOAJ399757d079cc43a78994163c42267dd4 DE-627 ger DE-627 rakwb eng Maxime Lejeune verfasserin aut A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of new wake models is currently one of the key approaches envisioned to further improve the levelized cost of energy of wind power. While the wind energy literature abounds with operational wake models capable of predicting in fast-time the behavior of a wind turbine wake based on the measurements available (e.g., SCADA), only few account for dynamic wake effects. The present work capitalizes on the success gathered by the Dynamic Wake Meandering formulation and introduces a new operational dynamic wake modeling framework aimed at capturing the wake dynamic signature at a low computational cost while relying only on information gathered at the wind turbine location. In order to do so, the framework brings together flow sensing and Lagrangian flow modeling into a unified framework. The features of the inflow are first inferred from the turbine loads and operating settings: a Kalman filter coupled to a Blade Element Momentum theory solver is used to determine the rotor-normal flow velocity while a Multi-Layer Perceptron trained on high-fidelity numerical data estimates of the transverse wind velocity component. The information recovered is in turn fed to a Lagrangian flow model as a source condition and is propagated in a physics-informed fashion across the domain. The ensuing framework is presented and then deployed within a numerical wind farm where its performances are assessed. The computational affordability of the proposed model is first confirmed: 7 × 10−4 wall-clock seconds per simulation second are required to simulate a small 12 turbines wind farm. Large Eddy Simulations of wind farm using advanced actuator disks are then used as a baseline and a strong focus is laid on the study of the wake meandering features. Comparison against the Large Eddy Simulation baseline reveals that the proposed model achieves good estimates of the flow state in both low and high Turbulence Intensity configurations. The model distinctly provides additional insight into the wake physics when compared to the traditional steady state approach: the wake recovery is consistently accounted for and the wake meandering signature is captured as far as 12D downstream with a correlation score ranging from 0.50 to 0.85. wake model wake meandering flow sensing Lagrangian flow model multi-layer perceptron (MLP) particle General Works A Maud Moens verfasserin aut Philippe Chatelain verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.884068 kostenfrei https://doaj.org/article/399757d079cc43a78994163c42267dd4 kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.884068/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsSound |
10.3389/fenrg.2022.884068 doi (DE-627)DOAJ027976947 (DE-599)DOAJ399757d079cc43a78994163c42267dd4 DE-627 ger DE-627 rakwb eng Maxime Lejeune verfasserin aut A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of new wake models is currently one of the key approaches envisioned to further improve the levelized cost of energy of wind power. While the wind energy literature abounds with operational wake models capable of predicting in fast-time the behavior of a wind turbine wake based on the measurements available (e.g., SCADA), only few account for dynamic wake effects. The present work capitalizes on the success gathered by the Dynamic Wake Meandering formulation and introduces a new operational dynamic wake modeling framework aimed at capturing the wake dynamic signature at a low computational cost while relying only on information gathered at the wind turbine location. In order to do so, the framework brings together flow sensing and Lagrangian flow modeling into a unified framework. The features of the inflow are first inferred from the turbine loads and operating settings: a Kalman filter coupled to a Blade Element Momentum theory solver is used to determine the rotor-normal flow velocity while a Multi-Layer Perceptron trained on high-fidelity numerical data estimates of the transverse wind velocity component. The information recovered is in turn fed to a Lagrangian flow model as a source condition and is propagated in a physics-informed fashion across the domain. The ensuing framework is presented and then deployed within a numerical wind farm where its performances are assessed. The computational affordability of the proposed model is first confirmed: 7 × 10−4 wall-clock seconds per simulation second are required to simulate a small 12 turbines wind farm. Large Eddy Simulations of wind farm using advanced actuator disks are then used as a baseline and a strong focus is laid on the study of the wake meandering features. Comparison against the Large Eddy Simulation baseline reveals that the proposed model achieves good estimates of the flow state in both low and high Turbulence Intensity configurations. The model distinctly provides additional insight into the wake physics when compared to the traditional steady state approach: the wake recovery is consistently accounted for and the wake meandering signature is captured as far as 12D downstream with a correlation score ranging from 0.50 to 0.85. wake model wake meandering flow sensing Lagrangian flow model multi-layer perceptron (MLP) particle General Works A Maud Moens verfasserin aut Philippe Chatelain verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.884068 kostenfrei https://doaj.org/article/399757d079cc43a78994163c42267dd4 kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.884068/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
language |
English |
source |
In Frontiers in Energy Research 10(2022) volume:10 year:2022 |
sourceStr |
In Frontiers in Energy Research 10(2022) volume:10 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wake model wake meandering flow sensing Lagrangian flow model multi-layer perceptron (MLP) particle General Works A |
