2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure
This paper presents a pipelined noise-shaping SAR (PLNS-SAR) ADC for high SNDR, wide bandwidth, and low power consumption. The proposed design achieves a sharp second-order NTF of an error feedback structure, without a multi-input comparator and additional residue amplifier. Additionally, the SNDR i...
Ausführliche Beschreibung
Autor*in: |
Jihyun Baek [verfasserIn] Juyong Lee [verfasserIn] Jintae Kim [verfasserIn] Hyungil Chae [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Electronics - MDPI AG, 2013, 11(2022), 19, p 3072 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2022 ; number:19, p 3072 |
Links: |
---|
DOI / URN: |
10.3390/electronics11193072 |
---|
Katalog-ID: |
DOAJ028286057 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ028286057 | ||
003 | DE-627 | ||
005 | 20240414185422.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/electronics11193072 |2 doi | |
035 | |a (DE-627)DOAJ028286057 | ||
035 | |a (DE-599)DOAJ5a9934bc373f4361b0ebd9200151219b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
100 | 0 | |a Jihyun Baek |e verfasserin |4 aut | |
245 | 1 | 0 | |a 2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper presents a pipelined noise-shaping SAR (PLNS-SAR) ADC for high SNDR, wide bandwidth, and low power consumption. The proposed design achieves a sharp second-order NTF of an error feedback structure, without a multi-input comparator and additional residue amplifier. Additionally, the SNDR is improved via zero optimization. Additionally, the speed is enhanced via prediction logic and alternately using the passive switched capacitor FIR filter. This consequently achieves the high-power efficiency of the ADC. The simulated SNDR is 79.97 dB; it achieves a 12.5-MHz BW at a 175-MHz sampling rate, with OSR of 7. The total power consumption of the ADC is 4.27 mW at a 1.1-V supply. The <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mi<FoM</mi<</mrow<<mrow<<mrow<<mi mathvariant="normal"<S</mi<<mo<,</mo<<mi<SNDR</mi<</mrow<</mrow<</msub<</mrow<</semantics<</math<</inline-formula< is 174.6 dB. The proposed structure achieves high resolution and wide bandwidth with good energy efficiency. | ||
650 | 4 | |a analog-to-digital converter | |
650 | 4 | |a noise-shaping | |
650 | 4 | |a pipelined SAR ADC | |
650 | 4 | |a pipelined noise-shaping SAR ADC | |
650 | 4 | |a ring amplifier | |
653 | 0 | |a Electronics | |
700 | 0 | |a Juyong Lee |e verfasserin |4 aut | |
700 | 0 | |a Jintae Kim |e verfasserin |4 aut | |
700 | 0 | |a Hyungil Chae |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronics |d MDPI AG, 2013 |g 11(2022), 19, p 3072 |w (DE-627)718626478 |w (DE-600)2662127-7 |x 20799292 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2022 |g number:19, p 3072 |
856 | 4 | 0 | |u https://doi.org/10.3390/electronics11193072 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5a9934bc373f4361b0ebd9200151219b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9292/11/19/3072 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2022 |e 19, p 3072 |
author_variant |
j b jb j l jl j k jk h c hc |
---|---|
matchkey_str |
article:20799292:2022----::nodrieieniehpnsrduigro |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.3390/electronics11193072 doi (DE-627)DOAJ028286057 (DE-599)DOAJ5a9934bc373f4361b0ebd9200151219b DE-627 ger DE-627 rakwb eng TK7800-8360 Jihyun Baek verfasserin aut 2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a pipelined noise-shaping SAR (PLNS-SAR) ADC for high SNDR, wide bandwidth, and low power consumption. The proposed design achieves a sharp second-order NTF of an error feedback structure, without a multi-input comparator and additional residue amplifier. Additionally, the SNDR is improved via zero optimization. Additionally, the speed is enhanced via prediction logic and alternately using the passive switched capacitor FIR filter. This consequently achieves the high-power efficiency of the ADC. The simulated SNDR is 79.97 dB; it achieves a 12.5-MHz BW at a 175-MHz sampling rate, with OSR of 7. The total power consumption of the ADC is 4.27 mW at a 1.1-V supply. The <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mi<FoM</mi<</mrow<<mrow<<mrow<<mi mathvariant="normal"<S</mi<<mo<,</mo<<mi<SNDR</mi<</mrow<</mrow<</msub<</mrow<</semantics<</math<</inline-formula< is 174.6 dB. The proposed structure achieves high resolution and wide bandwidth with good energy efficiency. analog-to-digital converter noise-shaping pipelined SAR ADC pipelined noise-shaping SAR ADC ring amplifier Electronics Juyong Lee verfasserin aut Jintae Kim verfasserin aut Hyungil Chae verfasserin aut In Electronics MDPI AG, 2013 11(2022), 19, p 3072 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:11 year:2022 number:19, p 3072 https://doi.org/10.3390/electronics11193072 kostenfrei https://doaj.org/article/5a9934bc373f4361b0ebd9200151219b kostenfrei https://www.mdpi.com/2079-9292/11/19/3072 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 19, p 3072 |
