Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes
In this paper, the calculation method of dynamic stress concentration around piezoelectric ceramics containing regular <i<n</i<-sided holes under the action of electroelastic coupling wave was studied, and it was applied to promising barium calcium zirconate titanate material. First, ele...
Ausführliche Beschreibung
Autor*in: |
Jiang Lin [verfasserIn] Chuanping Zhou [verfasserIn] Xiao Han [verfasserIn] Yongping Gong [verfasserIn] Jiawei Fan [verfasserIn] Junqi Bao [verfasserIn] Huawei Ji [verfasserIn] Jing Ni [verfasserIn] Weihua Zhou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
lead-free piezoelectric composites |
---|
Übergeordnetes Werk: |
In: Actuators - MDPI AG, 2013, 11(2022), 7, p 202 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2022 ; number:7, p 202 |
Links: |
---|
DOI / URN: |
10.3390/act11070202 |
---|
Katalog-ID: |
DOAJ028549090 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ028549090 | ||
003 | DE-627 | ||
005 | 20240414072714.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/act11070202 |2 doi | |
035 | |a (DE-627)DOAJ028549090 | ||
035 | |a (DE-599)DOAJ68601f71d5b542d18ca1c78b1cb1d275 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
050 | 0 | |a TK1001-1841 | |
100 | 0 | |a Jiang Lin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, the calculation method of dynamic stress concentration around piezoelectric ceramics containing regular <i<n</i<-sided holes under the action of electroelastic coupling wave was studied, and it was applied to promising barium calcium zirconate titanate material. First, electroelastic governing equations were decomposed by using the auxiliary function method, and the solution forms of the elastic wave field and electric field were obtained by using the wave function expansion method. Then, the triangular boundary was simplified to a circular boundary using the mapping function, and the corresponding modal coefficients were determined according to simplified boundary conditions. Finally, the dynamic stress-concentration factor was calculated to characterize the dynamic stress concentration. We performed numerical simulations with a correlation coefficient of (1 − <i<x</i<)[(Ba<sub<0.94</sub<Ca<sub<0.06</sub<) (Ti<sub<0.92</sub<Sn<sub<0.08</sub<)]-<i<x</i<Sm<sub<2</sub<O<sub<3</sub<-0.06 mol% GeO<sub<2</sub< (abbreviated as (1 − <i<x</i<)BCTS-<i<x</i<Sm-0.06G). The numerical calculation results show that the incident wave number, piezoelectric properties, shape parameters of the hole, and deflection angle have a great influence on the dynamic stress around the defect, and some significant laws are summarized through analysis. | ||
650 | 4 | |a regular polygon hole | |
650 | 4 | |a lead-free piezoelectric composites | |
650 | 4 | |a electroelastic coupling waves | |
650 | 4 | |a dynamic stress concentration factor | |
650 | 4 | |a incident angle | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
653 | 0 | |a Production of electric energy or power. Powerplants. Central stations | |
700 | 0 | |a Chuanping Zhou |e verfasserin |4 aut | |
700 | 0 | |a Xiao Han |e verfasserin |4 aut | |
700 | 0 | |a Yongping Gong |e verfasserin |4 aut | |
700 | 0 | |a Jiawei Fan |e verfasserin |4 aut | |
700 | 0 | |a Junqi Bao |e verfasserin |4 aut | |
700 | 0 | |a Huawei Ji |e verfasserin |4 aut | |
700 | 0 | |a Jing Ni |e verfasserin |4 aut | |
700 | 0 | |a Weihua Zhou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Actuators |d MDPI AG, 2013 |g 11(2022), 7, p 202 |w (DE-627)726491802 |w (DE-600)2682469-3 |x 20760825 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2022 |g number:7, p 202 |
856 | 4 | 0 | |u https://doi.org/10.3390/act11070202 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/68601f71d5b542d18ca1c78b1cb1d275 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-0825/11/7/202 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-0825 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2022 |e 7, p 202 |
author_variant |
j l jl c z cz x h xh y g yg j f jf j b jb h j hj j n jn w z wz |
---|---|
matchkey_str |
