Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm
For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with log...
Ausführliche Beschreibung
Autor*in: |
Ahmed Yahia Kallel [verfasserIn] Olfa Kanoun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Batteries - MDPI AG, 2016, 8(2022), 10, p 176 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; number:10, p 176 |
Links: |
---|
DOI / URN: |
10.3390/batteries8100176 |
---|
Katalog-ID: |
DOAJ028017293 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ028017293 | ||
003 | DE-627 | ||
005 | 20240414181638.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/batteries8100176 |2 doi | |
035 | |a (DE-627)DOAJ028017293 | ||
035 | |a (DE-599)DOAJc79041621f0a45ccaeda4c6dfbd02a71 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1001-1841 | |
050 | 0 | |a TP250-261 | |
100 | 0 | |a Ahmed Yahia Kallel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with logarithmic frequency distribution can significantly reduce the measurement time but need optimization of the crest factor to realize a high signal-to-noise ratio at all excitation frequencies and maintain at the same time the linearity and stability conditions of impedance spectroscopy. Crest factor optimization is challenging, as the obtained results strongly depend on the initial phase values and many trials are necessary. It takes a very long time and can not be easily performed automatically up to now. In this paper, we propose a time-efficient hybrid stochastic-deterministic crest factor optimization method for multisine signals with logarithmic frequency distribution. A sigmoid transform on the multisine signal gradually transforms the multi-frequency signal into a binary-alike signal. The crest factor is significantly decreased, but the phases of the singular frequency signals remain sub-optimal. Further optimization based on the Gauss-Newton algorithm can determine the final phases, realizing a lower crest factor. The proposed method is less sensitive to initial phase values and provides more reasonable results in a reasonable time. The validation on a Samsung INR-18650-25R Lithium-ion battery cell shows that the crest factor of the optimized multisine signals has a median of 3.62 ± 0.7 within 6 min of run time, which is significantly better than the best previous work in the state-of-the-art of 3.85 ± 0.11 for the same run time. | ||
650 | 4 | |a excitation signal | |
650 | 4 | |a impedance spectroscopy | |
650 | 4 | |a EIS | |
650 | 4 | |a lithium-ion | |
650 | 4 | |a multisine | |
650 | 4 | |a crest factor optimization | |
653 | 0 | |a Production of electric energy or power. Powerplants. Central stations | |
653 | 0 | |a Industrial electrochemistry | |
700 | 0 | |a Olfa Kanoun |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Batteries |d MDPI AG, 2016 |g 8(2022), 10, p 176 |w (DE-627)820684066 |w (DE-600)2813972-0 |x 23130105 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g number:10, p 176 |
856 | 4 | 0 | |u https://doi.org/10.3390/batteries8100176 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c79041621f0a45ccaeda4c6dfbd02a71 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2313-0105/8/10/176 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2313-0105 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |e 10, p 176 |
author_variant |
a y k ayk o k ok |
---|---|
matchkey_str |
article:23130105:2022----::rsfcootmztofrutsnecttosgasihoaihifeunyitiuinaeoayrdtca |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.3390/batteries8100176 doi (DE-627)DOAJ028017293 (DE-599)DOAJc79041621f0a45ccaeda4c6dfbd02a71 DE-627 ger DE-627 rakwb eng TK1001-1841 TP250-261 Ahmed Yahia Kallel verfasserin aut Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with logarithmic frequency distribution can significantly reduce the measurement time but need optimization of the crest factor to realize a high signal-to-noise ratio at all excitation frequencies and maintain at the same time the linearity and stability conditions of impedance spectroscopy. Crest factor optimization is challenging, as the obtained results strongly depend on the initial phase values and many trials are necessary. It takes a very long time and can not be easily performed automatically up to now. In this paper, we propose a time-efficient hybrid stochastic-deterministic crest factor optimization method for multisine signals with logarithmic frequency distribution. A sigmoid transform on the multisine signal gradually transforms the multi-frequency signal into a binary-alike signal. The crest factor is significantly decreased, but the phases of the singular frequency signals remain sub-optimal. Further optimization based on the Gauss-Newton algorithm can determine the final phases, realizing a lower crest factor. The proposed method is less sensitive to initial phase values and provides more reasonable results in a reasonable time. The validation on a Samsung INR-18650-25R Lithium-ion battery cell shows that the crest factor of the optimized multisine signals has a median of 3.62 ± 0.7 within 6 min of run time, which is significantly better than the best previous work in the state-of-the-art of 3.85 ± 0.11 for the same run time. excitation signal impedance spectroscopy EIS lithium-ion multisine crest factor optimization Production of electric energy or power. Powerplants. Central stations Industrial electrochemistry Olfa Kanoun verfasserin aut In Batteries MDPI AG, 2016 8(2022), 10, p 176 (DE-627)820684066 (DE-600)2813972-0 23130105 nnns volume:8 year:2022 number:10, p 176 https://doi.org/10.3390/batteries8100176 kostenfrei https://doaj.org/article/c79041621f0a45ccaeda4c6dfbd02a71 kostenfrei https://www.mdpi.com/2313-0105/8/10/176 kostenfrei https://doaj.org/toc/2313-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 10, p 176 |
