Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China
Flood is one of the main problems faced by agricultural production in China. The research of agriculture’s floods vulnerability is the premise of scientifically dealing with floods. Based on the vulnerability assessment framework of “sensitivity-exposure-adaptability,” this paper selects 14 evaluati...
Ausführliche Beschreibung
Autor*in: |
Yinong Liu [verfasserIn] Jiaxi Zheng [verfasserIn] Honggang Lu [verfasserIn] Xijian Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Environmental Science - Frontiers Media S.A., 2014, 10(2022) |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/fenvs.2022.902968 |
---|
Katalog-ID: |
DOAJ028471652 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ028471652 | ||
003 | DE-627 | ||
005 | 20230501182411.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fenvs.2022.902968 |2 doi | |
035 | |a (DE-627)DOAJ028471652 | ||
035 | |a (DE-599)DOAJ4a4c3409970348bfadae9baecd3d5fdb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a GE1-350 | |
100 | 0 | |a Yinong Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Flood is one of the main problems faced by agricultural production in China. The research of agriculture’s floods vulnerability is the premise of scientifically dealing with floods. Based on the vulnerability assessment framework of “sensitivity-exposure-adaptability,” this paper selects 14 evaluation indicators from three aspects: sensitivity, exposure, adaptability, and the index weights which are determined by the entropy weight method to evaluate the sensitivity, resilience, and vulnerability of flood In terms of time, China’s overall flood vulnerability shows a trend of increasing first and then decreasing. From a spatial point of view, the number of highly vulnerable areas is relatively small which are mainly concentrated in Henan, Hubei, Anhui and other provinces, and most areas of the country are at low and mild levels. From the factor analysis model, the main contributing factors of agricultural flood exposure, sensitivity and adaptability are soil erosion control area, forest coverage rate, total reservoir capacity and total power of agricultural machinery. Therefore, controlling soil erosion, increasing forest coverage, further improving water conservancy facilities and strengthening agricultural mechanization level are the keys to reduce vulnerability of agricultural floods. | ||
650 | 4 | |a agricultural flood vulnerability | |
650 | 4 | |a exposure | |
650 | 4 | |a sensitivity | |
650 | 4 | |a adaptability | |
650 | 4 | |a entropy method | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Jiaxi Zheng |e verfasserin |4 aut | |
700 | 0 | |a Honggang Lu |e verfasserin |4 aut | |
700 | 0 | |a Xijian Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Environmental Science |d Frontiers Media S.A., 2014 |g 10(2022) |w (DE-627)771401604 |w (DE-600)2741535-1 |x 2296665X |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/fenvs.2022.902968 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4a4c3409970348bfadae9baecd3d5fdb |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fenvs.2022.902968/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-665X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |
author_variant |
y l yl j z jz h l hl x l xl |
---|---|
matchkey_str |
article:2296665X:2022----::unrbltassmnadptoeprlyaisnlssfg |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
GE |
publishDate |
2022 |
allfields |
10.3389/fenvs.2022.902968 doi (DE-627)DOAJ028471652 (DE-599)DOAJ4a4c3409970348bfadae9baecd3d5fdb DE-627 ger DE-627 rakwb eng GE1-350 Yinong Liu verfasserin aut Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Flood is one of the main problems faced by agricultural production in China. The research of agriculture’s floods vulnerability is the premise of scientifically dealing with floods. Based on the vulnerability assessment framework of “sensitivity-exposure-adaptability,” this paper selects 14 evaluation indicators from three aspects: sensitivity, exposure, adaptability, and the index weights which are determined by the entropy weight method to evaluate the sensitivity, resilience, and vulnerability of flood In terms of time, China’s overall flood vulnerability shows a trend of increasing first and then decreasing. From a spatial point of view, the number of highly vulnerable areas is relatively small which are mainly concentrated in Henan, Hubei, Anhui and other provinces, and most areas of the country are at low and mild levels. From the factor analysis model, the main contributing factors of agricultural flood exposure, sensitivity and adaptability are soil erosion control area, forest coverage rate, total reservoir capacity and total power of agricultural machinery. Therefore, controlling soil erosion, increasing forest coverage, further improving water conservancy facilities and strengthening agricultural mechanization level are the keys to reduce vulnerability of agricultural floods. agricultural flood vulnerability exposure sensitivity adaptability entropy method Environmental sciences Jiaxi Zheng verfasserin aut Honggang Lu verfasserin aut Xijian Li verfasserin aut In Frontiers in Environmental Science Frontiers Media S.A., 2014 10(2022) (DE-627)771401604 (DE-600)2741535-1 2296665X nnns volume:10 year:2022 https://doi.org/10.3389/fenvs.2022.902968 kostenfrei https://doaj.org/article/4a4c3409970348bfadae9baecd3d5fdb kostenfrei https://www.frontiersin.org/articles/10.3389/fenvs.2022.902968/full kostenfrei https://doaj.org/toc/2296-665X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