article:20760825:2022----::lcreatcopewvsatrnadyaisrscnetainfizcrmc |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.3390/act11070202 doi (DE-627)DOAJ028549090 (DE-599)DOAJ68601f71d5b542d18ca1c78b1cb1d275 DE-627 ger DE-627 rakwb eng TA401-492 TK1001-1841 Jiang Lin verfasserin aut Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the calculation method of dynamic stress concentration around piezoelectric ceramics containing regular <i<n</i<-sided holes under the action of electroelastic coupling wave was studied, and it was applied to promising barium calcium zirconate titanate material. First, electroelastic governing equations were decomposed by using the auxiliary function method, and the solution forms of the elastic wave field and electric field were obtained by using the wave function expansion method. Then, the triangular boundary was simplified to a circular boundary using the mapping function, and the corresponding modal coefficients were determined according to simplified boundary conditions. Finally, the dynamic stress-concentration factor was calculated to characterize the dynamic stress concentration. We performed numerical simulations with a correlation coefficient of (1 − <i<x</i<)[(Ba<sub<0.94</sub<Ca<sub<0.06</sub<) (Ti<sub<0.92</sub<Sn<sub<0.08</sub<)]-<i<x</i<Sm<sub<2</sub<O<sub<3</sub<-0.06 mol% GeO<sub<2</sub< (abbreviated as (1 − <i<x</i<)BCTS-<i<x</i<Sm-0.06G). The numerical calculation results show that the incident wave number, piezoelectric properties, shape parameters of the hole, and deflection angle have a great influence on the dynamic stress around the defect, and some significant laws are summarized through analysis. regular polygon hole lead-free piezoelectric composites electroelastic coupling waves dynamic stress concentration factor incident angle Materials of engineering and construction. Mechanics of materials Production of electric energy or power. Powerplants. Central stations Chuanping Zhou verfasserin aut Xiao Han verfasserin aut Yongping Gong verfasserin aut Jiawei Fan verfasserin aut Junqi Bao verfasserin aut Huawei Ji verfasserin aut Jing Ni verfasserin aut Weihua Zhou verfasserin aut In Actuators MDPI AG, 2013 11(2022), 7, p 202 (DE-627)726491802 (DE-600)2682469-3 20760825 nnns volume:11 year:2022 number:7, p 202 https://doi.org/10.3390/act11070202 kostenfrei https://doaj.org/article/68601f71d5b542d18ca1c78b1cb1d275 kostenfrei https://www.mdpi.com/2076-0825/11/7/202 kostenfrei https://doaj.org/toc/2076-0825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 7, p 202 |
spelling |
10.3390/act11070202 doi (DE-627)DOAJ028549090 (DE-599)DOAJ68601f71d5b542d18ca1c78b1cb1d275 DE-627 ger DE-627 rakwb eng TA401-492 TK1001-1841 Jiang Lin verfasserin aut Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the calculation method of dynamic stress concentration around piezoelectric ceramics containing regular <i<n</i<-sided holes under the action of electroelastic coupling wave was studied, and it was applied to promising barium calcium zirconate titanate material. First, electroelastic governing equations were decomposed by using the auxiliary function method, and the solution forms of the elastic wave field and electric field were obtained by using the wave function expansion method. Then, the triangular boundary was simplified to a circular boundary using the mapping function, and the corresponding modal coefficients were determined according to simplified boundary conditions. Finally, the dynamic stress-concentration factor was calculated to characterize the dynamic stress concentration. We performed numerical simulations with a correlation coefficient of (1 − <i<x</i<)[(Ba<sub<0.94</sub<Ca<sub<0.06</sub<) (Ti<sub<0.92</sub<Sn<sub<0.08</sub<)]-<i<x</i<Sm<sub<2</sub<O<sub<3</sub<-0.06 mol% GeO<sub<2</sub< (abbreviated as (1 − <i<x</i<)BCTS-<i<x</i<Sm-0.06G). The numerical calculation results show that the incident wave number, piezoelectric properties, shape parameters of the hole, and deflection angle have a great influence on the dynamic stress around the defect, and some significant laws are summarized through analysis. regular polygon hole lead-free piezoelectric composites electroelastic coupling waves dynamic stress concentration factor incident angle Materials of engineering and construction. Mechanics of materials Production of electric energy or power. Powerplants. Central stations Chuanping Zhou verfasserin aut Xiao Han verfasserin aut Yongping Gong verfasserin aut Jiawei Fan verfasserin aut Junqi Bao verfasserin aut Huawei Ji verfasserin aut Jing Ni verfasserin aut Weihua Zhou verfasserin aut In Actuators MDPI AG, 2013 11(2022), 7, p 202 (DE-627)726491802 (DE-600)2682469-3 20760825 nnns volume:11 year:2022 number:7, p 202 https://doi.org/10.3390/act11070202 kostenfrei https://doaj.org/article/68601f71d5b542d18ca1c78b1cb1d275 kostenfrei https://www.mdpi.com/2076-0825/11/7/202 kostenfrei https://doaj.org/toc/2076-0825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 7, p 202 |
allfields_unstemmed |