spelling |
10.3390/batteries8100176 doi (DE-627)DOAJ028017293 (DE-599)DOAJc79041621f0a45ccaeda4c6dfbd02a71 DE-627 ger DE-627 rakwb eng TK1001-1841 TP250-261 Ahmed Yahia Kallel verfasserin aut Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with logarithmic frequency distribution can significantly reduce the measurement time but need optimization of the crest factor to realize a high signal-to-noise ratio at all excitation frequencies and maintain at the same time the linearity and stability conditions of impedance spectroscopy. Crest factor optimization is challenging, as the obtained results strongly depend on the initial phase values and many trials are necessary. It takes a very long time and can not be easily performed automatically up to now. In this paper, we propose a time-efficient hybrid stochastic-deterministic crest factor optimization method for multisine signals with logarithmic frequency distribution. A sigmoid transform on the multisine signal gradually transforms the multi-frequency signal into a binary-alike signal. The crest factor is significantly decreased, but the phases of the singular frequency signals remain sub-optimal. Further optimization based on the Gauss-Newton algorithm can determine the final phases, realizing a lower crest factor. The proposed method is less sensitive to initial phase values and provides more reasonable results in a reasonable time. The validation on a Samsung INR-18650-25R Lithium-ion battery cell shows that the crest factor of the optimized multisine signals has a median of 3.62 ± 0.7 within 6 min of run time, which is significantly better than the best previous work in the state-of-the-art of 3.85 ± 0.11 for the same run time. excitation signal impedance spectroscopy EIS lithium-ion multisine crest factor optimization Production of electric energy or power. Powerplants. Central stations Industrial electrochemistry Olfa Kanoun verfasserin aut In Batteries MDPI AG, 2016 8(2022), 10, p 176 (DE-627)820684066 (DE-600)2813972-0 23130105 nnns volume:8 year:2022 number:10, p 176 https://doi.org/10.3390/batteries8100176 kostenfrei https://doaj.org/article/c79041621f0a45ccaeda4c6dfbd02a71 kostenfrei https://www.mdpi.com/2313-0105/8/10/176 kostenfrei https://doaj.org/toc/2313-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 10, p 176 |
allfields_unstemmed |
10.3390/batteries8100176 doi (DE-627)DOAJ028017293 (DE-599)DOAJc79041621f0a45ccaeda4c6dfbd02a71 DE-627 ger DE-627 rakwb eng TK1001-1841 TP250-261 Ahmed Yahia Kallel verfasserin aut Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with logarithmic frequency distribution can significantly reduce the measurement time but need optimization of the crest factor to realize a high signal-to-noise ratio at all excitation frequencies and maintain at the same time the linearity and stability conditions of impedance spectroscopy. Crest factor optimization is challenging, as the obtained results strongly depend on the initial phase values and many trials are necessary. It takes a very long time and can not be easily performed automatically up to now. In this paper, we propose a time-efficient hybrid stochastic-deterministic crest factor optimization method for multisine signals with logarithmic frequency distribution. A sigmoid transform on the multisine signal gradually transforms the multi-frequency signal into a binary-alike signal. The crest factor is significantly decreased, but the phases of the singular frequency signals remain sub-optimal. Further optimization based on the Gauss-Newton algorithm can determine the final phases, realizing a lower crest factor. The proposed method is less sensitive to initial phase values and provides more reasonable results in a reasonable time. The validation on a Samsung INR-18650-25R Lithium-ion battery cell shows that the crest factor of the optimized multisine signals has a median of 3.62 ± 0.7 within 6 min of run time, which is significantly better than the best previous work in the state-of-the-art of 3.85 ± 0.11 for the same run time. excitation signal impedance spectroscopy EIS lithium-ion multisine crest factor optimization Production of electric energy or power. Powerplants. Central stations Industrial electrochemistry Olfa Kanoun verfasserin aut In Batteries MDPI AG, 2016 8(2022), 10, p 176 (DE-627)820684066 (DE-600)2813972-0 23130105 nnns volume:8 year:2022 number:10, p 176 https://doi.org/10.3390/batteries8100176 kostenfrei https://doaj.org/article/c79041621f0a45ccaeda4c6dfbd02a71 kostenfrei https://www.mdpi.com/2313-0105/8/10/176 kostenfrei https://doaj.org/toc/2313-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 10, p 176 |
