Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking
In service marketing, AI assistants and self-service technology have become popular. As a result, it is critical to enrich the understanding of whether consumers react differently in the artificial intelligence (AI) service context in comparison with the human service context. This study examines th...
Ausführliche Beschreibung
Autor*in: |
Yu Zhang [verfasserIn] Mengya Yang [verfasserIn] Ziling Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Psychology - Frontiers Media S.A., 2010, 13(2022) |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/fpsyg.2022.904302 |
---|
Katalog-ID: |
DOAJ028948033 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ028948033 | ||
003 | DE-627 | ||
005 | 20230502205934.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fpsyg.2022.904302 |2 doi | |
035 | |a (DE-627)DOAJ028948033 | ||
035 | |a (DE-599)DOAJ97e761bcd43d4e46a97d28c0c8a16014 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a BF1-990 | |
100 | 0 | |a Yu Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In service marketing, AI assistants and self-service technology have become popular. As a result, it is critical to enrich the understanding of whether consumers react differently in the artificial intelligence (AI) service context in comparison with the human service context. This study examines the effect of assistant type (AI vs. human) on consumers’ decision-making. Through three experiments, this research finds that variety seeking will be higher when consumers are making decision in AI (vs. human) service environment. Furthermore, we tested uncertainty as the underlying mechanism. Moreover, we demonstrated that this pattern is moderated by situational involvement. Specifically, in consumption contexts of high involvement, the consumers are less likely to seek variety, and in consumption contexts of low involvement, they prefer more variety (study 3). This research offers service providers new insights by revealing how, why, and when the interaction of AI technology influences consumers’ decision-making in service marketing. | ||
650 | 4 | |a artificial intelligence | |
650 | 4 | |a assistant type | |
650 | 4 | |a uncertainty | |
650 | 4 | |a involvement | |
650 | 4 | |a variety seeking | |
653 | 0 | |a Psychology | |
700 | 0 | |a Mengya Yang |e verfasserin |4 aut | |
700 | 0 | |a Ziling Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Psychology |d Frontiers Media S.A., 2010 |g 13(2022) |w (DE-627)631495711 |w (DE-600)2563826-9 |x 16641078 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/fpsyg.2022.904302 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/97e761bcd43d4e46a97d28c0c8a16014 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fpsyg.2022.904302/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1664-1078 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2022 |
author_variant |
y z yz m y my z z zz |
---|---|
matchkey_str |
article:16641078:2022----::netitoatfcaitliecassathefcoassa |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
BF |
publishDate |
2022 |
allfields |
10.3389/fpsyg.2022.904302 doi (DE-627)DOAJ028948033 (DE-599)DOAJ97e761bcd43d4e46a97d28c0c8a16014 DE-627 ger DE-627 rakwb eng BF1-990 Yu Zhang verfasserin aut Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In service marketing, AI assistants and self-service technology have become popular. As a result, it is critical to enrich the understanding of whether consumers react differently in the artificial intelligence (AI) service context in comparison with the human service context. This study examines the effect of assistant type (AI vs. human) on consumers’ decision-making. Through three experiments, this research finds that variety seeking will be higher when consumers are making decision in AI (vs. human) service environment. Furthermore, we tested uncertainty as the underlying mechanism. Moreover, we demonstrated that this pattern is moderated by situational involvement. Specifically, in consumption contexts of high involvement, the consumers are less likely to seek variety, and in consumption contexts of low involvement, they prefer more variety (study 3). This research offers service providers new insights by revealing how, why, and when the interaction of AI technology influences consumers’ decision-making in service marketing. artificial intelligence assistant type uncertainty involvement variety seeking Psychology Mengya Yang verfasserin aut Ziling Zhang verfasserin aut In Frontiers in Psychology Frontiers Media S.A., 2010 13(2022) (DE-627)631495711 (DE-600)2563826-9 16641078 nnns volume:13 year:2022 https://doi.org/10.3389/fpsyg.2022.904302 kostenfrei https://doaj.org/article/97e761bcd43d4e46a97d28c0c8a16014 kostenfrei https://www.frontiersin.org/articles/10.3389/fpsyg.2022.904302/full kostenfrei https://doaj.org/toc/1664-1078 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 |
spelling |
