Two-layer self-powered active seismic isolation floor
In this paper, a self-powered active seismic isolation floor is proposed to solve safety concern about active control in case of an electricity shortage. The self-powered active seismic isolation floor is composed of two layers named Unit B and Unit T. This self-powered system is based on the idea o...
Ausführliche Beschreibung
Autor*in: |
Nanako MIURA [verfasserIn] Masaki TAKAHASHI [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Japanisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nihon Kikai Gakkai ronbunshu - The Japan Society of Mechanical Engineers, 2022, 80(2014), 813, Seite DR0121-DR0121 |
---|---|
Übergeordnetes Werk: |
volume:80 ; year:2014 ; number:813 ; pages:DR0121-DR0121 |
Links: |
---|
DOI / URN: |
10.1299/transjsme.2014dr0121 |
---|
Katalog-ID: |
DOAJ028603087 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ028603087 | ||
003 | DE-627 | ||
005 | 20230307130002.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2014 xx |||||o 00| ||jpn c | ||
024 | 7 | |a 10.1299/transjsme.2014dr0121 |2 doi | |
035 | |a (DE-627)DOAJ028603087 | ||
035 | |a (DE-599)DOAJ951c38920a134c2bbbbd73e618101c93 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a jpn | ||
050 | 0 | |a TJ1-1570 | |
050 | 0 | |a TA213-215 | |
100 | 0 | |a Nanako MIURA |e verfasserin |4 aut | |
245 | 1 | 0 | |a Two-layer self-powered active seismic isolation floor |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, a self-powered active seismic isolation floor is proposed to solve safety concern about active control in case of an electricity shortage. The self-powered active seismic isolation floor is composed of two layers named Unit B and Unit T. This self-powered system is based on the idea of electric power regeneration. Two kinds of actuators act in it. The two actuators are controlled by different control methods; the two control methods are constructed as a distributed control. One actuator at Unit B acts as a generator during deceleration based on an energy optimal control that is superior in energy regeneration, and the other one at Unit T acts to control vibration using charging energy at Unit B based on conventional control method that is effective in vibration reduction. The control design method and its parameters are shown considering performance and energy. In addition, the displacement of the top layer which defines a required clearance of the two-layer seismic isolation floor can be reduced by allowing for large drift of the small layer between Unit B and Unit T. It is showed that the proposed system uses only charged battery at an initial state, and its control performance is superior to that of a two-layer passive seismic isolation floor by time-history analysis. | ||
650 | 4 | |a seismic isolation floor | |
650 | 4 | |a vibration control | |
650 | 4 | |a active control | |
650 | 4 | |a energy saving | |
650 | 4 | |a electric power regeneration | |
653 | 0 | |a Mechanical engineering and machinery | |
653 | 0 | |a Engineering machinery, tools, and implements | |
700 | 0 | |a Masaki TAKAHASHI |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nihon Kikai Gakkai ronbunshu |d The Japan Society of Mechanical Engineers, 2022 |g 80(2014), 813, Seite DR0121-DR0121 |w (DE-627)1028882408 |x 21879761 |7 nnns |
773 | 1 | 8 | |g volume:80 |g year:2014 |g number:813 |g pages:DR0121-DR0121 |
856 | 4 | 0 | |u https://doi.org/10.1299/transjsme.2014dr0121 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/951c38920a134c2bbbbd73e618101c93 |z kostenfrei |
856 | 4 | 0 | |u https://www.jstage.jst.go.jp/article/transjsme/80/813/80_2014dr0121/_pdf/-char/en |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2187-9761 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 80 |j 2014 |e 813 |h DR0121-DR0121 |
author_variant |
n m nm m t mt |
---|---|
matchkey_str |
article:21879761:2014----::wlyrefoeeatvsimc |
hierarchy_sort_str |
2014 |
callnumber-subject-code |
TJ |
publishDate |
2014 |
allfields |
10.1299/transjsme.2014dr0121 doi (DE-627)DOAJ028603087 (DE-599)DOAJ951c38920a134c2bbbbd73e618101c93 DE-627 ger DE-627 rakwb jpn TJ1-1570 TA213-215 Nanako MIURA verfasserin aut Two-layer self-powered active seismic isolation floor 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a self-powered active seismic isolation floor is proposed to solve safety concern about active control in case of an electricity shortage. The self-powered active seismic isolation floor is composed of two layers named Unit B and Unit T. This self-powered system is based on the idea of electric power regeneration. Two kinds of actuators act in it. The two actuators are controlled by different control methods; the two control methods are constructed as a distributed control. One actuator at Unit B acts as a generator during deceleration based on an energy optimal control that is superior in energy regeneration, and the other one at Unit T acts to control vibration using charging energy at Unit B based on conventional control method that is effective in vibration reduction. The control design method and its parameters are