spelling |
10.3390/electronics11193072 doi (DE-627)DOAJ028286057 (DE-599)DOAJ5a9934bc373f4361b0ebd9200151219b DE-627 ger DE-627 rakwb eng TK7800-8360 Jihyun Baek verfasserin aut 2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a pipelined noise-shaping SAR (PLNS-SAR) ADC for high SNDR, wide bandwidth, and low power consumption. The proposed design achieves a sharp second-order NTF of an error feedback structure, without a multi-input comparator and additional residue amplifier. Additionally, the SNDR is improved via zero optimization. Additionally, the speed is enhanced via prediction logic and alternately using the passive switched capacitor FIR filter. This consequently achieves the high-power efficiency of the ADC. The simulated SNDR is 79.97 dB; it achieves a 12.5-MHz BW at a 175-MHz sampling rate, with OSR of 7. The total power consumption of the ADC is 4.27 mW at a 1.1-V supply. The <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mi<FoM</mi<</mrow<<mrow<<mrow<<mi mathvariant="normal"<S</mi<<mo<,</mo<<mi<SNDR</mi<</mrow<</mrow<</msub<</mrow<</semantics<</math<</inline-formula< is 174.6 dB. The proposed structure achieves high resolution and wide bandwidth with good energy efficiency. analog-to-digital converter noise-shaping pipelined SAR ADC pipelined noise-shaping SAR ADC ring amplifier Electronics Juyong Lee verfasserin aut Jintae Kim verfasserin aut Hyungil Chae verfasserin aut In Electronics MDPI AG, 2013 11(2022), 19, p 3072 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:11 year:2022 number:19, p 3072 https://doi.org/10.3390/electronics11193072 kostenfrei https://doaj.org/article/5a9934bc373f4361b0ebd9200151219b kostenfrei https://www.mdpi.com/2079-9292/11/19/3072 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 19, p 3072 |
allfields_unstemmed |
10.3390/electronics11193072 doi (DE-627)DOAJ028286057 (DE-599)DOAJ5a9934bc373f4361b0ebd9200151219b DE-627 ger DE-627 rakwb eng TK7800-8360 Jihyun Baek verfasserin aut 2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a pipelined noise-shaping SAR (PLNS-SAR) ADC for high SNDR, wide bandwidth, and low power consumption. The proposed design achieves a sharp second-order NTF of an error feedback structure, without a multi-input comparator and additional residue amplifier. Additionally, the SNDR is improved via zero optimization. Additionally, the speed is enhanced via prediction logic and alternately using the passive switched capacitor FIR filter. This consequently achieves the high-power efficiency of the ADC. The simulated SNDR is 79.97 dB; it achieves a 12.5-MHz BW at a 175-MHz sampling rate, with OSR of 7. The total power consumption of the ADC is 4.27 mW at a 1.1-V supply. The <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mi<FoM</mi<</mrow<<mrow<<mrow<<mi mathvariant="normal"<S</mi<<mo<,</mo<<mi<SNDR</mi<</mrow<</mrow<</msub<</mrow<</semantics<</math<</inline-formula< is 174.6 dB. The proposed structure achieves high resolution and wide bandwidth with good energy efficiency. analog-to-digital converter noise-shaping pipelined SAR ADC pipelined noise-shaping SAR ADC ring amplifier Electronics Juyong Lee verfasserin aut Jintae Kim verfasserin aut Hyungil Chae verfasserin aut In Electronics MDPI AG, 2013 11(2022), 19, p 3072 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:11 year:2022 number:19, p 3072 https://doi.org/10.3390/electronics11193072 kostenfrei https://doaj.org/article/5a9934bc373f4361b0ebd9200151219b kostenfrei https://www.mdpi.com/2079-9292/11/19/3072 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 19, p 3072 |
allfieldsGer |
10.3390/electronics11193072 doi (DE-627)DOAJ028286057 (DE-599)DOAJ5a9934bc373f4361b0ebd9200151219b DE-627 ger DE-627 rakwb eng TK7800-8360 Jihyun Baek verfasserin aut 2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a pipelined noise-shaping SAR (PLNS-SAR) ADC for high SNDR, wide bandwidth, and low power consumption. The proposed design achieves a sharp second-order NTF of an error feedback structure, without a multi-input comparator and additional residue amplifier. Additionally, the SNDR is improved via zero optimization. Additionally, the speed is enhanced via prediction logic and alternately using the passive switched capacitor FIR filter. This consequently achieves the high-power efficiency of the ADC. The simulated SNDR is 79.97 dB; it achieves a 12.5-MHz BW at a 175-MHz sampling rate, with OSR of 7. The total power