allfieldsGer |
10.3390/batteries8100176 doi (DE-627)DOAJ028017293 (DE-599)DOAJc79041621f0a45ccaeda4c6dfbd02a71 DE-627 ger DE-627 rakwb eng TK1001-1841 TP250-261 Ahmed Yahia Kallel verfasserin aut Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with logarithmic frequency distribution can significantly reduce the measurement time but need optimization of the crest factor to realize a high signal-to-noise ratio at all excitation frequencies and maintain at the same time the linearity and stability conditions of impedance spectroscopy. Crest factor optimization is challenging, as the obtained results strongly depend on the initial phase values and many trials are necessary. It takes a very long time and can not be easily performed automatically up to now. In this paper, we propose a time-efficient hybrid stochastic-deterministic crest factor optimization method for multisine signals with logarithmic frequency distribution. A sigmoid transform on the multisine signal gradually transforms the multi-frequency signal into a binary-alike signal. The crest factor is significantly decreased, but the phases of the singular frequency signals remain sub-optimal. Further optimization based on the Gauss-Newton algorithm can determine the final phases, realizing a lower crest factor. The proposed method is less sensitive to initial phase values and provides more reasonable results in a reasonable time. The validation on a Samsung INR-18650-25R Lithium-ion battery cell shows that the crest factor of the optimized multisine signals has a median of 3.62 ± 0.7 within 6 min of run time, which is significantly better than the best previous work in the state-of-the-art of 3.85 ± 0.11 for the same run time. excitation signal impedance spectroscopy EIS lithium-ion multisine crest factor optimization Production of electric energy or power. Powerplants. Central stations Industrial electrochemistry Olfa Kanoun verfasserin aut In Batteries MDPI AG, 2016 8(2022), 10, p 176 (DE-627)820684066 (DE-600)2813972-0 23130105 nnns volume:8 year:2022 number:10, p 176 https://doi.org/10.3390/batteries8100176 kostenfrei https://doaj.org/article/c79041621f0a45ccaeda4c6dfbd02a71 kostenfrei https://www.mdpi.com/2313-0105/8/10/176 kostenfrei https://doaj.org/toc/2313-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 10, p 176 |
allfieldsSound |
10.3390/batteries8100176 doi (DE-627)DOAJ028017293 (DE-599)DOAJc79041621f0a45ccaeda4c6dfbd02a71 DE-627 ger DE-627 rakwb eng TK1001-1841 TP250-261 Ahmed Yahia Kallel verfasserin aut Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with logarithmic frequency distribution can significantly reduce the measurement time but need optimization of the crest factor to realize a high signal-to-noise ratio at all excitation frequencies and maintain at the same time the linearity and stability conditions of impedance spectroscopy. Crest factor optimization is challenging, as the obtained results strongly depend on the initial phase values and many trials are necessary. It takes a very long time and can not be easily performed automatically up to now. In this paper, we propose a time-efficient hybrid stochastic-deterministic crest factor optimization method for multisine signals with logarithmic frequency distribution. A sigmoid transform on the multisine signal gradually transforms the multi-frequency signal into a binary-alike signal. The crest factor is significantly decreased, but the phases of the singular frequency signals remain sub-optimal. Further optimization based on the Gauss-Newton algorithm can determine the final phases, realizing a lower crest factor. The proposed method is less sensitive to initial phase values and provides more reasonable results in a reasonable time. The validation on a Samsung INR-18650-25R Lithium-ion battery cell shows that the crest factor of the optimized multisine signals has a median of 3.62 ± 0.7 within 6 min of run time, which is significantly better than the best previous work in the state-of-the-art of 3.85 ± 0.11 for the same run time. excitation signal impedance spectroscopy EIS lithium-ion multisine crest factor optimization Production of electric energy or power. Powerplants. Central stations Industrial electrochemistry Olfa Kanoun verfasserin aut In Batteries MDPI AG, 2016 8(2022), 10, p 176 (DE-627)820684066 (DE-600)2813972-0 23130105 nnns volume:8 year:2022 number:10, p 176 https://doi.org/10.3390/batteries8100176 kostenfrei https://doaj.org/article/c79041621f0a45ccaeda4c6dfbd02a71 kostenfrei https://www.mdpi.com/2313-0105/8/10/176 kostenfrei https://doaj.org/toc/2313-0105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 10, p 176 |
language |
English |
source |
In Batteries 8(2022), 10, p 176 volume:8 year:2022 number:10, p 176 |
sourceStr |