10.3390/act11070202 doi (DE-627)DOAJ028549090 (DE-599)DOAJ68601f71d5b542d18ca1c78b1cb1d275 DE-627 ger DE-627 rakwb eng TA401-492 TK1001-1841 Jiang Lin verfasserin aut Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the calculation method of dynamic stress concentration around piezoelectric ceramics containing regular <i<n</i<-sided holes under the action of electroelastic coupling wave was studied, and it was applied to promising barium calcium zirconate titanate material. First, electroelastic governing equations were decomposed by using the auxiliary function method, and the solution forms of the elastic wave field and electric field were obtained by using the wave function expansion method. Then, the triangular boundary was simplified to a circular boundary using the mapping function, and the corresponding modal coefficients were determined according to simplified boundary conditions. Finally, the dynamic stress-concentration factor was calculated to characterize the dynamic stress concentration. We performed numerical simulations with a correlation coefficient of (1 − <i<x</i<)[(Ba<sub<0.94</sub<Ca<sub<0.06</sub<) (Ti<sub<0.92</sub<Sn<sub<0.08</sub<)]-<i<x</i<Sm<sub<2</sub<O<sub<3</sub<-0.06 mol% GeO<sub<2</sub< (abbreviated as (1 − <i<x</i<)BCTS-<i<x</i<Sm-0.06G). The numerical calculation results show that the incident wave number, piezoelectric properties, shape parameters of the hole, and deflection angle have a great influence on the dynamic stress around the defect, and some significant laws are summarized through analysis. regular polygon hole lead-free piezoelectric composites electroelastic coupling waves dynamic stress concentration factor incident angle Materials of engineering and construction. Mechanics of materials Production of electric energy or power. Powerplants. Central stations Chuanping Zhou verfasserin aut Xiao Han verfasserin aut Yongping Gong verfasserin aut Jiawei Fan verfasserin aut Junqi Bao verfasserin aut Huawei Ji verfasserin aut Jing Ni verfasserin aut Weihua Zhou verfasserin aut In Actuators MDPI AG, 2013 11(2022), 7, p 202 (DE-627)726491802 (DE-600)2682469-3 20760825 nnns volume:11 year:2022 number:7, p 202 https://doi.org/10.3390/act11070202 kostenfrei https://doaj.org/article/68601f71d5b542d18ca1c78b1cb1d275 kostenfrei https://www.mdpi.com/2076-0825/11/7/202 kostenfrei https://doaj.org/toc/2076-0825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 7, p 202 |
allfieldsGer |
10.3390/act11070202 doi (DE-627)DOAJ028549090 (DE-599)DOAJ68601f71d5b542d18ca1c78b1cb1d275 DE-627 ger DE-627 rakwb eng TA401-492 TK1001-1841 Jiang Lin verfasserin aut Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the calculation method of dynamic stress concentration around piezoelectric ceramics containing regular <i<n</i<-sided holes under the action of electroelastic coupling wave was studied, and it was applied to promising barium calcium zirconate titanate material. First, electroelastic governing equations were decomposed by using the auxiliary function method, and the solution forms of the elastic wave field and electric field were obtained by using the wave function expansion method. Then, the triangular boundary was simplified to a circular boundary using the mapping function, and the corresponding modal coefficients were determined according to simplified boundary conditions. Finally, the dynamic stress-concentration factor was calculated to characterize the dynamic stress concentration. We performed numerical simulations with a correlation coefficient of (1 − <i<x</i<)[(Ba<sub<0.94</sub<Ca<sub<0.06</sub<) (Ti<sub<0.92</sub<Sn<sub<0.08</sub<)]-<i<x</i<Sm<sub<2</sub<O<sub<3</sub<-0.06 mol% GeO<sub<2</sub< (abbreviated as (1 − <i<x</i<)BCTS-<i<x</i<Sm-0.06G). The numerical calculation results show that the incident wave number, piezoelectric properties, shape parameters of the hole, and deflection angle have a great influence on the dynamic stress around the defect, and some significant laws are summarized through analysis. regular polygon hole lead-free piezoelectric composites electroelastic coupling waves dynamic stress concentration factor incident angle Materials of engineering and construction. Mechanics of materials Production of electric energy or power. Powerplants. Central stations Chuanping Zhou verfasserin aut Xiao Han verfasserin aut Yongping Gong verfasserin aut Jiawei Fan verfasserin aut Junqi Bao verfasserin aut Huawei Ji verfasserin aut Jing Ni verfasserin aut Weihua Zhou verfasserin aut In Actuators MDPI AG, 2013 11(2022), 7, p 202 (DE-627)726491802 (DE-600)2682469-3 20760825 nnns volume:11 year:2022 number:7, p 202 https://doi.org/10.3390/act11070202 kostenfrei https://doaj.org/article/68601f71d5b542d18ca1c78b1cb1d275 kostenfrei https://www.mdpi.com/2076-0825/11/7/202 kostenfrei https://doaj.org/toc/2076-0825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 7, p 202 |