isfreeaccess_bool |
true |
container_title |
Frontiers in Energy Research |
authorswithroles_txt_mv |
Maxime Lejeune @@aut@@ Maud Moens @@aut@@ Philippe Chatelain @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
768576768 |
id |
DOAJ027976947 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027976947</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307122331.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fenrg.2022.884068</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027976947</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ399757d079cc43a78994163c42267dd4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Maxime Lejeune</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The development of new wake models is currently one of the key approaches envisioned to further improve the levelized cost of energy of wind power. While the wind energy literature abounds with operational wake models capable of predicting in fast-time the behavior of a wind turbine wake based on the measurements available (e.g., SCADA), only few account for dynamic wake effects. The present work capitalizes on the success gathered by the Dynamic Wake Meandering formulation and introduces a new operational dynamic wake modeling framework aimed at capturing the wake dynamic signature at a low computational cost while relying only on information gathered at the wind turbine location. In order to do so, the framework brings together flow sensing and Lagrangian flow modeling into a unified framework. The features of the inflow are first inferred from the turbine loads and operating settings: a Kalman filter coupled to a Blade Element Momentum theory solver is used to determine the rotor-normal flow velocity while a Multi-Layer Perceptron trained on high-fidelity numerical data estimates of the transverse wind velocity component. The information recovered is in turn fed to a Lagrangian flow model as a source condition and is propagated in a physics-informed fashion across the domain. The ensuing framework is presented and then deployed within a numerical wind farm where its performances are assessed. The computational affordability of the proposed model is first confirmed: 7 × 10−4 wall-clock seconds per simulation second are required to simulate a small 12 turbines wind farm. Large Eddy Simulations of wind farm using advanced actuator disks are then used as a baseline and a strong focus is laid on the study of the wake meandering features. Comparison against the Large Eddy Simulation baseline reveals that the proposed model achieves good estimates of the flow state in both low and high Turbulence Intensity configurations. The model distinctly provides additional insight into the wake physics when compared to the traditional steady state approach: the wake recovery is consistently accounted for and the wake meandering signature is captured as far as 12D downstream with a correlation score ranging from 0.50 to 0.85.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wake model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wake meandering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrangian flow model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-layer perceptron (MLP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General Works</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">A</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maud Moens</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Philippe Chatelain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Energy Research</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)768576768</subfield><subfield code="w">(DE-600)2733788-1</subfield><subfield code="x">2296598X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fenrg.2022.884068</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/399757d079cc43a78994163c42267dd4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fenrg.2022.884068/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-598X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
author |
Maxime Lejeune |
spellingShingle |
Maxime Lejeune misc wake model misc wake meandering misc flow sensing misc Lagrangian flow model misc multi-layer perceptron (MLP) misc particle misc General Works misc A A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction |
authorStr |
Maxime Lejeune |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)768576768 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2296598X |
topic_title |
A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction wake model wake meandering flow sensing Lagrangian flow model multi-layer perceptron (MLP) particle |
topic |
misc wake model misc wake meandering misc flow sensing misc Lagrangian flow model misc multi-layer perceptron (MLP) misc particle misc General Works misc A |
topic_unstemmed |
misc wake model misc wake meandering misc flow sensing misc Lagrangian flow model misc multi-layer perceptron (MLP) misc particle misc General Works misc A |
topic_browse |
misc wake model misc wake meandering misc flow sensing misc Lagrangian flow model misc multi-layer perceptron (MLP) misc particle misc General Works misc A |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Energy Research |
hierarchy_parent_id |
768576768 |
hierarchy_top_title |
Frontiers in Energy Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)768576768 (DE-600)2733788-1 |
title |
A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction |
ctrlnum |
(DE-627)DOAJ027976947 (DE-599)DOAJ399757d079cc43a78994163c42267dd4 |
title_full |
A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction |
author_sort |
Maxime Lejeune |
journal |
Frontiers in Energy Research |
journalStr |