shown considering performance and energy. In addition, the displacement of the top layer which defines a required clearance of the two-layer seismic isolation floor can be reduced by allowing for large drift of the small layer between Unit B and Unit T. It is showed that the proposed system uses only charged battery at an initial state, and its control performance is superior to that of a two-layer passive seismic isolation floor by time-history analysis. seismic isolation floor vibration control active control energy saving electric power regeneration Mechanical engineering and machinery Engineering machinery, tools, and implements Masaki TAKAHASHI verfasserin aut In Nihon Kikai Gakkai ronbunshu The Japan Society of Mechanical Engineers, 2022 80(2014), 813, Seite DR0121-DR0121 (DE-627)1028882408 21879761 nnns volume:80 year:2014 number:813 pages:DR0121-DR0121 https://doi.org/10.1299/transjsme.2014dr0121 kostenfrei https://doaj.org/article/951c38920a134c2bbbbd73e618101c93 kostenfrei https://www.jstage.jst.go.jp/article/transjsme/80/813/80_2014dr0121/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9761 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 80 2014 813 DR0121-DR0121 |
spelling |
10.1299/transjsme.2014dr0121 doi (DE-627)DOAJ028603087 (DE-599)DOAJ951c38920a134c2bbbbd73e618101c93 DE-627 ger DE-627 rakwb jpn TJ1-1570 TA213-215 Nanako MIURA verfasserin aut Two-layer self-powered active seismic isolation floor 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a self-powered active seismic isolation floor is proposed to solve safety concern about active control in case of an electricity shortage. The self-powered active seismic isolation floor is composed of two layers named Unit B and Unit T. This self-powered system is based on the idea of electric power regeneration. Two kinds of actuators act in it. The two actuators are controlled by different control methods; the two control methods are constructed as a distributed control. One actuator at Unit B acts as a generator during deceleration based on an energy optimal control that is superior in energy regeneration, and the other one at Unit T acts to control vibration using charging energy at Unit B based on conventional control method that is effective in vibration reduction. The control design method and its parameters are shown considering performance and energy. In addition, the displacement of the top layer which defines a required clearance of the two-layer seismic isolation floor can be reduced by allowing for large drift of the small layer between Unit B and Unit T. It is showed that the proposed system uses only charged battery at an initial state, and its control performance is superior to that of a two-layer passive seismic isolation floor by time-history analysis. seismic isolation floor vibration control active control energy saving electric power regeneration Mechanical engineering and machinery Engineering machinery, tools, and implements Masaki TAKAHASHI verfasserin aut In Nihon Kikai Gakkai ronbunshu The Japan Society of Mechanical Engineers, 2022 80(2014), 813, Seite DR0121-DR0121 (DE-627)1028882408 21879761 nnns volume:80 year:2014 number:813 pages:DR0121-DR0121 https://doi.org/10.1299/transjsme.2014dr0121 kostenfrei https://doaj.org/article/951c38920a134c2bbbbd73e618101c93 kostenfrei https://www.jstage.jst.go.jp/article/transjsme/80/813/80_2014dr0121/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9761 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 80 2014 813 DR0121-DR0121 |
allfields_unstemmed |
10.1299/transjsme.2014dr0121 doi (DE-627)DOAJ028603087 (DE-599)DOAJ951c38920a134c2bbbbd73e618101c93 DE-627 ger DE-627 rakwb jpn TJ1-1570 TA213-215 Nanako MIURA verfasserin aut Two-layer self-powered active seismic isolation floor 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a self-powered active seismic isolation floor is proposed to solve safety concern about active control in case of an electricity shortage. The self-powered active seismic isolation floor is composed of two layers named Unit B and Unit T. This self-powered system is based on the idea of electric power regeneration. Two kinds of actuators act in it. The two actuators are controlled by different control methods; the two control methods are constructed as a distributed control. One actuator at Unit B acts as a generator during deceleration based on an energy optimal control that is superior in energy regeneration, and the other one at Unit T acts to control vibration using charging energy at Unit B based on conventional control method that is effective in vibration reduction. The control design method and its parameters are shown considering performance and energy. In addition, the displacement of the top layer which defines a required clearance of the two-layer seismic isolation floor can be reduced by allowing for large drift of the small layer between Unit B and Unit T. It is showed that the proposed system uses only charged battery at an initial state, and its control performance is superior to that of a two-layer passive seismic isolation floor by time-history analysis. seismic isolation floor vibration control active control energy saving electric power regeneration Mechanical engineering and machinery Engineering machinery, tools, and implements Masaki TAKAHASHI verfasserin aut In Nihon Kikai Gakkai ronbunshu The Japan Society of Mechanical Engineers, 2022 80(2014), 813, Seite DR0121-DR0121 (DE-627)1028882408 21879761 nnns volume:80 year:2014 number:813 pages:DR0121-DR0121 https://doi.org/10.1299/transjsme.2014dr0121 kostenfrei https://doaj.org/article/951c38920a134c2bbbbd73e618101c93 kostenfrei https://www.jstage.jst.go.jp/article/transjsme/80/813/80_2014dr0121/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9761 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 80 2014 813 DR0121-DR0121 |