allfieldsSound |
10.3390/act11070202 doi (DE-627)DOAJ028549090 (DE-599)DOAJ68601f71d5b542d18ca1c78b1cb1d275 DE-627 ger DE-627 rakwb eng TA401-492 TK1001-1841 Jiang Lin verfasserin aut Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the calculation method of dynamic stress concentration around piezoelectric ceramics containing regular <i<n</i<-sided holes under the action of electroelastic coupling wave was studied, and it was applied to promising barium calcium zirconate titanate material. First, electroelastic governing equations were decomposed by using the auxiliary function method, and the solution forms of the elastic wave field and electric field were obtained by using the wave function expansion method. Then, the triangular boundary was simplified to a circular boundary using the mapping function, and the corresponding modal coefficients were determined according to simplified boundary conditions. Finally, the dynamic stress-concentration factor was calculated to characterize the dynamic stress concentration. We performed numerical simulations with a correlation coefficient of (1 − <i<x</i<)[(Ba<sub<0.94</sub<Ca<sub<0.06</sub<) (Ti<sub<0.92</sub<Sn<sub<0.08</sub<)]-<i<x</i<Sm<sub<2</sub<O<sub<3</sub<-0.06 mol% GeO<sub<2</sub< (abbreviated as (1 − <i<x</i<)BCTS-<i<x</i<Sm-0.06G). The numerical calculation results show that the incident wave number, piezoelectric properties, shape parameters of the hole, and deflection angle have a great influence on the dynamic stress around the defect, and some significant laws are summarized through analysis. regular polygon hole lead-free piezoelectric composites electroelastic coupling waves dynamic stress concentration factor incident angle Materials of engineering and construction. Mechanics of materials Production of electric energy or power. Powerplants. Central stations Chuanping Zhou verfasserin aut Xiao Han verfasserin aut Yongping Gong verfasserin aut Jiawei Fan verfasserin aut Junqi Bao verfasserin aut Huawei Ji verfasserin aut Jing Ni verfasserin aut Weihua Zhou verfasserin aut In Actuators MDPI AG, 2013 11(2022), 7, p 202 (DE-627)726491802 (DE-600)2682469-3 20760825 nnns volume:11 year:2022 number:7, p 202 https://doi.org/10.3390/act11070202 kostenfrei https://doaj.org/article/68601f71d5b542d18ca1c78b1cb1d275 kostenfrei https://www.mdpi.com/2076-0825/11/7/202 kostenfrei https://doaj.org/toc/2076-0825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 7, p 202 |
language |
English |
source |
In Actuators 11(2022), 7, p 202 volume:11 year:2022 number:7, p 202 |
sourceStr |
In Actuators 11(2022), 7, p 202 volume:11 year:2022 number:7, p 202 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
regular polygon hole lead-free piezoelectric composites electroelastic coupling waves dynamic stress concentration factor incident angle Materials of engineering and construction. Mechanics of materials Production of electric energy or power. Powerplants. Central stations |
isfreeaccess_bool |
true |
container_title |
Actuators |
authorswithroles_txt_mv |
Jiang Lin @@aut@@ Chuanping Zhou @@aut@@ Xiao Han @@aut@@ Yongping Gong @@aut@@ Jiawei Fan @@aut@@ Junqi Bao @@aut@@ Huawei Ji @@aut@@ Jing Ni @@aut@@ Weihua Zhou @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
726491802 |
id |
DOAJ028549090 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028549090</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414072714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/act11070202</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028549090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ68601f71d5b542d18ca1c78b1cb1d275</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiang Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the calculation method of dynamic stress concentration around piezoelectric ceramics containing regular <i<n</i<-sided holes under the action of electroelastic coupling wave was studied, and it was applied to promising barium calcium zirconate titanate material. First, electroelastic governing equations were decomposed by using the auxiliary function method, and the solution forms of the elastic wave field and electric field were obtained by using the wave function expansion method. Then, the