Mathematical methods for the randomized non-autonomous Bertalanffy model
In this article we analyze the randomized non-autonomous Bertalanffy model $$ x'(t,\omega)=a(t,\omega)x(t,\omega)+b(t,\omega)x(t,\omega)^{2/3},\quad x(t_0,\omega)=x_0(\omega), $$ where $a(t,\omega)$ and $b(t,\omega)$ are stochastic processes and $x_0(\omega)$ is a random variable, all of them d...
Ausführliche Beschreibung
Autor*in: |
Julia Calatayud [verfasserIn] Tomas Caraballo [verfasserIn] Juan Carlos Cortes [verfasserIn] Marc Jornet [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
random non-autonomous bertalanffy model |
---|
Übergeordnetes Werk: |
In: Electronic Journal of Differential Equations - Texas State University, 2003, (2020), 50,, Seite 19 |
---|---|
Übergeordnetes Werk: |
year:2020 ; number:50, ; pages:19 |
Links: |
---|
Katalog-ID: |
DOAJ028028120 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ028028120 | ||
003 | DE-627 | ||
005 | 20230502061812.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2020 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ028028120 | ||
035 | |a (DE-599)DOAJe94fec2cb231436eb810c820714e227f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Julia Calatayud |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mathematical methods for the randomized non-autonomous Bertalanffy model |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this article we analyze the randomized non-autonomous Bertalanffy model $$ x'(t,\omega)=a(t,\omega)x(t,\omega)+b(t,\omega)x(t,\omega)^{2/3},\quad x(t_0,\omega)=x_0(\omega), $$ where $a(t,\omega)$ and $b(t,\omega)$ are stochastic processes and $x_0(\omega)$ is a random variable, all of them defined in an underlying complete probability space. Under certain assumptions on a, b and $x_0$, we obtain a solution stochastic process, $x(t,\omega)$, both in the sample path and in the mean square senses. By using the random variable transformation technique and Karhunen-Loeve expansions, we construct a sequence of probability density functions that under certain conditions converge pointwise or uniformly to the density function of $x(t,\omega)$, $f_{x(t)}(x)$. This permits approximating the expectation and the variance of $x(t,\omega)$. At the end, numerical experiments are carried out to put in practice our theoretical findings. | ||
650 | 4 | |a random non-autonomous bertalanffy model | |
650 | 4 | |a random differential equation | |
650 | 4 | |a random variable transformation technique | |
650 | 4 | |a karhunen-loeve expansion | |
650 | 4 | |a probability density function | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Tomas Caraballo |e verfasserin |4 aut | |
700 | 0 | |a Juan Carlos Cortes |e verfasserin |4 aut | |
700 | 0 | |a Marc Jornet |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronic Journal of Differential Equations |d Texas State University, 2003 |g (2020), 50,, Seite 19 |w (DE-627)320518205 |w (DE-600)2014226-2 |x 10726691 |7 nnns |
773 | 1 | 8 | |g year:2020 |g number:50, |g pages:19 |
856 | 4 | 0 | |u https://doaj.org/article/e94fec2cb231436eb810c820714e227f |z kostenfrei |
856 | 4 | 0 | |u http://ejde.math.txstate.edu/Volumes/2020/50/abstr.html |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1072-6691 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2020 |e 50, |h 19 |
author_variant |
j c jc t c tc j c c jcc m j mj |
---|---|
matchkey_str |
article:10726691:2020----::ahmtclehdfrhrnoiennuooos |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QA |
publishDate |
2020 |
allfields |
(DE-627)DOAJ028028120 (DE-599)DOAJe94fec2cb231436eb810c820714e227f DE-627 ger DE-627 rakwb eng QA1-939 Julia Calatayud verfasserin aut Mathematical methods for the randomized non-autonomous Bertalanffy model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article we analyze the randomized non-autonomous Bertalanffy model $$ x'(t,\omega)=a(t,\omega)x(t,\omega)+b(t,\omega)x(t,\omega)^{2/3},\quad x(t_0,\omega)=x_0(\omega), $$ where $a(t,\omega)$ and $b(t,\omega)$ are stochastic processes and $x_0(\omega)$ is a random variable, all of them defined in an underlying complete probability space. Under certain assumptions on a, b and $x_0$, we obtain a solution stochastic process, $x(t,\omega)$, both in the sample path and in the mean square senses. By using the random variable transformation technique and Karhunen-Loeve expansions, we construct a sequence of probability density functions that under certain conditions converge pointwise or uniformly to the density function of $x(t,\omega)$, $f_{x(t)}(x)$. This permits approximating the expectation and the variance of $x(t,\omega)$. At the end, numerical experiments are carried out to put in practice our theoretical findings. random non-autonomous bertalanffy model random differential equation random variable transformation technique karhunen-loeve expansion probability density function Mathematics Tomas Caraballo verfasserin aut Juan Carlos Cortes verfasserin aut Marc Jornet verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2020), 50,, Seite 19 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2020 number:50, pages:19 https://doaj.org/article/e94fec2cb231436eb810c820714e227f kostenfrei http://ejde.math.txstate.edu/Volumes/2020/50/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 50, 19 |