allfieldsGer |
10.1299/transjsme.2014dr0121 doi (DE-627)DOAJ028603087 (DE-599)DOAJ951c38920a134c2bbbbd73e618101c93 DE-627 ger DE-627 rakwb jpn TJ1-1570 TA213-215 Nanako MIURA verfasserin aut Two-layer self-powered active seismic isolation floor 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a self-powered active seismic isolation floor is proposed to solve safety concern about active control in case of an electricity shortage. The self-powered active seismic isolation floor is composed of two layers named Unit B and Unit T. This self-powered system is based on the idea of electric power regeneration. Two kinds of actuators act in it. The two actuators are controlled by different control methods; the two control methods are constructed as a distributed control. One actuator at Unit B acts as a generator during deceleration based on an energy optimal control that is superior in energy regeneration, and the other one at Unit T acts to control vibration using charging energy at Unit B based on conventional control method that is effective in vibration reduction. The control design method and its parameters are shown considering performance and energy. In addition, the displacement of the top layer which defines a required clearance of the two-layer seismic isolation floor can be reduced by allowing for large drift of the small layer between Unit B and Unit T. It is showed that the proposed system uses only charged battery at an initial state, and its control performance is superior to that of a two-layer passive seismic isolation floor by time-history analysis. seismic isolation floor vibration control active control energy saving electric power regeneration Mechanical engineering and machinery Engineering machinery, tools, and implements Masaki TAKAHASHI verfasserin aut In Nihon Kikai Gakkai ronbunshu The Japan Society of Mechanical Engineers, 2022 80(2014), 813, Seite DR0121-DR0121 (DE-627)1028882408 21879761 nnns volume:80 year:2014 number:813 pages:DR0121-DR0121 https://doi.org/10.1299/transjsme.2014dr0121 kostenfrei https://doaj.org/article/951c38920a134c2bbbbd73e618101c93 kostenfrei https://www.jstage.jst.go.jp/article/transjsme/80/813/80_2014dr0121/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9761 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 80 2014 813 DR0121-DR0121 |
allfieldsSound |
10.1299/transjsme.2014dr0121 doi (DE-627)DOAJ028603087 (DE-599)DOAJ951c38920a134c2bbbbd73e618101c93 DE-627 ger DE-627 rakwb jpn TJ1-1570 TA213-215 Nanako MIURA verfasserin aut Two-layer self-powered active seismic isolation floor 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a self-powered active seismic isolation floor is proposed to solve safety concern about active control in case of an electricity shortage. The self-powered active seismic isolation floor is composed of two layers named Unit B and Unit T. This self-powered system is based on the idea of electric power regeneration. Two kinds of actuators act in it. The two actuators are controlled by different control methods; the two control methods are constructed as a distributed control. One actuator at Unit B acts as a generator during deceleration based on an energy optimal control that is superior in energy regeneration, and the other one at Unit T acts to control vibration using charging energy at Unit B based on conventional control method that is effective in vibration reduction. The control design method and its parameters are shown considering performance and energy. In addition, the displacement of the top layer which defines a required clearance of the two-layer seismic isolation floor can be reduced by allowing for large drift of the small layer between Unit B and Unit T. It is showed that the proposed system uses only charged battery at an initial state, and its control performance is superior to that of a two-layer passive seismic isolation floor by time-history analysis. seismic isolation floor vibration control active control energy saving electric power regeneration Mechanical engineering and machinery Engineering machinery, tools, and implements Masaki TAKAHASHI verfasserin aut In Nihon Kikai Gakkai ronbunshu The Japan Society of Mechanical Engineers, 2022 80(2014), 813, Seite DR0121-DR0121 (DE-627)1028882408 21879761 nnns volume:80 year:2014 number:813 pages:DR0121-DR0121 https://doi.org/10.1299/transjsme.2014dr0121 kostenfrei https://doaj.org/article/951c38920a134c2bbbbd73e618101c93 kostenfrei https://www.jstage.jst.go.jp/article/transjsme/80/813/80_2014dr0121/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9761 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 80 2014 813 DR0121-DR0121 |