In Batteries 8(2022), 10, p 176 volume:8 year:2022 number:10, p 176 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
excitation signal impedance spectroscopy EIS lithium-ion multisine crest factor optimization Production of electric energy or power. Powerplants. Central stations Industrial electrochemistry |
isfreeaccess_bool |
true |
container_title |
Batteries |
authorswithroles_txt_mv |
Ahmed Yahia Kallel @@aut@@ Olfa Kanoun @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
820684066 |
id |
DOAJ028017293 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028017293</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414181638.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/batteries8100176</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028017293</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc79041621f0a45ccaeda4c6dfbd02a71</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP250-261</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ahmed Yahia Kallel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with logarithmic frequency distribution can significantly reduce the measurement time but need optimization of the crest factor to realize a high signal-to-noise ratio at all excitation frequencies and maintain at the same time the linearity and stability conditions of impedance spectroscopy. Crest factor optimization is challenging, as the obtained results strongly depend on the initial phase values and many trials are necessary. It takes a very long time and can not be easily performed automatically up to now. In this paper, we propose a time-efficient hybrid stochastic-deterministic crest factor optimization method for multisine signals with logarithmic frequency distribution. A sigmoid transform on the multisine signal gradually transforms the multi-frequency signal into a binary-alike signal. The crest factor is significantly decreased, but the phases of the singular frequency signals remain sub-optimal. Further optimization based on the Gauss-Newton algorithm can determine the final phases, realizing a lower crest factor. The proposed method is less sensitive to initial phase values and provides more reasonable results in a reasonable time. The validation on a Samsung INR-18650-25R Lithium-ion battery cell shows that the crest factor of the optimized multisine signals has a median of 3.62 ± 0.7 within 6 min of run time, which is significantly better than the best previous work in the state-of-the-art of 3.85 ± 0.11 for the same run time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">excitation signal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">impedance spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lithium-ion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multisine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crest factor optimization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial electrochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olfa Kanoun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Batteries</subfield><subfield code="d">MDPI AG, 2016</subfield><subfield code="g">8(2022), 10, p 176</subfield><subfield code="w">(DE-627)820684066</subfield><subfield code="w">(DE-600)2813972-0</subfield><subfield code="x">23130105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 176</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/batteries8100176</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c79041621f0a45ccaeda4c6dfbd02a71</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2313-0105/8/10/176</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2313-0105</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 176</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Ahmed Yahia Kallel |
spellingShingle |
Ahmed Yahia Kallel misc TK1001-1841 misc TP250-261 misc excitation signal misc impedance spectroscopy misc EIS misc lithium-ion misc multisine misc crest factor optimization misc Production of electric energy or power. Powerplants. Central stations misc Industrial electrochemistry Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm |
authorStr |
Ahmed Yahia Kallel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820684066 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1001-1841 |
illustrated |
Not Illustrated |
issn |
23130105 |
topic_title |
TK1001-1841 TP250-261 Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm excitation signal impedance spectroscopy EIS lithium-ion multisine crest factor optimization |
topic |
misc TK1001-1841 misc TP250-261 misc excitation signal misc impedance spectroscopy misc EIS misc lithium-ion misc multisine misc crest factor optimization misc Production of electric energy or power. Powerplants. Central stations misc Industrial electrochemistry |
topic_unstemmed |
misc TK1001-1841 misc TP250-261 misc excitation signal misc impedance spectroscopy misc EIS misc lithium-ion misc multisine misc crest factor optimization misc Production of electric energy or power. Powerplants. Central stations misc Industrial electrochemistry |
topic_browse |
