The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin
Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric <i<Danio rerio</i< Nb (<i<Dr</i<-Nb...
Ausführliche Beschreibung
Autor*in: |
Giovanna De Simone [verfasserIn] Andrea Coletta [verfasserIn] Alessandra di Masi [verfasserIn] Massimo Coletta [verfasserIn] Paolo Ascenzi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Antioxidants - MDPI AG, 2013, 11(2022), 10, p 1932 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2022 ; number:10, p 1932 |
Links: |
---|
DOI / URN: |
10.3390/antiox11101932 |
---|
Katalog-ID: |
DOAJ027993094 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ027993094 | ||
003 | DE-627 | ||
005 | 20240414182026.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/antiox11101932 |2 doi | |
035 | |a (DE-627)DOAJ027993094 | ||
035 | |a (DE-599)DOAJ8924a5ecb63a4e4c9892fc33efbf2e70 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RM1-950 | |
100 | 0 | |a Giovanna De Simone |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric <i<Danio rerio</i< Nb (<i<Dr</i<-Nb(III)) in the absence and presence of CO<sub<2</sub< is reported. The <i<Dr</i<-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO<sub<2</sub< dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of <i<Dr</i<-Nb(III). The effect of <i<Dr</i<-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. <i<Dr</i<-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO<sub<2</sub<, <i<Dr</i<-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO<sub<2</sub<, the ferric heme protein concentration must be higher than 10<sup<−4</sup< M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO<sub<2</sub</HCO<sub<3</sub<<sup<−</sup< in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions. | ||
650 | 4 | |a <i<Danio rerio</i< heme-protein | |
650 | 4 | |a effect of CO<sub<2</sub< | |
650 | 4 | |a kinetics | |
650 | 4 | |a peroxynitrite detoxification | |
650 | 4 | |a tyrosine protection | |
650 | 4 | |a zebrafish nitrobindin | |
653 | 0 | |a Therapeutics. Pharmacology | |
700 | 0 | |a Andrea Coletta |e verfasserin |4 aut | |
700 | 0 | |a Alessandra di Masi |e verfasserin |4 aut | |
700 | 0 | |a Massimo Coletta |e verfasserin |4 aut | |
700 | 0 | |a Paolo Ascenzi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Antioxidants |d MDPI AG, 2013 |g 11(2022), 10, p 1932 |w (DE-627)737287578 |w (DE-600)2704216-9 |x 20763921 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2022 |g number:10, p 1932 |
856 | 4 | 0 | |u https://doi.org/10.3390/antiox11101932 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8924a5ecb63a4e4c9892fc33efbf2e70 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3921/11/10/1932 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3921 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2022 |e 10, p 1932 |
author_variant |
g d s gds a c ac a d m adm m c mc p a pa |
---|---|
matchkey_str |
article:20763921:2022----::hblnigfeoyirtdtxfctobtenerceertisncsbsb |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
RM |
publishDate |
2022 |
allfields |
10.3390/antiox11101932 doi (DE-627)DOAJ027993094 (DE-599)DOAJ8924a5ecb63a4e4c9892fc33efbf2e70 DE-627 ger DE-627 rakwb eng RM1-950 Giovanna De Simone verfasserin aut The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric <i<Danio rerio</i< Nb (<i<Dr</i<-Nb(III)) in the absence and presence of CO<sub<2</sub< is reported. The <i<Dr</i<-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO<sub<2</sub< dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of <i<Dr</i<-Nb(III). The effect of <i<Dr</i<-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. <i<Dr</i<-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO<sub<2</sub<, <i<Dr</i<-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO<sub<2</sub<, the ferric heme protein concentration must be higher than 10<sup<−4</sup< M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO<sub<2</sub</HCO<sub<3</sub<<sup<−</sup< in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions. <i<Danio rerio</i< heme-protein effect of CO<sub<2</sub< kinetics peroxynitrite detoxification tyrosine protection zebrafish nitrobindin Therapeutics. Pharmacology Andrea Coletta verfasserin aut Alessandra di Masi verfasserin aut Massimo Coletta verfasserin aut Paolo Ascenzi verfasserin aut In Antioxidants MDPI AG, 2013 11(2022), 10, p 1932 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:11 year:2022 number:10, p 1932 https://doi.org/10.3390/antiox11101932 kostenfrei https://doaj.org/article/8924a5ecb63a4e4c9892fc33efbf2e70 kostenfrei https://www.mdpi.com/2076-3921/11/10/1932 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 10, p 1932 |
spelling |