consumption of the ADC is 4.27 mW at a 1.1-V supply. The <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mi<FoM</mi<</mrow<<mrow<<mrow<<mi mathvariant="normal"<S</mi<<mo<,</mo<<mi<SNDR</mi<</mrow<</mrow<</msub<</mrow<</semantics<</math<</inline-formula< is 174.6 dB. The proposed structure achieves high resolution and wide bandwidth with good energy efficiency. analog-to-digital converter noise-shaping pipelined SAR ADC pipelined noise-shaping SAR ADC ring amplifier Electronics Juyong Lee verfasserin aut Jintae Kim verfasserin aut Hyungil Chae verfasserin aut In Electronics MDPI AG, 2013 11(2022), 19, p 3072 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:11 year:2022 number:19, p 3072 https://doi.org/10.3390/electronics11193072 kostenfrei https://doaj.org/article/5a9934bc373f4361b0ebd9200151219b kostenfrei https://www.mdpi.com/2079-9292/11/19/3072 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 19, p 3072 |
allfieldsSound |
10.3390/electronics11193072 doi (DE-627)DOAJ028286057 (DE-599)DOAJ5a9934bc373f4361b0ebd9200151219b DE-627 ger DE-627 rakwb eng TK7800-8360 Jihyun Baek verfasserin aut 2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a pipelined noise-shaping SAR (PLNS-SAR) ADC for high SNDR, wide bandwidth, and low power consumption. The proposed design achieves a sharp second-order NTF of an error feedback structure, without a multi-input comparator and additional residue amplifier. Additionally, the SNDR is improved via zero optimization. Additionally, the speed is enhanced via prediction logic and alternately using the passive switched capacitor FIR filter. This consequently achieves the high-power efficiency of the ADC. The simulated SNDR is 79.97 dB; it achieves a 12.5-MHz BW at a 175-MHz sampling rate, with OSR of 7. The total power consumption of the ADC is 4.27 mW at a 1.1-V supply. The <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mi<FoM</mi<</mrow<<mrow<<mrow<<mi mathvariant="normal"<S</mi<<mo<,</mo<<mi<SNDR</mi<</mrow<</mrow<</msub<</mrow<</semantics<</math<</inline-formula< is 174.6 dB. The proposed structure achieves high resolution and wide bandwidth with good energy efficiency. analog-to-digital converter noise-shaping pipelined SAR ADC pipelined noise-shaping SAR ADC ring amplifier Electronics Juyong Lee verfasserin aut Jintae Kim verfasserin aut Hyungil Chae verfasserin aut In Electronics MDPI AG, 2013 11(2022), 19, p 3072 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:11 year:2022 number:19, p 3072 https://doi.org/10.3390/electronics11193072 kostenfrei https://doaj.org/article/5a9934bc373f4361b0ebd9200151219b kostenfrei https://www.mdpi.com/2079-9292/11/19/3072 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 19, p 3072 |
language |
English |
source |
In Electronics 11(2022), 19, p 3072 volume:11 year:2022 number:19, p 3072 |
sourceStr |
In Electronics 11(2022), 19, p 3072 volume:11 year:2022 number:19, p 3072 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
analog-to-digital converter noise-shaping pipelined SAR ADC pipelined noise-shaping SAR ADC ring amplifier Electronics |
isfreeaccess_bool |
true |
container_title |
Electronics |
authorswithroles_txt_mv |
Jihyun Baek @@aut@@ Juyong Lee @@aut@@ Jintae Kim @@aut@@ Hyungil Chae @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718626478 |
id |
DOAJ028286057 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028286057</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414185422.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics11193072</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028286057</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5a9934bc373f4361b0ebd9200151219b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jihyun Baek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a pipelined noise-shaping SAR (PLNS-SAR) ADC for high SNDR, wide bandwidth, and low power consumption. The proposed design achieves a sharp second-order NTF of an error feedback structure, without a multi-input comparator and additional residue amplifier. Additionally, the SNDR is improved via zero optimization. Additionally, the speed is enhanced via prediction logic and alternately using the passive switched capacitor FIR filter. This consequently achieves the high-power efficiency of the ADC. The simulated SNDR is 79.97 dB; it achieves a 12.5-MHz BW at a 175-MHz sampling rate, with OSR of 7. The total power consumption of the ADC is 4.27 mW at a 1.1-V supply. The <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mi<FoM</mi<</mrow<<mrow<<mrow<<mi mathvariant="normal"<S</mi<<mo<,</mo<<mi<SNDR</mi<</mrow<</mrow<</msub<</mrow<</semantics<</math<</inline-formula< is 174.6 dB. The proposed structure achieves high resolution and wide