spelling |
(DE-627)DOAJ028028120 (DE-599)DOAJe94fec2cb231436eb810c820714e227f DE-627 ger DE-627 rakwb eng QA1-939 Julia Calatayud verfasserin aut Mathematical methods for the randomized non-autonomous Bertalanffy model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article we analyze the randomized non-autonomous Bertalanffy model $$ x'(t,\omega)=a(t,\omega)x(t,\omega)+b(t,\omega)x(t,\omega)^{2/3},\quad x(t_0,\omega)=x_0(\omega), $$ where $a(t,\omega)$ and $b(t,\omega)$ are stochastic processes and $x_0(\omega)$ is a random variable, all of them defined in an underlying complete probability space. Under certain assumptions on a, b and $x_0$, we obtain a solution stochastic process, $x(t,\omega)$, both in the sample path and in the mean square senses. By using the random variable transformation technique and Karhunen-Loeve expansions, we construct a sequence of probability density functions that under certain conditions converge pointwise or uniformly to the density function of $x(t,\omega)$, $f_{x(t)}(x)$. This permits approximating the expectation and the variance of $x(t,\omega)$. At the end, numerical experiments are carried out to put in practice our theoretical findings. random non-autonomous bertalanffy model random differential equation random variable transformation technique karhunen-loeve expansion probability density function Mathematics Tomas Caraballo verfasserin aut Juan Carlos Cortes verfasserin aut Marc Jornet verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2020), 50,, Seite 19 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2020 number:50, pages:19 https://doaj.org/article/e94fec2cb231436eb810c820714e227f kostenfrei http://ejde.math.txstate.edu/Volumes/2020/50/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 50, 19 |
allfields_unstemmed |
(DE-627)DOAJ028028120 (DE-599)DOAJe94fec2cb231436eb810c820714e227f DE-627 ger DE-627 rakwb eng QA1-939 Julia Calatayud verfasserin aut Mathematical methods for the randomized non-autonomous Bertalanffy model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article we analyze the randomized non-autonomous Bertalanffy model $$ x'(t,\omega)=a(t,\omega)x(t,\omega)+b(t,\omega)x(t,\omega)^{2/3},\quad x(t_0,\omega)=x_0(\omega), $$ where $a(t,\omega)$ and $b(t,\omega)$ are stochastic processes and $x_0(\omega)$ is a random variable, all of them defined in an underlying complete probability space. Under certain assumptions on a, b and $x_0$, we obtain a solution stochastic process, $x(t,\omega)$, both in the sample path and in the mean square senses. By using the random variable transformation technique and Karhunen-Loeve expansions, we construct a sequence of probability density functions that under certain conditions converge pointwise or uniformly to the density function of $x(t,\omega)$, $f_{x(t)}(x)$. This permits approximating the expectation and the variance of $x(t,\omega)$. At the end, numerical experiments are carried out to put in practice our theoretical findings. random non-autonomous bertalanffy model random differential equation random variable transformation technique karhunen-loeve expansion probability density function Mathematics Tomas Caraballo verfasserin aut Juan Carlos Cortes verfasserin aut Marc Jornet verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2020), 50,, Seite 19 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2020 number:50, pages:19 https://doaj.org/article/e94fec2cb231436eb810c820714e227f kostenfrei http://ejde.math.txstate.edu/Volumes/2020/50/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 50, 19 |
allfieldsGer |
(DE-627)DOAJ028028120 (DE-599)DOAJe94fec2cb231436eb810c820714e227f DE-627 ger DE-627 rakwb eng QA1-939 Julia Calatayud verfasserin aut Mathematical methods for the randomized non-autonomous Bertalanffy model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article we analyze the randomized non-autonomous Bertalanffy model $$ x'(t,\omega)=a(t,\omega)x(t,\omega)+b(t,\omega)x(t,\omega)^{2/3},\quad x(t_0,\omega)=x_0(\omega), $$ where $a(t,\omega)$ and $b(t,\omega)$ are stochastic processes and $x_0(\omega)$ is a random variable, all of them defined in an underlying complete probability space. Under certain assumptions on a, b and $x_0$, we obtain a solution stochastic process, $x(t,\omega)$, both in the sample path and in the mean square senses. By using the random variable transformation technique and Karhunen-Loeve expansions, we construct a sequence of probability density functions that under certain conditions converge pointwise or uniformly to the density function of $x(t,\omega)$, $f_{x(t)}(x)$. This permits approximating the expectation and the variance of $x(t,\omega)$. At the end, numerical experiments are carried out to put in practice our theoretical findings. random non-autonomous bertalanffy model random differential equation random variable transformation technique karhunen-loeve expansion probability density function Mathematics Tomas Caraballo verfasserin aut Juan Carlos Cortes verfasserin aut Marc Jornet verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2020), 50,, Seite 19 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2020 number:50, pages:19 https://doaj.org/article/e94fec2cb231436eb810c820714e227f kostenfrei http://ejde.math.txstate.edu/Volumes/2020/50/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 50, 19 |