spelling |
10.3389/fenvs.2022.902968 doi (DE-627)DOAJ028471652 (DE-599)DOAJ4a4c3409970348bfadae9baecd3d5fdb DE-627 ger DE-627 rakwb eng GE1-350 Yinong Liu verfasserin aut Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Flood is one of the main problems faced by agricultural production in China. The research of agriculture’s floods vulnerability is the premise of scientifically dealing with floods. Based on the vulnerability assessment framework of “sensitivity-exposure-adaptability,” this paper selects 14 evaluation indicators from three aspects: sensitivity, exposure, adaptability, and the index weights which are determined by the entropy weight method to evaluate the sensitivity, resilience, and vulnerability of flood In terms of time, China’s overall flood vulnerability shows a trend of increasing first and then decreasing. From a spatial point of view, the number of highly vulnerable areas is relatively small which are mainly concentrated in Henan, Hubei, Anhui and other provinces, and most areas of the country are at low and mild levels. From the factor analysis model, the main contributing factors of agricultural flood exposure, sensitivity and adaptability are soil erosion control area, forest coverage rate, total reservoir capacity and total power of agricultural machinery. Therefore, controlling soil erosion, increasing forest coverage, further improving water conservancy facilities and strengthening agricultural mechanization level are the keys to reduce vulnerability of agricultural floods. agricultural flood vulnerability exposure sensitivity adaptability entropy method Environmental sciences Jiaxi Zheng verfasserin aut Honggang Lu verfasserin aut Xijian Li verfasserin aut In Frontiers in Environmental Science Frontiers Media S.A., 2014 10(2022) (DE-627)771401604 (DE-600)2741535-1 2296665X nnns volume:10 year:2022 https://doi.org/10.3389/fenvs.2022.902968 kostenfrei https://doaj.org/article/4a4c3409970348bfadae9baecd3d5fdb kostenfrei https://www.frontiersin.org/articles/10.3389/fenvs.2022.902968/full kostenfrei https://doaj.org/toc/2296-665X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfields_unstemmed |
10.3389/fenvs.2022.902968 doi (DE-627)DOAJ028471652 (DE-599)DOAJ4a4c3409970348bfadae9baecd3d5fdb DE-627 ger DE-627 rakwb eng GE1-350 Yinong Liu verfasserin aut Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Flood is one of the main problems faced by agricultural production in China. The research of agriculture’s floods vulnerability is the premise of scientifically dealing with floods. Based on the vulnerability assessment framework of “sensitivity-exposure-adaptability,” this paper selects 14 evaluation indicators from three aspects: sensitivity, exposure, adaptability, and the index weights which are determined by the entropy weight method to evaluate the sensitivity, resilience, and vulnerability of flood In terms of time, China’s overall flood vulnerability shows a trend of increasing first and then decreasing. From a spatial point of view, the number of highly vulnerable areas is relatively small which are mainly concentrated in Henan, Hubei, Anhui and other provinces, and most areas of the country are at low and mild levels. From the factor analysis model, the main contributing factors of agricultural flood exposure, sensitivity and adaptability are soil erosion control area, forest coverage rate, total reservoir capacity and total power of agricultural machinery. Therefore, controlling soil erosion, increasing forest coverage, further improving water conservancy facilities and strengthening agricultural mechanization level are the keys to reduce vulnerability of agricultural floods. agricultural flood vulnerability exposure sensitivity adaptability entropy method Environmental sciences Jiaxi Zheng verfasserin aut Honggang Lu verfasserin aut Xijian Li verfasserin aut In Frontiers in Environmental Science Frontiers Media S.A., 2014 10(2022) (DE-627)771401604 (DE-600)2741535-1 2296665X nnns volume:10 year:2022 https://doi.org/10.3389/fenvs.2022.902968 kostenfrei https://doaj.org/article/4a4c3409970348bfadae9baecd3d5fdb kostenfrei https://www.frontiersin.org/articles/10.3389/fenvs.2022.902968/full kostenfrei https://doaj.org/toc/2296-665X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsGer |
10.3389/fenvs.2022.902968 doi (DE-627)DOAJ028471652 (DE-599)DOAJ4a4c3409970348bfadae9baecd3d5fdb DE-627 ger DE-627 rakwb eng GE1-350 Yinong Liu verfasserin aut Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Flood is one of the main problems faced by agricultural production in China. The research of agriculture’s floods vulnerability is the premise of scientifically dealing with floods. Based on the vulnerability assessment framework of “sensitivity-exposure-adaptability,” this paper selects 14 evaluation indicators from three aspects: sensitivity, exposure, adaptability, and the index weights which are determined by the entropy weight method to evaluate the sensitivity, resilience, and vulnerability of flood In terms of time, China’s overall flood vulnerability shows a trend of increasing first and then decreasing. From a spatial point of view, the number of highly vulnerable areas is relatively small which