misc TK1001-1841 misc TP250-261 misc excitation signal misc impedance spectroscopy misc EIS misc lithium-ion misc multisine misc crest factor optimization misc Production of electric energy or power. Powerplants. Central stations misc Industrial electrochemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Batteries |
hierarchy_parent_id |
820684066 |
hierarchy_top_title |
Batteries |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820684066 (DE-600)2813972-0 |
title |
Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm |
ctrlnum |
(DE-627)DOAJ028017293 (DE-599)DOAJc79041621f0a45ccaeda4c6dfbd02a71 |
title_full |
Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm |
author_sort |
Ahmed Yahia Kallel |
journal |
Batteries |
journalStr |
Batteries |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Ahmed Yahia Kallel Olfa Kanoun |
container_volume |
8 |
class |
TK1001-1841 TP250-261 |
format_se |
Elektronische Aufsätze |
author-letter |
Ahmed Yahia Kallel |
doi_str_mv |
10.3390/batteries8100176 |
author2-role |
verfasserin |
title_sort |
crest factor optimization for multisine excitation signals with logarithmic frequency distribution based on a hybrid stochastic-deterministic optimization algorithm |
callnumber |
TK1001-1841 |
title_auth |
Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm |
abstract |
For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with logarithmic frequency distribution can significantly reduce the measurement time but need optimization of the crest factor to realize a high signal-to-noise ratio at all excitation frequencies and maintain at the same time the linearity and stability conditions of impedance spectroscopy. Crest factor optimization is challenging, as the obtained results strongly depend on the initial phase values and many trials are necessary. It takes a very long time and can not be easily performed automatically up to now. In this paper, we propose a time-efficient hybrid stochastic-deterministic crest factor optimization method for multisine signals with logarithmic frequency distribution. A sigmoid transform on the multisine signal gradually transforms the multi-frequency signal into a binary-alike signal. The crest factor is significantly decreased, but the phases of the singular frequency signals remain sub-optimal. Further optimization based on the Gauss-Newton algorithm can determine the final phases, realizing a lower crest factor. The proposed method is less sensitive to initial phase values and provides more reasonable results in a reasonable time. The validation on a Samsung INR-18650-25R Lithium-ion battery cell shows that the crest factor of the optimized multisine signals has a median of 3.62 ± 0.7 within 6 min of run time, which is significantly better than the best previous work in the state-of-the-art of 3.85 ± 0.11 for the same run time. |
abstractGer |
For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with logarithmic frequency distribution can significantly reduce the measurement time but need optimization of the crest factor to realize a high signal-to-noise ratio at all excitation frequencies and maintain at the same time the linearity and stability conditions of impedance spectroscopy. Crest factor optimization is challenging, as the obtained results strongly depend on the initial phase values and many trials are necessary. It takes a very long time and can not be easily performed automatically up to now. In this paper, we propose a time-efficient hybrid stochastic-deterministic crest factor optimization method for multisine signals with logarithmic frequency distribution. A sigmoid transform on the multisine signal gradually transforms the multi-frequency signal into a binary-alike signal. The crest factor is significantly decreased, but the phases of the singular frequency signals remain sub-optimal. Further optimization based on the Gauss-Newton algorithm can determine the final phases, realizing a lower crest factor. The proposed method is less sensitive to initial phase values and provides more reasonable results in a reasonable time. The validation on a Samsung INR-18650-25R Lithium-ion battery cell shows that the crest factor of the optimized multisine signals has a median of 3.62 ± 0.7 within 6 min of run time, which is significantly better than the best previous work in the state-of-the-art of 3.85 ± 0.11 for the same run time. |
abstract_unstemmed |