allfieldsSound |
(DE-627)DOAJ028028120 (DE-599)DOAJe94fec2cb231436eb810c820714e227f DE-627 ger DE-627 rakwb eng QA1-939 Julia Calatayud verfasserin aut Mathematical methods for the randomized non-autonomous Bertalanffy model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this article we analyze the randomized non-autonomous Bertalanffy model $$ x'(t,\omega)=a(t,\omega)x(t,\omega)+b(t,\omega)x(t,\omega)^{2/3},\quad x(t_0,\omega)=x_0(\omega), $$ where $a(t,\omega)$ and $b(t,\omega)$ are stochastic processes and $x_0(\omega)$ is a random variable, all of them defined in an underlying complete probability space. Under certain assumptions on a, b and $x_0$, we obtain a solution stochastic process, $x(t,\omega)$, both in the sample path and in the mean square senses. By using the random variable transformation technique and Karhunen-Loeve expansions, we construct a sequence of probability density functions that under certain conditions converge pointwise or uniformly to the density function of $x(t,\omega)$, $f_{x(t)}(x)$. This permits approximating the expectation and the variance of $x(t,\omega)$. At the end, numerical experiments are carried out to put in practice our theoretical findings. random non-autonomous bertalanffy model random differential equation random variable transformation technique karhunen-loeve expansion probability density function Mathematics Tomas Caraballo verfasserin aut Juan Carlos Cortes verfasserin aut Marc Jornet verfasserin aut In Electronic Journal of Differential Equations Texas State University, 2003 (2020), 50,, Seite 19 (DE-627)320518205 (DE-600)2014226-2 10726691 nnns year:2020 number:50, pages:19 https://doaj.org/article/e94fec2cb231436eb810c820714e227f kostenfrei http://ejde.math.txstate.edu/Volumes/2020/50/abstr.html kostenfrei https://doaj.org/toc/1072-6691 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2020 50, 19 |
language |
English |
source |
In Electronic Journal of Differential Equations (2020), 50,, Seite 19 year:2020 number:50, pages:19 |
sourceStr |
In Electronic Journal of Differential Equations (2020), 50,, Seite 19 year:2020 number:50, pages:19 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
random non-autonomous bertalanffy model random differential equation random variable transformation technique karhunen-loeve expansion probability density function Mathematics |
isfreeaccess_bool |
true |
container_title |
Electronic Journal of Differential Equations |
authorswithroles_txt_mv |
Julia Calatayud @@aut@@ Tomas Caraballo @@aut@@ Juan Carlos Cortes @@aut@@ Marc Jornet @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320518205 |
id |
DOAJ028028120 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028028120</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502061812.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028028120</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe94fec2cb231436eb810c820714e227f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Julia Calatayud</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical methods for the randomized non-autonomous Bertalanffy model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article we analyze the randomized non-autonomous Bertalanffy model $$ x'(t,\omega)=a(t,\omega)x(t,\omega)+b(t,\omega)x(t,\omega)^{2/3},\quad x(t_0,\omega)=x_0(\omega), $$ where $a(t,\omega)$ and $b(t,\omega)$ are stochastic processes and $x_0(\omega)$ is a random variable, all of them defined in an underlying complete probability space. Under certain assumptions on a, b and $x_0$, we obtain a solution stochastic process, $x(t,\omega)$, both in the sample path and in the mean square senses. By using the random variable transformation technique and Karhunen-Loeve expansions, we construct a sequence of probability density functions that under certain conditions converge pointwise or uniformly to the density function of $x(t,\omega)$, $f_{x(t)}(x)$. This permits approximating the expectation and the variance of $x(t,\omega)$. At the end, numerical experiments are carried out to put in practice our theoretical findings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random non-autonomous bertalanffy model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random differential equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random variable transformation technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">karhunen-loeve expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probability