language |
Japanese |
source |
In Nihon Kikai Gakkai ronbunshu 80(2014), 813, Seite DR0121-DR0121 volume:80 year:2014 number:813 pages:DR0121-DR0121 |
sourceStr |
In Nihon Kikai Gakkai ronbunshu 80(2014), 813, Seite DR0121-DR0121 volume:80 year:2014 number:813 pages:DR0121-DR0121 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
seismic isolation floor vibration control active control energy saving electric power regeneration Mechanical engineering and machinery Engineering machinery, tools, and implements |
isfreeaccess_bool |
true |
container_title |
Nihon Kikai Gakkai ronbunshu |
authorswithroles_txt_mv |
Nanako MIURA @@aut@@ Masaki TAKAHASHI @@aut@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
1028882408 |
id |
DOAJ028603087 |
language_de |
japanisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028603087</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307130002.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2014 xx |||||o 00| ||jpn c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1299/transjsme.2014dr0121</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028603087</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ951c38920a134c2bbbbd73e618101c93</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">jpn</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA213-215</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nanako MIURA</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Two-layer self-powered active seismic isolation floor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a self-powered active seismic isolation floor is proposed to solve safety concern about active control in case of an electricity shortage. The self-powered active seismic isolation floor is composed of two layers named Unit B and Unit T. This self-powered system is based on the idea of electric power regeneration. Two kinds of actuators act in it. The two actuators are controlled by different control methods; the two control methods are constructed as a distributed control. One actuator at Unit B acts as a generator during deceleration based on an energy optimal control that is superior in energy regeneration, and the other one at Unit T acts to control vibration using charging energy at Unit B based on conventional control method that is effective in vibration reduction. The control design method and its parameters are shown considering performance and energy. In addition, the displacement of the top layer which defines a required clearance of the two-layer seismic isolation floor can be reduced by allowing for large drift of the small layer between Unit B and Unit T. It is showed that the proposed system uses only charged battery at an initial state, and its control performance is superior to that of a two-layer passive seismic isolation floor by time-history analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seismic isolation floor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vibration control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy saving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric power regeneration</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering machinery, tools, and implements</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Masaki TAKAHASHI</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nihon Kikai Gakkai ronbunshu</subfield><subfield code="d">The Japan Society of Mechanical Engineers, 2022</subfield><subfield code="g">80(2014), 813, Seite DR0121-DR0121</subfield><subfield code="w">(DE-627)1028882408</subfield><subfield code="x">21879761</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:80</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:813</subfield><subfield code="g">pages:DR0121-DR0121</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1299/transjsme.2014dr0121</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/951c38920a134c2bbbbd73e618101c93</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.jstage.jst.go.jp/article/transjsme/80/813/80_2014dr0121/_pdf/-char/en</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2187-9761</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">80</subfield><subfield code="j">2014</subfield><subfield code="e">813</subfield><subfield code="h">DR0121-DR0121</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Nanako MIURA |
spellingShingle |
Nanako MIURA misc TJ1-1570 misc TA213-215 misc seismic isolation floor misc vibration control misc active control misc energy saving misc electric power regeneration misc Mechanical engineering and machinery misc Engineering machinery, tools, and implements Two-layer self-powered active seismic isolation floor |
authorStr |
Nanako MIURA |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1028882408 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ1-1570 |