bandwidth with good energy efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analog-to-digital converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">noise-shaping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pipelined SAR ADC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pipelined noise-shaping SAR ADC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ring amplifier</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juyong Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jintae Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyungil Chae</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 19, p 3072</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:19, p 3072</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics11193072</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5a9934bc373f4361b0ebd9200151219b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/11/19/3072</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">19, p 3072</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jihyun Baek |
spellingShingle |
Jihyun Baek misc TK7800-8360 misc analog-to-digital converter misc noise-shaping misc pipelined SAR ADC misc pipelined noise-shaping SAR ADC misc ring amplifier misc Electronics 2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure |
authorStr |
Jihyun Baek |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718626478 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
20799292 |
topic_title |
TK7800-8360 2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure analog-to-digital converter noise-shaping pipelined SAR ADC pipelined noise-shaping SAR ADC ring amplifier |
topic |
misc TK7800-8360 misc analog-to-digital converter misc noise-shaping misc pipelined SAR ADC misc pipelined noise-shaping SAR ADC misc ring amplifier misc Electronics |
topic_unstemmed |
misc TK7800-8360 misc analog-to-digital converter misc noise-shaping misc pipelined SAR ADC misc pipelined noise-shaping SAR ADC misc ring amplifier misc Electronics |
topic_browse |
misc TK7800-8360 misc analog-to-digital converter misc noise-shaping misc pipelined SAR ADC misc pipelined noise-shaping SAR ADC misc ring amplifier misc Electronics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronics |
hierarchy_parent_id |
718626478 |
hierarchy_top_title |
Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718626478 (DE-600)2662127-7 |
title |
2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure |
ctrlnum |
(DE-627)DOAJ028286057 (DE-599)DOAJ5a9934bc373f4361b0ebd9200151219b |
title_full |
2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure |
author_sort |
Jihyun Baek |
journal |
Electronics |
journalStr |
Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Jihyun Baek Juyong Lee Jintae Kim Hyungil Chae |
container_volume |
11 |
class |
TK7800-8360 |
format_se |
Elektronische Aufsätze |
author-letter |
Jihyun Baek |
doi_str_mv |
10.3390/electronics11193072 |
author2-role |
verfasserin |
title_sort |
2nd-order pipelined noise-shaping sar adc using error-feedback structure |
callnumber |
TK7800-8360 |
title_auth |
2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure |
abstract |
This paper presents a pipelined noise-shaping SAR (PLNS-SAR) ADC for high SNDR, wide bandwidth, and low power consumption. The proposed design achieves a sharp second-order NTF of an error feedback structure, without a multi-input comparator and additional residue amplifier. Additionally, the SNDR is improved via zero optimization. Additionally, the speed is enhanced via prediction logic and alternately using the passive switched capacitor FIR filter. This consequently achieves the high-power efficiency of the ADC. The simulated SNDR is 79.97 dB; it achieves a 12.5-MHz BW at a 175-MHz sampling rate, with OSR of 7. The total power consumption of the ADC is 4.27 mW at a 1.1-V supply. The <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mi<FoM</mi<</mrow<<mrow<<mrow<<mi mathvariant="normal"<S</mi<<mo<,</mo<<mi<SNDR</mi<</mrow<</mrow<</msub<</mrow<</semantics<</math<</inline-formula< is 174.6 dB. The proposed structure achieves high resolution and wide bandwidth with good energy efficiency. |
abstractGer |
This paper presents a pipelined noise-shaping SAR (PLNS-SAR) ADC for high SNDR, wide bandwidth, and low power consumption. The proposed design achieves a sharp second-order NTF of an error feedback structure, without a multi-input comparator and additional residue amplifier. Additionally, the SNDR is improved via zero optimization. Additionally, the speed is enhanced via prediction logic and alternately using the passive switched capacitor FIR filter. This consequently achieves the high-power efficiency of the ADC. The simulated SNDR is 79.97 dB; it achieves a 12.5-MHz BW at a 175-MHz sampling rate, with OSR of 7. The total power consumption of the ADC is 4.27 mW at a 1.1-V supply. The <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mi<FoM</mi<</mrow<<mrow<<mrow<<mi mathvariant="normal"<S</mi<<mo<,</mo<<mi<SNDR</mi<</mrow<</mrow<</msub<</mrow<</semantics<</math<</inline-formula< is 174.6 dB. The proposed structure achieves high resolution and wide bandwidth with good energy efficiency. |