10.3390/antiox11101932 doi (DE-627)DOAJ027993094 (DE-599)DOAJ8924a5ecb63a4e4c9892fc33efbf2e70 DE-627 ger DE-627 rakwb eng RM1-950 Giovanna De Simone verfasserin aut The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric <i<Danio rerio</i< Nb (<i<Dr</i<-Nb(III)) in the absence and presence of CO<sub<2</sub< is reported. The <i<Dr</i<-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO<sub<2</sub< dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of <i<Dr</i<-Nb(III). The effect of <i<Dr</i<-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. <i<Dr</i<-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO<sub<2</sub<, <i<Dr</i<-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO<sub<2</sub<, the ferric heme protein concentration must be higher than 10<sup<−4</sup< M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO<sub<2</sub</HCO<sub<3</sub<<sup<−</sup< in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions. <i<Danio rerio</i< heme-protein effect of CO<sub<2</sub< kinetics peroxynitrite detoxification tyrosine protection zebrafish nitrobindin Therapeutics. Pharmacology Andrea Coletta verfasserin aut Alessandra di Masi verfasserin aut Massimo Coletta verfasserin aut Paolo Ascenzi verfasserin aut In Antioxidants MDPI AG, 2013 11(2022), 10, p 1932 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:11 year:2022 number:10, p 1932 https://doi.org/10.3390/antiox11101932 kostenfrei https://doaj.org/article/8924a5ecb63a4e4c9892fc33efbf2e70 kostenfrei https://www.mdpi.com/2076-3921/11/10/1932 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 10, p 1932 |
allfields_unstemmed |
10.3390/antiox11101932 doi (DE-627)DOAJ027993094 (DE-599)DOAJ8924a5ecb63a4e4c9892fc33efbf2e70 DE-627 ger DE-627 rakwb eng RM1-950 Giovanna De Simone verfasserin aut The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric <i<Danio rerio</i< Nb (<i<Dr</i<-Nb(III)) in the absence and presence of CO<sub<2</sub< is reported. The <i<Dr</i<-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO<sub<2</sub< dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of <i<Dr</i<-Nb(III). The effect of <i<Dr</i<-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. <i<Dr</i<-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO<sub<2</sub<, <i<Dr</i<-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO<sub<2</sub<, the ferric heme protein concentration must be higher than 10<sup<−4</sup< M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO<sub<2</sub</HCO<sub<3</sub<<sup<−</sup< in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions. <i<Danio rerio</i< heme-protein effect of CO<sub<2</sub< kinetics peroxynitrite detoxification tyrosine protection zebrafish nitrobindin Therapeutics. Pharmacology Andrea Coletta verfasserin aut Alessandra di Masi verfasserin aut Massimo Coletta verfasserin aut Paolo Ascenzi verfasserin aut In Antioxidants MDPI AG, 2013 11(2022), 10, p 1932 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:11 year:2022 number:10, p 1932 https://doi.org/10.3390/antiox11101932 kostenfrei https://doaj.org/article/8924a5ecb63a4e4c9892fc33efbf2e70 kostenfrei https://www.mdpi.com/2076-3921/11/10/1932 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 10, p 1932 |
allfieldsGer |
10.3390/antiox11101932 doi (DE-627)DOAJ027993094 (DE-599)DOAJ8924a5ecb63a4e4c9892fc33efbf2e70 DE-627 ger DE-627 rakwb eng RM1-950 Giovanna De Simone verfasserin aut The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric <i<Danio rerio</i< Nb (<i<Dr</i<-Nb(III)) in the absence and presence of CO<sub<2</sub< is reported. The <i<Dr</i<-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO<sub<2</sub< dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of <i<Dr</i<-Nb(III). The effect of <i<Dr</i<-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. <i<Dr</i<-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO<sub<2</sub<, <i<Dr</i<-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO<sub<2</sub<, the ferric heme protein concentration must be higher than 10<sup<−4</sup< M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO<sub<2</sub</HCO<sub<3</sub<<sup<−</sup< in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions. <i<Danio rerio</i< heme-protein effect of CO<sub<2</sub< kinetics peroxynitrite detoxification tyrosine protection zebrafish nitrobindin Therapeutics. Pharmacology Andrea Coletta verfasserin aut Alessandra di Masi verfasserin aut Massimo Coletta verfasserin aut Paolo Ascenzi verfasserin aut In Antioxidants MDPI AG, 2013 11(2022), 10, p 1932 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:11 year:2022 number:10, p 1932 https://doi.org/10.3390/antiox11101932 kostenfrei https://doaj.org/article/8924a5ecb63a4e4c9892fc33efbf2e70 kostenfrei https://www.mdpi.com/2076-3921/11/10/1932 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 10, p 1932 |
allfieldsSound |