illustrated |
Not Illustrated |
issn |
21879761 |
topic_title |
TJ1-1570 TA213-215 Two-layer self-powered active seismic isolation floor seismic isolation floor vibration control active control energy saving electric power regeneration |
topic |
misc TJ1-1570 misc TA213-215 misc seismic isolation floor misc vibration control misc active control misc energy saving misc electric power regeneration misc Mechanical engineering and machinery misc Engineering machinery, tools, and implements |
topic_unstemmed |
misc TJ1-1570 misc TA213-215 misc seismic isolation floor misc vibration control misc active control misc energy saving misc electric power regeneration misc Mechanical engineering and machinery misc Engineering machinery, tools, and implements |
topic_browse |
misc TJ1-1570 misc TA213-215 misc seismic isolation floor misc vibration control misc active control misc energy saving misc electric power regeneration misc Mechanical engineering and machinery misc Engineering machinery, tools, and implements |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nihon Kikai Gakkai ronbunshu |
hierarchy_parent_id |
1028882408 |
hierarchy_top_title |
Nihon Kikai Gakkai ronbunshu |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1028882408 |
title |
Two-layer self-powered active seismic isolation floor |
ctrlnum |
(DE-627)DOAJ028603087 (DE-599)DOAJ951c38920a134c2bbbbd73e618101c93 |
title_full |
Two-layer self-powered active seismic isolation floor |
author_sort |
Nanako MIURA |
journal |
Nihon Kikai Gakkai ronbunshu |
journalStr |
Nihon Kikai Gakkai ronbunshu |
callnumber-first-code |
T |
lang_code |
jpn |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Nanako MIURA Masaki TAKAHASHI |
container_volume |
80 |
class |
TJ1-1570 TA213-215 |
format_se |
Elektronische Aufsätze |
author-letter |
Nanako MIURA |
doi_str_mv |
10.1299/transjsme.2014dr0121 |
author2-role |
verfasserin |
title_sort |
two-layer self-powered active seismic isolation floor |
callnumber |
TJ1-1570 |
title_auth |
Two-layer self-powered active seismic isolation floor |
abstract |
In this paper, a self-powered active seismic isolation floor is proposed to solve safety concern about active control in case of an electricity shortage. The self-powered active seismic isolation floor is composed of two layers named Unit B and Unit T. This self-powered system is based on the idea of electric power regeneration. Two kinds of actuators act in it. The two actuators are controlled by different control methods; the two control methods are constructed as a distributed control. One actuator at Unit B acts as a generator during deceleration based on an energy optimal control that is superior in energy regeneration, and the other one at Unit T acts to control vibration using charging energy at Unit B based on conventional control method that is effective in vibration reduction. The control design method and its parameters are shown considering performance and energy. In addition, the displacement of the top layer which defines a required clearance of the two-layer seismic isolation floor can be reduced by allowing for large drift of the small layer between Unit B and Unit T. It is showed that the proposed system uses only charged battery at an initial state, and its control performance is superior to that of a two-layer passive seismic isolation floor by time-history analysis. |
abstractGer |
In this paper, a self-powered active seismic isolation floor is proposed to solve safety concern about active control in case of an electricity shortage. The self-powered active seismic isolation floor is composed of two layers named Unit B and Unit T. This self-powered system is based on the idea of electric power regeneration. Two kinds of actuators act in it. The two actuators are controlled by different control methods; the two control methods are constructed as a distributed control. One actuator at Unit B acts as a generator during deceleration based on an energy optimal control that is superior in energy regeneration, and the other one at Unit T acts to control vibration using charging energy at Unit B based on conventional control method that is effective in vibration reduction. The control design method and its parameters are shown considering performance and energy. In addition, the displacement of the top layer which defines a required clearance of the two-layer seismic isolation floor can be reduced by allowing for large drift of the small layer between Unit B and Unit T. It is showed that the proposed system uses only charged battery at an initial state, and its control performance is superior to that of a two-layer passive seismic isolation floor by time-history analysis. |
abstract_unstemmed |