triangular boundary was simplified to a circular boundary using the mapping function, and the corresponding modal coefficients were determined according to simplified boundary conditions. Finally, the dynamic stress-concentration factor was calculated to characterize the dynamic stress concentration. We performed numerical simulations with a correlation coefficient of (1 − <i<x</i<)[(Ba<sub<0.94</sub<Ca<sub<0.06</sub<) (Ti<sub<0.92</sub<Sn<sub<0.08</sub<)]-<i<x</i<Sm<sub<2</sub<O<sub<3</sub<-0.06 mol% GeO<sub<2</sub< (abbreviated as (1 − <i<x</i<)BCTS-<i<x</i<Sm-0.06G). The numerical calculation results show that the incident wave number, piezoelectric properties, shape parameters of the hole, and deflection angle have a great influence on the dynamic stress around the defect, and some significant laws are summarized through analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regular polygon hole</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lead-free piezoelectric composites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electroelastic coupling waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic stress concentration factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">incident angle</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chuanping Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongping Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawei Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junqi Bao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huawei Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weihua Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Actuators</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 7, p 202</subfield><subfield code="w">(DE-627)726491802</subfield><subfield code="w">(DE-600)2682469-3</subfield><subfield code="x">20760825</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7, p 202</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/act11070202</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/68601f71d5b542d18ca1c78b1cb1d275</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-0825/11/7/202</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-0825</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">7, p 202</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jiang Lin |
spellingShingle |
Jiang Lin misc TA401-492 misc TK1001-1841 misc regular polygon hole misc lead-free piezoelectric composites misc electroelastic coupling waves misc dynamic stress concentration factor misc incident angle misc Materials of engineering and construction. Mechanics of materials misc Production of electric energy or power. Powerplants. Central stations Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes |
authorStr |
Jiang Lin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)726491802 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
20760825 |
topic_title |
TA401-492 TK1001-1841 Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes regular polygon hole lead-free piezoelectric composites electroelastic coupling waves dynamic stress concentration factor incident angle |
topic |
misc TA401-492 misc TK1001-1841 misc regular polygon hole misc lead-free piezoelectric composites misc electroelastic coupling waves misc dynamic stress concentration factor misc incident angle misc Materials of engineering and construction. Mechanics of materials misc Production of electric energy or power. Powerplants. Central stations |
topic_unstemmed |
misc TA401-492 misc TK1001-1841 misc regular polygon hole misc lead-free piezoelectric composites misc electroelastic coupling waves misc dynamic stress concentration factor misc incident angle misc Materials of engineering and construction. Mechanics of materials misc Production of electric energy or power. Powerplants. Central stations |
topic_browse |
misc TA401-492 misc TK1001-1841 misc regular polygon hole misc lead-free piezoelectric composites misc electroelastic coupling waves misc dynamic stress concentration factor misc incident angle misc Materials of engineering and construction. Mechanics of materials misc Production of electric energy or power. Powerplants. Central stations |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Actuators |
hierarchy_parent_id |
726491802 |
hierarchy_top_title |
Actuators |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)726491802 (DE-600)2682469-3 |
title |
Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes |
ctrlnum |
(DE-627)DOAJ028549090 (DE-599)DOAJ68601f71d5b542d18ca1c78b1cb1d275 |
title_full |
Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes |
author_sort |
Jiang Lin |
journal |
Actuators |
journalStr |
Actuators |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Jiang Lin Chuanping Zhou Xiao Han Yongping Gong Jiawei Fan Junqi Bao Huawei Ji Jing Ni Weihua Zhou |
container_volume |
11 |
class |
TA401-492 TK1001-1841 |
format_se |
Elektronische Aufsätze |
author-letter |
Jiang Lin |
doi_str_mv |
10.3390/act11070202 |
author2-role |
verfasserin |
title_sort |
electroelastic coupled-wave scattering and dynamic stress concentration of piezoceramics containing regular n-sided holes |
callnumber |
TA401-492 |
title_auth |
Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes |
abstract |
In this paper, the calculation method of dynamic stress concentration around piezoelectric ceramics containing regular <i<n</i<-sided holes under the action of electroelastic coupling wave was studied, and it was applied to promising barium calcium zirconate titanate material. First, electroelastic governing equations were decomposed by using the auxiliary function method, and the solution forms of the elastic wave field and electric field were obtained by using the wave function expansion method. Then, the triangular boundary was simplified to a circular boundary using the mapping function, and the corresponding modal coefficients were determined according to simplified boundary conditions. Finally, the dynamic stress-concentration factor was calculated to characterize the dynamic stress concentration. We performed numerical simulations with a correlation coefficient of (1 − <i<x</i<)[(Ba<sub<0.94</sub<Ca<sub<0.06</sub<) (Ti<sub<0.92</sub<Sn<sub<0.08</sub<)]-<i<x</i<Sm<sub<2</sub<O<sub<3</sub<-0.06 mol% GeO<sub<2</sub< (abbreviated as (1 − <i<x</i<)BCTS-<i<x</i<Sm-0.06G). The numerical calculation results show that the incident wave number, piezoelectric properties, shape parameters of the hole, and deflection angle have a great influence on the dynamic stress around the defect, and some significant laws are summarized through analysis. |
abstractGer |
In this paper, the calculation method of dynamic stress concentration around piezoelectric ceramics containing regular <i<n</i<-sided holes under the action of electroelastic coupling wave was studied, and it was applied to promising barium calcium zirconate titanate material. First, electroelastic governing equations were decomposed by using the auxiliary function method, and the solution forms of the elastic wave field and electric field were obtained by using the wave function expansion method. Then, the triangular boundary was simplified to a circular boundary using the mapping function, and the corresponding modal coefficients were determined according to simplified boundary conditions. Finally, the dynamic stress-concentration factor was calculated to characterize the dynamic stress concentration. We performed numerical simulations with a correlation coefficient of (1 − <i<x</i<)[(Ba<sub<0.94</sub<Ca<sub<0.06</sub<) (Ti<sub<0.92</sub<Sn<sub<0.08</sub<)]-<i<x</i<Sm<sub<2</sub<O<sub<3</sub<-0.06 mol% GeO<sub<2</sub< (abbreviated as (1 − <i<x</i<)BCTS-<i<x</i<Sm-0.06G). The numerical calculation results show that the incident wave number, piezoelectric properties, shape parameters of the hole, and deflection angle have a great influence on the dynamic stress around the defect, and some significant laws are summarized through analysis. |
abstract_unstemmed |
In this paper, the calculation method of dynamic stress concentration around piezoelectric ceramics containing regular <i<n</i<-sided holes under the action of electroelastic coupling wave was studied, and it was applied to promising barium calcium zirconate titanate material. First, electroelastic governing equations were decomposed by using the auxiliary function method, and the solution forms of the elastic wave field and electric field were obtained by using the wave function expansion method. Then, the triangular boundary was simplified to a circular boundary using the mapping function, and the corresponding modal coefficients were determined according to simplified boundary conditions. Finally, the dynamic stress-concentration factor was calculated to characterize the dynamic stress concentration. We performed numerical simulations with a correlation coefficient of (1 − <i<x</i<)[(Ba<sub<0.94</sub<Ca<sub<0.06</sub<) (Ti<sub<0.92</sub<Sn<sub<0.08</sub<)]-<i<x</i<Sm<sub<2</sub<O<sub<3</sub<-0.06 mol% GeO<sub<2</sub< (abbreviated as (1 − <i<x</i<)BCTS-<i<x</i<Sm-0.06G). The numerical calculation results show that the incident wave number, piezoelectric properties, shape parameters of the hole, and deflection angle have a great influence on the dynamic stress around the defect, and some significant laws are summarized through analysis. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 202 |