For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with logarithmic frequency distribution can significantly reduce the measurement time but need optimization of the crest factor to realize a high signal-to-noise ratio at all excitation frequencies and maintain at the same time the linearity and stability conditions of impedance spectroscopy. Crest factor optimization is challenging, as the obtained results strongly depend on the initial phase values and many trials are necessary. It takes a very long time and can not be easily performed automatically up to now. In this paper, we propose a time-efficient hybrid stochastic-deterministic crest factor optimization method for multisine signals with logarithmic frequency distribution. A sigmoid transform on the multisine signal gradually transforms the multi-frequency signal into a binary-alike signal. The crest factor is significantly decreased, but the phases of the singular frequency signals remain sub-optimal. Further optimization based on the Gauss-Newton algorithm can determine the final phases, realizing a lower crest factor. The proposed method is less sensitive to initial phase values and provides more reasonable results in a reasonable time. The validation on a Samsung INR-18650-25R Lithium-ion battery cell shows that the crest factor of the optimized multisine signals has a median of 3.62 ± 0.7 within 6 min of run time, which is significantly better than the best previous work in the state-of-the-art of 3.85 ± 0.11 for the same run time. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 176 |
title_short |
Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm |
url |
https://doi.org/10.3390/batteries8100176 https://doaj.org/article/c79041621f0a45ccaeda4c6dfbd02a71 https://www.mdpi.com/2313-0105/8/10/176 https://doaj.org/toc/2313-0105 |
remote_bool |
true |
author2 |
Olfa Kanoun |
author2Str |
Olfa Kanoun |
ppnlink |
820684066 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/batteries8100176 |
callnumber-a |
TK1001-1841 |
up_date |
2024-07-03T15:16:38.936Z |
_version_ |
1803571480691212288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028017293</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414181638.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/batteries8100176</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028017293</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc79041621f0a45ccaeda4c6dfbd02a71</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP250-261</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ahmed Yahia Kallel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Crest Factor Optimization for Multisine Excitation Signals with Logarithmic Frequency Distribution Based on a Hybrid Stochastic-Deterministic Optimization Algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For diagnosis of batteries and fuel cells based on impedance spectroscopy, excitation signals are required, including low frequencies down to the mHz range. This leads to a long measurement time and compromises the stability condition for impedance spectroscopy. Multisine excitation signals with logarithmic frequency distribution can significantly reduce the measurement time but need optimization of the crest factor to realize a high signal-to-noise ratio at all excitation frequencies and maintain at the same time the linearity and stability conditions of impedance spectroscopy. Crest factor optimization is challenging, as the obtained results strongly depend on the initial phase values and many trials are necessary. It takes a very long time and can not be easily performed automatically up to now. In this paper, we propose a time-efficient hybrid stochastic-deterministic crest factor optimization method for multisine signals with logarithmic frequency distribution. A sigmoid transform on the multisine signal gradually transforms the multi-frequency signal into a binary-alike signal. The crest factor is significantly decreased, but the phases of the singular frequency signals remain sub-optimal. Further optimization based on the Gauss-Newton algorithm can determine the final phases, realizing a lower crest factor. The proposed method is less sensitive to initial phase values and provides more reasonable results in a reasonable time. The validation on a Samsung INR-18650-25R Lithium-ion battery cell shows that the crest factor of the optimized multisine signals has a median of 3.62 ± 0.7 within 6 min of run time, which is significantly better than the best previous work in the state-of-the-art of 3.85 ± 0.11 for the same run time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">excitation signal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">impedance spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lithium-ion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multisine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crest factor optimization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Industrial electrochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olfa Kanoun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Batteries</subfield><subfield code="d">MDPI AG, 2016</subfield><subfield code="g">8(2022), 10, p 176</subfield><subfield code="w">(DE-627)820684066</subfield><subfield code="w">(DE-600)2813972-0</subfield><subfield code="x">23130105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 176</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/batteries8100176</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c79041621f0a45ccaeda4c6dfbd02a71</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2313-0105/8/10/176</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2313-0105</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 176</subfield></datafield></record></collection>
|
score |
7.401613 |