are mainly concentrated in Henan, Hubei, Anhui and other provinces, and most areas of the country are at low and mild levels. From the factor analysis model, the main contributing factors of agricultural flood exposure, sensitivity and adaptability are soil erosion control area, forest coverage rate, total reservoir capacity and total power of agricultural machinery. Therefore, controlling soil erosion, increasing forest coverage, further improving water conservancy facilities and strengthening agricultural mechanization level are the keys to reduce vulnerability of agricultural floods. agricultural flood vulnerability exposure sensitivity adaptability entropy method Environmental sciences Jiaxi Zheng verfasserin aut Honggang Lu verfasserin aut Xijian Li verfasserin aut In Frontiers in Environmental Science Frontiers Media S.A., 2014 10(2022) (DE-627)771401604 (DE-600)2741535-1 2296665X nnns volume:10 year:2022 https://doi.org/10.3389/fenvs.2022.902968 kostenfrei https://doaj.org/article/4a4c3409970348bfadae9baecd3d5fdb kostenfrei https://www.frontiersin.org/articles/10.3389/fenvs.2022.902968/full kostenfrei https://doaj.org/toc/2296-665X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsSound |
10.3389/fenvs.2022.902968 doi (DE-627)DOAJ028471652 (DE-599)DOAJ4a4c3409970348bfadae9baecd3d5fdb DE-627 ger DE-627 rakwb eng GE1-350 Yinong Liu verfasserin aut Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Flood is one of the main problems faced by agricultural production in China. The research of agriculture’s floods vulnerability is the premise of scientifically dealing with floods. Based on the vulnerability assessment framework of “sensitivity-exposure-adaptability,” this paper selects 14 evaluation indicators from three aspects: sensitivity, exposure, adaptability, and the index weights which are determined by the entropy weight method to evaluate the sensitivity, resilience, and vulnerability of flood In terms of time, China’s overall flood vulnerability shows a trend of increasing first and then decreasing. From a spatial point of view, the number of highly vulnerable areas is relatively small which are mainly concentrated in Henan, Hubei, Anhui and other provinces, and most areas of the country are at low and mild levels. From the factor analysis model, the main contributing factors of agricultural flood exposure, sensitivity and adaptability are soil erosion control area, forest coverage rate, total reservoir capacity and total power of agricultural machinery. Therefore, controlling soil erosion, increasing forest coverage, further improving water conservancy facilities and strengthening agricultural mechanization level are the keys to reduce vulnerability of agricultural floods. agricultural flood vulnerability exposure sensitivity adaptability entropy method Environmental sciences Jiaxi Zheng verfasserin aut Honggang Lu verfasserin aut Xijian Li verfasserin aut In Frontiers in Environmental Science Frontiers Media S.A., 2014 10(2022) (DE-627)771401604 (DE-600)2741535-1 2296665X nnns volume:10 year:2022 https://doi.org/10.3389/fenvs.2022.902968 kostenfrei https://doaj.org/article/4a4c3409970348bfadae9baecd3d5fdb kostenfrei https://www.frontiersin.org/articles/10.3389/fenvs.2022.902968/full kostenfrei https://doaj.org/toc/2296-665X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
language |
English |
source |
In Frontiers in Environmental Science 10(2022) volume:10 year:2022 |
sourceStr |
In Frontiers in Environmental Science 10(2022) volume:10 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
agricultural flood vulnerability exposure sensitivity adaptability entropy method Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Frontiers in Environmental Science |
authorswithroles_txt_mv |
Yinong Liu @@aut@@ Jiaxi Zheng @@aut@@ Honggang Lu @@aut@@ Xijian Li @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
771401604 |
id |
DOAJ028471652 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028471652</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501182411.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fenvs.2022.902968</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028471652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4a4c3409970348bfadae9baecd3d5fdb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yinong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Flood is one of the main problems faced by agricultural production in China. The research of agriculture’s floods vulnerability is the premise of scientifically dealing with floods. Based on the vulnerability assessment framework of “sensitivity-exposure-adaptability,” this paper selects 14 evaluation indicators from three aspects: sensitivity, exposure, adaptability, and the index weights which are determined by the entropy weight method to evaluate the sensitivity, resilience, and vulnerability of flood In terms of time, China’s overall flood vulnerability shows a trend of increasing first and then decreasing. From a spatial point of view, the number of highly vulnerable areas is relatively small which are mainly concentrated in Henan, Hubei, Anhui and other provinces, and most areas of the country are at low and mild levels. From the factor analysis model, the main contributing factors of agricultural flood exposure, sensitivity and adaptability are soil erosion control area, forest coverage rate, total reservoir capacity and total