10.3390/antiox11101932 doi (DE-627)DOAJ027993094 (DE-599)DOAJ8924a5ecb63a4e4c9892fc33efbf2e70 DE-627 ger DE-627 rakwb eng RM1-950 Giovanna De Simone verfasserin aut The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric <i<Danio rerio</i< Nb (<i<Dr</i<-Nb(III)) in the absence and presence of CO<sub<2</sub< is reported. The <i<Dr</i<-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO<sub<2</sub< dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of <i<Dr</i<-Nb(III). The effect of <i<Dr</i<-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. <i<Dr</i<-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO<sub<2</sub<, <i<Dr</i<-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO<sub<2</sub<, the ferric heme protein concentration must be higher than 10<sup<−4</sup< M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO<sub<2</sub</HCO<sub<3</sub<<sup<−</sup< in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions. <i<Danio rerio</i< heme-protein effect of CO<sub<2</sub< kinetics peroxynitrite detoxification tyrosine protection zebrafish nitrobindin Therapeutics. Pharmacology Andrea Coletta verfasserin aut Alessandra di Masi verfasserin aut Massimo Coletta verfasserin aut Paolo Ascenzi verfasserin aut In Antioxidants MDPI AG, 2013 11(2022), 10, p 1932 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:11 year:2022 number:10, p 1932 https://doi.org/10.3390/antiox11101932 kostenfrei https://doaj.org/article/8924a5ecb63a4e4c9892fc33efbf2e70 kostenfrei https://www.mdpi.com/2076-3921/11/10/1932 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 10, p 1932 |
language |
English |
source |
In Antioxidants 11(2022), 10, p 1932 volume:11 year:2022 number:10, p 1932 |
sourceStr |
In Antioxidants 11(2022), 10, p 1932 volume:11 year:2022 number:10, p 1932 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
<i<Danio rerio</i< heme-protein effect of CO<sub<2</sub< kinetics peroxynitrite detoxification tyrosine protection zebrafish nitrobindin Therapeutics. Pharmacology |
isfreeaccess_bool |
true |
container_title |
Antioxidants |
authorswithroles_txt_mv |
Giovanna De Simone @@aut@@ Andrea Coletta @@aut@@ Alessandra di Masi @@aut@@ Massimo Coletta @@aut@@ Paolo Ascenzi @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737287578 |
id |
DOAJ027993094 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027993094</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414182026.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/antiox11101932</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027993094</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8924a5ecb63a4e4c9892fc33efbf2e70</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RM1-950</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Giovanna De Simone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric <i<Danio rerio</i< Nb (<i<Dr</i<-Nb(III)) in the absence and presence of CO<sub<2</sub< is reported. The <i<Dr</i<-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO<sub<2</sub< dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of <i<Dr</i<-Nb(III). The effect of <i<Dr</i<-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. <i<Dr</i<-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO<sub<2</sub<, <i<Dr</i<-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO<sub<2</sub<, the ferric heme protein concentration must be higher than 10<sup<−4</sup< M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO<sub<2</sub</HCO<sub<3</sub<<sup<−</sup< in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Danio rerio</i< heme-protein</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effect of CO<sub<2</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">peroxynitrite detoxification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tyrosine protection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zebrafish nitrobindin</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Therapeutics. Pharmacology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Coletta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessandra di Masi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Massimo Coletta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paolo Ascenzi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Antioxidants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 10, p 1932</subfield><subfield code="w">(DE-627)737287578</subfield><subfield code="w">(DE-600)2704216-9</subfield><subfield code="x">20763921</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 1932</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/antiox11101932</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8924a5ecb63a4e4c9892fc33efbf2e70</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3921/11/10/1932</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3921</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 1932</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Giovanna De Simone |