abstract_unstemmed |
This paper presents a pipelined noise-shaping SAR (PLNS-SAR) ADC for high SNDR, wide bandwidth, and low power consumption. The proposed design achieves a sharp second-order NTF of an error feedback structure, without a multi-input comparator and additional residue amplifier. Additionally, the SNDR is improved via zero optimization. Additionally, the speed is enhanced via prediction logic and alternately using the passive switched capacitor FIR filter. This consequently achieves the high-power efficiency of the ADC. The simulated SNDR is 79.97 dB; it achieves a 12.5-MHz BW at a 175-MHz sampling rate, with OSR of 7. The total power consumption of the ADC is 4.27 mW at a 1.1-V supply. The <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mi<FoM</mi<</mrow<<mrow<<mrow<<mi mathvariant="normal"<S</mi<<mo<,</mo<<mi<SNDR</mi<</mrow<</mrow<</msub<</mrow<</semantics<</math<</inline-formula< is 174.6 dB. The proposed structure achieves high resolution and wide bandwidth with good energy efficiency. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
19, p 3072 |
title_short |
2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure |
url |
https://doi.org/10.3390/electronics11193072 https://doaj.org/article/5a9934bc373f4361b0ebd9200151219b https://www.mdpi.com/2079-9292/11/19/3072 https://doaj.org/toc/2079-9292 |
remote_bool |
true |
author2 |
Juyong Lee Jintae Kim Hyungil Chae |
author2Str |
Juyong Lee Jintae Kim Hyungil Chae |
ppnlink |
718626478 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/electronics11193072 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-03T16:45:00.208Z |
_version_ |
1803577039478849536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028286057</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414185422.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics11193072</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028286057</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5a9934bc373f4361b0ebd9200151219b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jihyun Baek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">2nd-Order Pipelined Noise-Shaping SAR ADC Using Error-Feedback Structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a pipelined noise-shaping SAR (PLNS-SAR) ADC for high SNDR, wide bandwidth, and low power consumption. The proposed design achieves a sharp second-order NTF of an error feedback structure, without a multi-input comparator and additional residue amplifier. Additionally, the SNDR is improved via zero optimization. Additionally, the speed is enhanced via prediction logic and alternately using the passive switched capacitor FIR filter. This consequently achieves the high-power efficiency of the ADC. The simulated SNDR is 79.97 dB; it achieves a 12.5-MHz BW at a 175-MHz sampling rate, with OSR of 7. The total power consumption of the ADC is 4.27 mW at a 1.1-V supply. The <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<mrow<<msub<<mrow<<mi<FoM</mi<</mrow<<mrow<<mrow<<mi mathvariant="normal"<S</mi<<mo<,</mo<<mi<SNDR</mi<</mrow<</mrow<</msub<</mrow<</semantics<</math<</inline-formula< is 174.6 dB. The proposed structure achieves high resolution and wide bandwidth with good energy efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analog-to-digital converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">noise-shaping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pipelined SAR ADC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pipelined noise-shaping SAR ADC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ring amplifier</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juyong Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jintae Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hyungil Chae</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 19, p 3072</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:19, p 3072</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics11193072</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5a9934bc373f4361b0ebd9200151219b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/11/19/3072</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">19, p 3072</subfield></datafield></record></collection>
|
score |
7.40149 |