Frontiers in Energy Research |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Maxime Lejeune Maud Moens Philippe Chatelain |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Maxime Lejeune |
doi_str_mv |
10.3389/fenrg.2022.884068 |
author2-role |
verfasserin |
title_sort |
meandering-capturing wake model coupled to rotor-based flow-sensing for operational wind farm flow prediction |
title_auth |
A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction |
abstract |
The development of new wake models is currently one of the key approaches envisioned to further improve the levelized cost of energy of wind power. While the wind energy literature abounds with operational wake models capable of predicting in fast-time the behavior of a wind turbine wake based on the measurements available (e.g., SCADA), only few account for dynamic wake effects. The present work capitalizes on the success gathered by the Dynamic Wake Meandering formulation and introduces a new operational dynamic wake modeling framework aimed at capturing the wake dynamic signature at a low computational cost while relying only on information gathered at the wind turbine location. In order to do so, the framework brings together flow sensing and Lagrangian flow modeling into a unified framework. The features of the inflow are first inferred from the turbine loads and operating settings: a Kalman filter coupled to a Blade Element Momentum theory solver is used to determine the rotor-normal flow velocity while a Multi-Layer Perceptron trained on high-fidelity numerical data estimates of the transverse wind velocity component. The information recovered is in turn fed to a Lagrangian flow model as a source condition and is propagated in a physics-informed fashion across the domain. The ensuing framework is presented and then deployed within a numerical wind farm where its performances are assessed. The computational affordability of the proposed model is first confirmed: 7 × 10−4 wall-clock seconds per simulation second are required to simulate a small 12 turbines wind farm. Large Eddy Simulations of wind farm using advanced actuator disks are then used as a baseline and a strong focus is laid on the study of the wake meandering features. Comparison against the Large Eddy Simulation baseline reveals that the proposed model achieves good estimates of the flow state in both low and high Turbulence Intensity configurations. The model distinctly provides additional insight into the wake physics when compared to the traditional steady state approach: the wake recovery is consistently accounted for and the wake meandering signature is captured as far as 12D downstream with a correlation score ranging from 0.50 to 0.85. |
abstractGer |
The development of new wake models is currently one of the key approaches envisioned to further improve the levelized cost of energy of wind power. While the wind energy literature abounds with operational wake models capable of predicting in fast-time the behavior of a wind turbine wake based on the measurements available (e.g., SCADA), only few account for dynamic wake effects. The present work capitalizes on the success gathered by the Dynamic Wake Meandering formulation and introduces a new operational dynamic wake modeling framework aimed at capturing the wake dynamic signature at a low computational cost while relying only on information gathered at the wind turbine location. In order to do so, the framework brings together flow sensing and Lagrangian flow modeling into a unified framework. The features of the inflow are first inferred from the turbine loads and operating settings: a Kalman filter coupled to a Blade Element Momentum theory solver is used to determine the rotor-normal flow velocity while a Multi-Layer Perceptron trained on high-fidelity numerical data estimates of the transverse wind velocity component. The information recovered is in turn fed to a Lagrangian flow model as a source condition and is propagated in a physics-informed fashion across the domain. The ensuing framework is presented and then deployed within a numerical wind farm where its performances are assessed. The computational affordability of the proposed model is first confirmed: 7 × 10−4 wall-clock seconds per simulation second are required to simulate a small 12 turbines wind farm. Large Eddy Simulations of wind farm using advanced actuator disks are then used as a baseline and a strong focus is laid on the study of the wake meandering features. Comparison against the Large Eddy Simulation baseline reveals that the proposed model achieves good estimates of the flow state in both low and high Turbulence Intensity configurations. The model distinctly provides additional insight into the wake physics when compared to the traditional steady state approach: the wake recovery is consistently accounted for and the wake meandering signature is captured as far as 12D downstream with a correlation score ranging from 0.50 to 0.85. |
abstract_unstemmed |
The development of new wake models is currently one of the key approaches envisioned to further improve the levelized cost of energy of wind power. While the wind energy literature abounds with operational wake models capable of predicting in fast-time the behavior of a wind turbine wake based on the measurements available (e.g., SCADA), only few account for dynamic wake effects. The present work capitalizes on the success gathered by the Dynamic Wake Meandering formulation and introduces a new operational dynamic wake modeling framework aimed at capturing the wake dynamic signature at a low computational cost while relying only on information gathered at the wind turbine location. In order to do so, the framework brings together flow sensing and Lagrangian flow modeling into a unified framework. The features of the inflow are first inferred from the turbine loads and operating settings: a Kalman filter coupled to a Blade Element Momentum theory solver is used to determine the rotor-normal flow velocity while a Multi-Layer Perceptron trained on high-fidelity numerical data estimates of the transverse wind velocity component. The information recovered is in turn fed to a Lagrangian flow model as a source condition and is propagated in a physics-informed fashion across the domain. The ensuing framework is presented and then deployed within a numerical wind farm where its performances are assessed. The computational affordability of the proposed model is first confirmed: 7 × 10−4 wall-clock seconds per simulation second are required to simulate a small 12 turbines wind farm. Large Eddy Simulations of wind farm using advanced actuator disks are then used as a baseline and a strong focus is laid on the study of the wake meandering features. Comparison against the Large Eddy Simulation baseline reveals that the proposed model achieves good estimates of the flow state in both low and high Turbulence Intensity configurations. The model distinctly provides additional insight into the wake physics when compared to the traditional steady state approach: the wake recovery is consistently accounted for and the wake meandering signature is captured as far as 12D downstream with a correlation score ranging from 0.50 to 0.85. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction |
url |
https://doi.org/10.3389/fenrg.2022.884068 https://doaj.org/article/399757d079cc43a78994163c42267dd4 https://www.frontiersin.org/articles/10.3389/fenrg.2022.884068/full https://doaj.org/toc/2296-598X |
remote_bool |
true |
author2 |
Maud Moens Philippe Chatelain |
author2Str |
Maud Moens Philippe Chatelain |
ppnlink |
768576768 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fenrg.2022.884068 |
up_date |
2024-07-03T15:03:21.974Z |
_version_ |
1803570645019131904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027976947</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307122331.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fenrg.2022.884068</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027976947</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ399757d079cc43a78994163c42267dd4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Maxime Lejeune</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Meandering-Capturing Wake Model Coupled to Rotor-Based Flow-Sensing for Operational Wind Farm Flow Prediction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The development of new wake models is currently one of the key approaches envisioned to further improve the levelized cost of energy of wind power. While the wind energy literature abounds with operational wake models capable of predicting in fast-time the behavior of a wind turbine wake based on the measurements available (e.g., SCADA), only few account for dynamic wake effects. The present work capitalizes on the success gathered by the Dynamic Wake Meandering formulation and introduces a new operational dynamic wake modeling framework aimed at capturing the wake dynamic signature at a low computational cost while relying only on information gathered at the wind turbine location. In order to do so, the framework brings together flow sensing and Lagrangian flow modeling into a unified framework. The features of the inflow are first inferred from the turbine loads and operating settings: a Kalman filter coupled to a Blade Element Momentum theory solver is used to determine the rotor-normal flow velocity while a Multi-Layer Perceptron trained on high-fidelity numerical data estimates of the transverse wind velocity component. The information recovered is in turn fed to a Lagrangian flow model as a source condition and is propagated in a physics-informed fashion across the domain. The ensuing framework is presented and then deployed within a numerical wind farm where its performances are assessed. The computational affordability of the proposed model is first confirmed: 7 × 10−4 wall-clock seconds per simulation second are required to simulate a small 12 turbines wind farm. Large Eddy Simulations of wind farm using advanced actuator disks are then used as a baseline and a strong focus is laid on the study of the wake meandering features. Comparison against the Large Eddy Simulation baseline reveals that the proposed model achieves good estimates of the flow state in both low and high Turbulence Intensity configurations. The model distinctly provides additional insight into the wake physics when compared to the traditional steady state approach: the wake recovery is consistently accounted for and the wake meandering signature is captured as far as 12D downstream with a correlation score ranging from 0.50 to 0.85.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wake model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wake meandering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrangian flow model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-layer perceptron (MLP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General Works</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">A</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maud Moens</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Philippe Chatelain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Energy Research</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)768576768</subfield><subfield code="w">(DE-600)2733788-1</subfield><subfield code="x">2296598X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fenrg.2022.884068</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/399757d079cc43a78994163c42267dd4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fenrg.2022.884068/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-598X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.4008055 |