In this paper, a self-powered active seismic isolation floor is proposed to solve safety concern about active control in case of an electricity shortage. The self-powered active seismic isolation floor is composed of two layers named Unit B and Unit T. This self-powered system is based on the idea of electric power regeneration. Two kinds of actuators act in it. The two actuators are controlled by different control methods; the two control methods are constructed as a distributed control. One actuator at Unit B acts as a generator during deceleration based on an energy optimal control that is superior in energy regeneration, and the other one at Unit T acts to control vibration using charging energy at Unit B based on conventional control method that is effective in vibration reduction. The control design method and its parameters are shown considering performance and energy. In addition, the displacement of the top layer which defines a required clearance of the two-layer seismic isolation floor can be reduced by allowing for large drift of the small layer between Unit B and Unit T. It is showed that the proposed system uses only charged battery at an initial state, and its control performance is superior to that of a two-layer passive seismic isolation floor by time-history analysis. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
813 |
title_short |
Two-layer self-powered active seismic isolation floor |
url |
https://doi.org/10.1299/transjsme.2014dr0121 https://doaj.org/article/951c38920a134c2bbbbd73e618101c93 https://www.jstage.jst.go.jp/article/transjsme/80/813/80_2014dr0121/_pdf/-char/en https://doaj.org/toc/2187-9761 |
remote_bool |
true |
author2 |
Masaki TAKAHASHI |
author2Str |
Masaki TAKAHASHI |
ppnlink |
1028882408 |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1299/transjsme.2014dr0121 |
callnumber-a |
TJ1-1570 |
up_date |
2024-07-03T18:28:02.332Z |
_version_ |
1803583521905704960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028603087</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307130002.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2014 xx |||||o 00| ||jpn c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1299/transjsme.2014dr0121</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028603087</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ951c38920a134c2bbbbd73e618101c93</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">jpn</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA213-215</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nanako MIURA</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Two-layer self-powered active seismic isolation floor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a self-powered active seismic isolation floor is proposed to solve safety concern about active control in case of an electricity shortage. The self-powered active seismic isolation floor is composed of two layers named Unit B and Unit T. This self-powered system is based on the idea of electric power regeneration. Two kinds of actuators act in it. The two actuators are controlled by different control methods; the two control methods are constructed as a distributed control. One actuator at Unit B acts as a generator during deceleration based on an energy optimal control that is superior in energy regeneration, and the other one at Unit T acts to control vibration using charging energy at Unit B based on conventional control method that is effective in vibration reduction. The control design method and its parameters are shown considering performance and energy. In addition, the displacement of the top layer which defines a required clearance of the two-layer seismic isolation floor can be reduced by allowing for large drift of the small layer between Unit B and Unit T. It is showed that the proposed system uses only charged battery at an initial state, and its control performance is superior to that of a two-layer passive seismic isolation floor by time-history analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seismic isolation floor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vibration control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy saving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electric power regeneration</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering machinery, tools, and implements</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Masaki TAKAHASHI</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nihon Kikai Gakkai ronbunshu</subfield><subfield code="d">The Japan Society of Mechanical Engineers, 2022</subfield><subfield code="g">80(2014), 813, Seite DR0121-DR0121</subfield><subfield code="w">(DE-627)1028882408</subfield><subfield code="x">21879761</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:80</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:813</subfield><subfield code="g">pages:DR0121-DR0121</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1299/transjsme.2014dr0121</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/951c38920a134c2bbbbd73e618101c93</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.jstage.jst.go.jp/article/transjsme/80/813/80_2014dr0121/_pdf/-char/en</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2187-9761</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">80</subfield><subfield code="j">2014</subfield><subfield code="e">813</subfield><subfield code="h">DR0121-DR0121</subfield></datafield></record></collection>
|
score |
7.4020615 |