spellingShingle |
Giovanna De Simone misc RM1-950 misc <i<Danio rerio</i< heme-protein misc effect of CO<sub<2</sub< misc kinetics misc peroxynitrite detoxification misc tyrosine protection misc zebrafish nitrobindin misc Therapeutics. Pharmacology The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin |
authorStr |
Giovanna De Simone |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287578 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RM1-950 |
illustrated |
Not Illustrated |
issn |
20763921 |
topic_title |
RM1-950 The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin <i<Danio rerio</i< heme-protein effect of CO<sub<2</sub< kinetics peroxynitrite detoxification tyrosine protection zebrafish nitrobindin |
topic |
misc RM1-950 misc <i<Danio rerio</i< heme-protein misc effect of CO<sub<2</sub< misc kinetics misc peroxynitrite detoxification misc tyrosine protection misc zebrafish nitrobindin misc Therapeutics. Pharmacology |
topic_unstemmed |
misc RM1-950 misc <i<Danio rerio</i< heme-protein misc effect of CO<sub<2</sub< misc kinetics misc peroxynitrite detoxification misc tyrosine protection misc zebrafish nitrobindin misc Therapeutics. Pharmacology |
topic_browse |
misc RM1-950 misc <i<Danio rerio</i< heme-protein misc effect of CO<sub<2</sub< misc kinetics misc peroxynitrite detoxification misc tyrosine protection misc zebrafish nitrobindin misc Therapeutics. Pharmacology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Antioxidants |
hierarchy_parent_id |
737287578 |
hierarchy_top_title |
Antioxidants |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287578 (DE-600)2704216-9 |
title |
The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin |
ctrlnum |
(DE-627)DOAJ027993094 (DE-599)DOAJ8924a5ecb63a4e4c9892fc33efbf2e70 |
title_full |
The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin |
author_sort |
Giovanna De Simone |
journal |
Antioxidants |
journalStr |
Antioxidants |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Giovanna De Simone Andrea Coletta Alessandra di Masi Massimo Coletta Paolo Ascenzi |
container_volume |
11 |
class |
RM1-950 |
format_se |
Elektronische Aufsätze |
author-letter |
Giovanna De Simone |
doi_str_mv |
10.3390/antiox11101932 |
author2-role |
verfasserin |
title_sort |
balancing of peroxynitrite detoxification between ferric heme-proteins and co<sub<2</sub<: the case of zebrafish nitrobindin |
callnumber |
RM1-950 |
title_auth |
The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin |
abstract |
Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric <i<Danio rerio</i< Nb (<i<Dr</i<-Nb(III)) in the absence and presence of CO<sub<2</sub< is reported. The <i<Dr</i<-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO<sub<2</sub< dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of <i<Dr</i<-Nb(III). The effect of <i<Dr</i<-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. <i<Dr</i<-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO<sub<2</sub<, <i<Dr</i<-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO<sub<2</sub<, the ferric heme protein concentration must be higher than 10<sup<−4</sup< M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO<sub<2</sub</HCO<sub<3</sub<<sup<−</sup< in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions. |
abstractGer |
Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric <i<Danio rerio</i< Nb (<i<Dr</i<-Nb(III)) in the absence and presence of CO<sub<2</sub< is reported. The <i<Dr</i<-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO<sub<2</sub< dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of <i<Dr</i<-Nb(III). The effect of <i<Dr</i<-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. <i<Dr</i<-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO<sub<2</sub<, <i<Dr</i<-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO<sub<2</sub<, the ferric heme protein concentration must be higher than 10<sup<−4</sup< M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO<sub<2</sub</HCO<sub<3</sub<<sup<−</sup< in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions. |
abstract_unstemmed |
Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric <i<Danio rerio</i< Nb (<i<Dr</i<-Nb(III)) in the absence and presence of CO<sub<2</sub< is reported. The <i<Dr</i<-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO<sub<2</sub< dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of <i<Dr</i<-Nb(III). The effect of <i<Dr</i<-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. <i<Dr</i<-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO<sub<2</sub<, <i<Dr</i<-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO<sub<2</sub<, the ferric heme protein concentration must be higher than 10<sup<−4</sup< M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO<sub<2</sub</HCO<sub<3</sub<<sup<−</sup< in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 1932 |