power of agricultural machinery. Therefore, controlling soil erosion, increasing forest coverage, further improving water conservancy facilities and strengthening agricultural mechanization level are the keys to reduce vulnerability of agricultural floods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">agricultural flood vulnerability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exposure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">entropy method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaxi Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Honggang Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xijian Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Environmental Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)771401604</subfield><subfield code="w">(DE-600)2741535-1</subfield><subfield code="x">2296665X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fenvs.2022.902968</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4a4c3409970348bfadae9baecd3d5fdb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fenvs.2022.902968/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-665X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Yinong Liu |
spellingShingle |
Yinong Liu misc GE1-350 misc agricultural flood vulnerability misc exposure misc sensitivity misc adaptability misc entropy method misc Environmental sciences Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China |
authorStr |
Yinong Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771401604 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GE1-350 |
illustrated |
Not Illustrated |
issn |
2296665X |
topic_title |
GE1-350 Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China agricultural flood vulnerability exposure sensitivity adaptability entropy method |
topic |
misc GE1-350 misc agricultural flood vulnerability misc exposure misc sensitivity misc adaptability misc entropy method misc Environmental sciences |
topic_unstemmed |
misc GE1-350 misc agricultural flood vulnerability misc exposure misc sensitivity misc adaptability misc entropy method misc Environmental sciences |
topic_browse |
misc GE1-350 misc agricultural flood vulnerability misc exposure misc sensitivity misc adaptability misc entropy method misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Environmental Science |
hierarchy_parent_id |
771401604 |
hierarchy_top_title |
Frontiers in Environmental Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771401604 (DE-600)2741535-1 |
title |
Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China |
ctrlnum |
(DE-627)DOAJ028471652 (DE-599)DOAJ4a4c3409970348bfadae9baecd3d5fdb |
title_full |
Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China |
author_sort |
Yinong Liu |
journal |
Frontiers in Environmental Science |
journalStr |
Frontiers in Environmental Science |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Yinong Liu Jiaxi Zheng Honggang Lu Xijian Li |
container_volume |
10 |
class |
GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Yinong Liu |
doi_str_mv |
10.3389/fenvs.2022.902968 |
author2-role |
verfasserin |
title_sort |
vulnerability assessment and spatio-temporal dynamics analysis of agricultural flood in china |
callnumber |
GE1-350 |
title_auth |
Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China |
abstract |
Flood is one of the main problems faced by agricultural production in China. The research of agriculture’s floods vulnerability is the premise of scientifically dealing with floods. Based on the vulnerability assessment framework of “sensitivity-exposure-adaptability,” this paper selects 14 evaluation indicators from three aspects: sensitivity, exposure, adaptability, and the index weights which are determined by the entropy weight method to evaluate the sensitivity, resilience, and vulnerability of flood In terms of time, China’s overall flood vulnerability shows a trend of increasing first and then decreasing. From a spatial point of view, the number of highly vulnerable areas is relatively small which are mainly concentrated in Henan, Hubei, Anhui and other provinces, and most areas of the country are at low and mild levels. From the factor analysis model, the main contributing factors of agricultural flood exposure, sensitivity and adaptability are soil erosion control area, forest coverage rate, total reservoir capacity and total power of agricultural machinery. Therefore, controlling soil erosion, increasing forest coverage, further improving water conservancy facilities and strengthening agricultural mechanization level are the keys to reduce vulnerability of agricultural floods. |
abstractGer |
Flood is one of the main problems faced by agricultural production in China. The research of agriculture’s floods vulnerability is the premise of scientifically dealing with floods. Based on the vulnerability assessment framework of “sensitivity-exposure-adaptability,” this paper selects 14 evaluation indicators from three aspects: sensitivity, exposure, adaptability, and the index weights which are determined by the entropy weight method to evaluate the sensitivity, resilience, and vulnerability of flood In terms of time, China’s overall flood vulnerability shows a trend of increasing first and then decreasing. From a spatial point of view, the number of highly vulnerable areas is relatively small which are mainly concentrated in Henan, Hubei, Anhui and other provinces, and most areas of the country are at low and mild levels. From the factor analysis model, the main contributing factors of agricultural flood exposure, sensitivity and adaptability are soil erosion control area, forest coverage rate, total reservoir capacity and total power of agricultural machinery. Therefore, controlling soil erosion, increasing forest coverage, further improving water conservancy facilities and strengthening agricultural mechanization level are the keys to reduce vulnerability of agricultural floods. |