title_short |
Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes |
url |
https://doi.org/10.3390/act11070202 https://doaj.org/article/68601f71d5b542d18ca1c78b1cb1d275 https://www.mdpi.com/2076-0825/11/7/202 https://doaj.org/toc/2076-0825 |
remote_bool |
true |
author2 |
Chuanping Zhou Xiao Han Yongping Gong Jiawei Fan Junqi Bao Huawei Ji Jing Ni Weihua Zhou |
author2Str |
Chuanping Zhou Xiao Han Yongping Gong Jiawei Fan Junqi Bao Huawei Ji Jing Ni Weihua Zhou |
ppnlink |
726491802 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/act11070202 |
callnumber-a |
TA401-492 |
up_date |
2024-07-03T18:10:12.395Z |
_version_ |
1803582399995445248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028549090</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414072714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/act11070202</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028549090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ68601f71d5b542d18ca1c78b1cb1d275</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1001-1841</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiang Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electroelastic Coupled-Wave Scattering and Dynamic Stress Concentration of Piezoceramics Containing Regular N-Sided Holes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the calculation method of dynamic stress concentration around piezoelectric ceramics containing regular <i<n</i<-sided holes under the action of electroelastic coupling wave was studied, and it was applied to promising barium calcium zirconate titanate material. First, electroelastic governing equations were decomposed by using the auxiliary function method, and the solution forms of the elastic wave field and electric field were obtained by using the wave function expansion method. Then, the triangular boundary was simplified to a circular boundary using the mapping function, and the corresponding modal coefficients were determined according to simplified boundary conditions. Finally, the dynamic stress-concentration factor was calculated to characterize the dynamic stress concentration. We performed numerical simulations with a correlation coefficient of (1 − <i<x</i<)[(Ba<sub<0.94</sub<Ca<sub<0.06</sub<) (Ti<sub<0.92</sub<Sn<sub<0.08</sub<)]-<i<x</i<Sm<sub<2</sub<O<sub<3</sub<-0.06 mol% GeO<sub<2</sub< (abbreviated as (1 − <i<x</i<)BCTS-<i<x</i<Sm-0.06G). The numerical calculation results show that the incident wave number, piezoelectric properties, shape parameters of the hole, and deflection angle have a great influence on the dynamic stress around the defect, and some significant laws are summarized through analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regular polygon hole</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lead-free piezoelectric composites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electroelastic coupling waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic stress concentration factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">incident angle</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Production of electric energy or power. Powerplants. Central stations</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chuanping Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongping Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawei Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junqi Bao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huawei Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weihua Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Actuators</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 7, p 202</subfield><subfield code="w">(DE-627)726491802</subfield><subfield code="w">(DE-600)2682469-3</subfield><subfield code="x">20760825</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7, p 202</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/act11070202</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/68601f71d5b542d18ca1c78b1cb1d275</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-0825/11/7/202</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-0825</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">7, p 202</subfield></datafield></record></collection>
|
score |
7.4010725 |