density function</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tomas Caraballo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Carlos Cortes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marc Jornet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronic Journal of Differential Equations</subfield><subfield code="d">Texas State University, 2003</subfield><subfield code="g">(2020), 50,, Seite 19</subfield><subfield code="w">(DE-627)320518205</subfield><subfield code="w">(DE-600)2014226-2</subfield><subfield code="x">10726691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2020</subfield><subfield code="g">number:50,</subfield><subfield code="g">pages:19</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e94fec2cb231436eb810c820714e227f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://ejde.math.txstate.edu/Volumes/2020/50/abstr.html</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1072-6691</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2020</subfield><subfield code="e">50,</subfield><subfield code="h">19</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Julia Calatayud |
spellingShingle |
Julia Calatayud misc QA1-939 misc random non-autonomous bertalanffy model misc random differential equation misc random variable transformation technique misc karhunen-loeve expansion misc probability density function misc Mathematics Mathematical methods for the randomized non-autonomous Bertalanffy model |
authorStr |
Julia Calatayud |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320518205 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
10726691 |
topic_title |
QA1-939 Mathematical methods for the randomized non-autonomous Bertalanffy model random non-autonomous bertalanffy model random differential equation random variable transformation technique karhunen-loeve expansion probability density function |
topic |
misc QA1-939 misc random non-autonomous bertalanffy model misc random differential equation misc random variable transformation technique misc karhunen-loeve expansion misc probability density function misc Mathematics |
topic_unstemmed |
misc QA1-939 misc random non-autonomous bertalanffy model misc random differential equation misc random variable transformation technique misc karhunen-loeve expansion misc probability density function misc Mathematics |
topic_browse |
misc QA1-939 misc random non-autonomous bertalanffy model misc random differential equation misc random variable transformation technique misc karhunen-loeve expansion misc probability density function misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronic Journal of Differential Equations |
hierarchy_parent_id |
320518205 |
hierarchy_top_title |
Electronic Journal of Differential Equations |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320518205 (DE-600)2014226-2 |
title |
Mathematical methods for the randomized non-autonomous Bertalanffy model |
ctrlnum |
(DE-627)DOAJ028028120 (DE-599)DOAJe94fec2cb231436eb810c820714e227f |
title_full |
Mathematical methods for the randomized non-autonomous Bertalanffy model |
author_sort |
Julia Calatayud |
journal |
Electronic Journal of Differential Equations |
journalStr |
Electronic Journal of Differential Equations |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
19 |
author_browse |
Julia Calatayud Tomas Caraballo Juan Carlos Cortes Marc Jornet |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Julia Calatayud |
author2-role |
verfasserin |
title_sort |
mathematical methods for the randomized non-autonomous bertalanffy model |
callnumber |
QA1-939 |
title_auth |
Mathematical methods for the randomized non-autonomous Bertalanffy model |
abstract |
In this article we analyze the randomized non-autonomous Bertalanffy model $$ x'(t,\omega)=a(t,\omega)x(t,\omega)+b(t,\omega)x(t,\omega)^{2/3},\quad x(t_0,\omega)=x_0(\omega), $$ where $a(t,\omega)$ and $b(t,\omega)$ are stochastic processes and $x_0(\omega)$ is a random variable, all of them defined in an underlying complete probability space. Under certain assumptions on a, b and $x_0$, we obtain a solution stochastic process, $x(t,\omega)$, both in the sample path and in the mean square senses. By using the random variable transformation technique and Karhunen-Loeve expansions, we construct a sequence of probability density functions that under certain conditions converge pointwise or uniformly to the density function of $x(t,\omega)$, $f_{x(t)}(x)$. This permits approximating the expectation and the variance of $x(t,\omega)$. At the end, numerical experiments are carried out to put in practice our theoretical findings. |
abstractGer |