abstract_unstemmed |
Flood is one of the main problems faced by agricultural production in China. The research of agriculture’s floods vulnerability is the premise of scientifically dealing with floods. Based on the vulnerability assessment framework of “sensitivity-exposure-adaptability,” this paper selects 14 evaluation indicators from three aspects: sensitivity, exposure, adaptability, and the index weights which are determined by the entropy weight method to evaluate the sensitivity, resilience, and vulnerability of flood In terms of time, China’s overall flood vulnerability shows a trend of increasing first and then decreasing. From a spatial point of view, the number of highly vulnerable areas is relatively small which are mainly concentrated in Henan, Hubei, Anhui and other provinces, and most areas of the country are at low and mild levels. From the factor analysis model, the main contributing factors of agricultural flood exposure, sensitivity and adaptability are soil erosion control area, forest coverage rate, total reservoir capacity and total power of agricultural machinery. Therefore, controlling soil erosion, increasing forest coverage, further improving water conservancy facilities and strengthening agricultural mechanization level are the keys to reduce vulnerability of agricultural floods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China |
url |
https://doi.org/10.3389/fenvs.2022.902968 https://doaj.org/article/4a4c3409970348bfadae9baecd3d5fdb https://www.frontiersin.org/articles/10.3389/fenvs.2022.902968/full https://doaj.org/toc/2296-665X |
remote_bool |
true |
author2 |
Jiaxi Zheng Honggang Lu Xijian Li |
author2Str |
Jiaxi Zheng Honggang Lu Xijian Li |
ppnlink |
771401604 |
callnumber-subject |
GE - Environmental Sciences |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fenvs.2022.902968 |
callnumber-a |
GE1-350 |
up_date |
2024-07-03T17:46:08.448Z |
_version_ |
1803580885905178624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028471652</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501182411.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fenvs.2022.902968</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028471652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4a4c3409970348bfadae9baecd3d5fdb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yinong Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vulnerability Assessment and Spatio-Temporal Dynamics Analysis of Agricultural Flood in China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Flood is one of the main problems faced by agricultural production in China. The research of agriculture’s floods vulnerability is the premise of scientifically dealing with floods. Based on the vulnerability assessment framework of “sensitivity-exposure-adaptability,” this paper selects 14 evaluation indicators from three aspects: sensitivity, exposure, adaptability, and the index weights which are determined by the entropy weight method to evaluate the sensitivity, resilience, and vulnerability of flood In terms of time, China’s overall flood vulnerability shows a trend of increasing first and then decreasing. From a spatial point of view, the number of highly vulnerable areas is relatively small which are mainly concentrated in Henan, Hubei, Anhui and other provinces, and most areas of the country are at low and mild levels. From the factor analysis model, the main contributing factors of agricultural flood exposure, sensitivity and adaptability are soil erosion control area, forest coverage rate, total reservoir capacity and total power of agricultural machinery. Therefore, controlling soil erosion, increasing forest coverage, further improving water conservancy facilities and strengthening agricultural mechanization level are the keys to reduce vulnerability of agricultural floods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">agricultural flood vulnerability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exposure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sensitivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">entropy method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiaxi Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Honggang Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xijian Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Environmental Science</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)771401604</subfield><subfield code="w">(DE-600)2741535-1</subfield><subfield code="x">2296665X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fenvs.2022.902968</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4a4c3409970348bfadae9baecd3d5fdb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fenvs.2022.902968/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-665X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.4027834 |