title_short |
The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin |
url |
https://doi.org/10.3390/antiox11101932 https://doaj.org/article/8924a5ecb63a4e4c9892fc33efbf2e70 https://www.mdpi.com/2076-3921/11/10/1932 https://doaj.org/toc/2076-3921 |
remote_bool |
true |
author2 |
Andrea Coletta Alessandra di Masi Massimo Coletta Paolo Ascenzi |
author2Str |
Andrea Coletta Alessandra di Masi Massimo Coletta Paolo Ascenzi |
ppnlink |
737287578 |
callnumber-subject |
RM - Therapeutics and Pharmacology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/antiox11101932 |
callnumber-a |
RM1-950 |
up_date |
2024-07-03T15:08:42.850Z |
_version_ |
1803570981482004481 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ027993094</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414182026.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/antiox11101932</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ027993094</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8924a5ecb63a4e4c9892fc33efbf2e70</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RM1-950</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Giovanna De Simone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Balancing of Peroxynitrite Detoxification between Ferric Heme-Proteins and CO<sub<2</sub<: The Case of Zebrafish Nitrobindin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nitrobindins (Nbs) are all-β-barrel heme proteins and are present in prokaryotes and eukaryotes. Although their function(s) is still obscure, Nbs trap NO and inactivate peroxynitrite. Here, the kinetics of peroxynitrite scavenging by ferric <i<Danio rerio</i< Nb (<i<Dr</i<-Nb(III)) in the absence and presence of CO<sub<2</sub< is reported. The <i<Dr</i<-Nb(III)-catalyzed scavenging of peroxynitrite is facilitated by a low pH, indicating that the heme protein interacts preferentially with peroxynitrous acid, leading to the formation of nitrate (~91%) and nitrite (~9%). The physiological levels of CO<sub<2</sub< dramatically facilitate the spontaneous decay of peroxynitrite, overwhelming the scavenging activity of <i<Dr</i<-Nb(III). The effect of <i<Dr</i<-Nb(III) on the peroxynitrite-induced nitration of L-tyrosine was also investigated. <i<Dr</i<-Nb(III) inhibits the peroxynitrite-mediated nitration of free L-tyrosine, while, in the presence of CO<sub<2</sub<, <i<Dr</i<-Nb(III) does not impair nitro-L-tyrosine formation. The comparative analysis of the present results with data reported in the literature indicates that, to act as efficient peroxynitrite scavengers in vivo, i.e., in the presence of physiological levels of CO<sub<2</sub<, the ferric heme protein concentration must be higher than 10<sup<−4</sup< M. Thus, only the circulating ferric hemoglobin levels appear to be high enough to efficiently compete with CO<sub<2</sub</HCO<sub<3</sub<<sup<−</sup< in peroxynitrite inactivation. The present results are of the utmost importance for tissues, like the eye retina in fish, where blood circulation is critical for adaptation to diving conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Danio rerio</i< heme-protein</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">effect of CO<sub<2</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">peroxynitrite detoxification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tyrosine protection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zebrafish nitrobindin</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Therapeutics. Pharmacology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Coletta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessandra di Masi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Massimo Coletta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paolo Ascenzi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Antioxidants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 10, p 1932</subfield><subfield code="w">(DE-627)737287578</subfield><subfield code="w">(DE-600)2704216-9</subfield><subfield code="x">20763921</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 1932</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/antiox11101932</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8924a5ecb63a4e4c9892fc33efbf2e70</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3921/11/10/1932</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3921</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 1932</subfield></datafield></record></collection>
|
score |
7.3993254 |