In this article we analyze the randomized non-autonomous Bertalanffy model $$ x'(t,\omega)=a(t,\omega)x(t,\omega)+b(t,\omega)x(t,\omega)^{2/3},\quad x(t_0,\omega)=x_0(\omega), $$ where $a(t,\omega)$ and $b(t,\omega)$ are stochastic processes and $x_0(\omega)$ is a random variable, all of them defined in an underlying complete probability space. Under certain assumptions on a, b and $x_0$, we obtain a solution stochastic process, $x(t,\omega)$, both in the sample path and in the mean square senses. By using the random variable transformation technique and Karhunen-Loeve expansions, we construct a sequence of probability density functions that under certain conditions converge pointwise or uniformly to the density function of $x(t,\omega)$, $f_{x(t)}(x)$. This permits approximating the expectation and the variance of $x(t,\omega)$. At the end, numerical experiments are carried out to put in practice our theoretical findings. |
abstract_unstemmed |
In this article we analyze the randomized non-autonomous Bertalanffy model $$ x'(t,\omega)=a(t,\omega)x(t,\omega)+b(t,\omega)x(t,\omega)^{2/3},\quad x(t_0,\omega)=x_0(\omega), $$ where $a(t,\omega)$ and $b(t,\omega)$ are stochastic processes and $x_0(\omega)$ is a random variable, all of them defined in an underlying complete probability space. Under certain assumptions on a, b and $x_0$, we obtain a solution stochastic process, $x(t,\omega)$, both in the sample path and in the mean square senses. By using the random variable transformation technique and Karhunen-Loeve expansions, we construct a sequence of probability density functions that under certain conditions converge pointwise or uniformly to the density function of $x(t,\omega)$, $f_{x(t)}(x)$. This permits approximating the expectation and the variance of $x(t,\omega)$. At the end, numerical experiments are carried out to put in practice our theoretical findings. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
50, |
title_short |
Mathematical methods for the randomized non-autonomous Bertalanffy model |
url |
https://doaj.org/article/e94fec2cb231436eb810c820714e227f http://ejde.math.txstate.edu/Volumes/2020/50/abstr.html https://doaj.org/toc/1072-6691 |
remote_bool |
true |
author2 |
Tomas Caraballo Juan Carlos Cortes Marc Jornet |
author2Str |
Tomas Caraballo Juan Carlos Cortes Marc Jornet |
ppnlink |
320518205 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T15:20:14.063Z |
_version_ |
1803571706270318592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028028120</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502061812.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028028120</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe94fec2cb231436eb810c820714e227f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Julia Calatayud</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical methods for the randomized non-autonomous Bertalanffy model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this article we analyze the randomized non-autonomous Bertalanffy model $$ x'(t,\omega)=a(t,\omega)x(t,\omega)+b(t,\omega)x(t,\omega)^{2/3},\quad x(t_0,\omega)=x_0(\omega), $$ where $a(t,\omega)$ and $b(t,\omega)$ are stochastic processes and $x_0(\omega)$ is a random variable, all of them defined in an underlying complete probability space. Under certain assumptions on a, b and $x_0$, we obtain a solution stochastic process, $x(t,\omega)$, both in the sample path and in the mean square senses. By using the random variable transformation technique and Karhunen-Loeve expansions, we construct a sequence of probability density functions that under certain conditions converge pointwise or uniformly to the density function of $x(t,\omega)$, $f_{x(t)}(x)$. This permits approximating the expectation and the variance of $x(t,\omega)$. At the end, numerical experiments are carried out to put in practice our theoretical findings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random non-autonomous bertalanffy model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random differential equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random variable transformation technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">karhunen-loeve expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">probability density function</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tomas Caraballo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Carlos Cortes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marc Jornet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronic Journal of Differential Equations</subfield><subfield code="d">Texas State University, 2003</subfield><subfield code="g">(2020), 50,, Seite 19</subfield><subfield code="w">(DE-627)320518205</subfield><subfield code="w">(DE-600)2014226-2</subfield><subfield code="x">10726691</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2020</subfield><subfield code="g">number:50,</subfield><subfield code="g">pages:19</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e94fec2cb231436eb810c820714e227f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://ejde.math.txstate.edu/Volumes/2020/50/abstr.html</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1072-6691</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2020</subfield><subfield code="e">50,</subfield><subfield code="h">19</subfield></datafield></record></collection>
|
score |
7.40158 |