10.3389/fpsyg.2022.904302 doi (DE-627)DOAJ028948033 (DE-599)DOAJ97e761bcd43d4e46a97d28c0c8a16014 DE-627 ger DE-627 rakwb eng BF1-990 Yu Zhang verfasserin aut Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In service marketing, AI assistants and self-service technology have become popular. As a result, it is critical to enrich the understanding of whether consumers react differently in the artificial intelligence (AI) service context in comparison with the human service context. This study examines the effect of assistant type (AI vs. human) on consumers’ decision-making. Through three experiments, this research finds that variety seeking will be higher when consumers are making decision in AI (vs. human) service environment. Furthermore, we tested uncertainty as the underlying mechanism. Moreover, we demonstrated that this pattern is moderated by situational involvement. Specifically, in consumption contexts of high involvement, the consumers are less likely to seek variety, and in consumption contexts of low involvement, they prefer more variety (study 3). This research offers service providers new insights by revealing how, why, and when the interaction of AI technology influences consumers’ decision-making in service marketing. artificial intelligence assistant type uncertainty involvement variety seeking Psychology Mengya Yang verfasserin aut Ziling Zhang verfasserin aut In Frontiers in Psychology Frontiers Media S.A., 2010 13(2022) (DE-627)631495711 (DE-600)2563826-9 16641078 nnns volume:13 year:2022 https://doi.org/10.3389/fpsyg.2022.904302 kostenfrei https://doaj.org/article/97e761bcd43d4e46a97d28c0c8a16014 kostenfrei https://www.frontiersin.org/articles/10.3389/fpsyg.2022.904302/full kostenfrei https://doaj.org/toc/1664-1078 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 |
allfields_unstemmed |
10.3389/fpsyg.2022.904302 doi (DE-627)DOAJ028948033 (DE-599)DOAJ97e761bcd43d4e46a97d28c0c8a16014 DE-627 ger DE-627 rakwb eng BF1-990 Yu Zhang verfasserin aut Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In service marketing, AI assistants and self-service technology have become popular. As a result, it is critical to enrich the understanding of whether consumers react differently in the artificial intelligence (AI) service context in comparison with the human service context. This study examines the effect of assistant type (AI vs. human) on consumers’ decision-making. Through three experiments, this research finds that variety seeking will be higher when consumers are making decision in AI (vs. human) service environment. Furthermore, we tested uncertainty as the underlying mechanism. Moreover, we demonstrated that this pattern is moderated by situational involvement. Specifically, in consumption contexts of high involvement, the consumers are less likely to seek variety, and in consumption contexts of low involvement, they prefer more variety (study 3). This research offers service providers new insights by revealing how, why, and when the interaction of AI technology influences consumers’ decision-making in service marketing. artificial intelligence assistant type uncertainty involvement variety seeking Psychology Mengya Yang verfasserin aut Ziling Zhang verfasserin aut In Frontiers in Psychology Frontiers Media S.A., 2010 13(2022) (DE-627)631495711 (DE-600)2563826-9 16641078 nnns volume:13 year:2022 https://doi.org/10.3389/fpsyg.2022.904302 kostenfrei https://doaj.org/article/97e761bcd43d4e46a97d28c0c8a16014 kostenfrei https://www.frontiersin.org/articles/10.3389/fpsyg.2022.904302/full kostenfrei https://doaj.org/toc/1664-1078 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 |
allfieldsGer |
10.3389/fpsyg.2022.904302 doi (DE-627)DOAJ028948033 (DE-599)DOAJ97e761bcd43d4e46a97d28c0c8a16014 DE-627 ger DE-627 rakwb eng BF1-990 Yu Zhang verfasserin aut Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In service marketing, AI assistants and self-service technology have become popular. As a result, it is critical to enrich the understanding of whether consumers react differently in the artificial intelligence (AI) service context in comparison with the human service context. This study examines the effect of assistant type (AI vs. human) on consumers’ decision-making. Through three experiments, this research finds that variety seeking will be higher when consumers are making decision in AI (vs. human) service environment. Furthermore, we tested uncertainty as the underlying mechanism. Moreover, we demonstrated that this pattern is moderated by situational involvement. Specifically, in consumption contexts of high involvement, the consumers are less likely to seek variety, and in consumption contexts of low involvement, they prefer more variety (study 3). This research offers service providers new insights by revealing how, why, and when the interaction of AI technology influences consumers’ decision-making in service marketing. artificial intelligence assistant type uncertainty involvement variety seeking Psychology Mengya Yang verfasserin aut Ziling Zhang verfasserin aut In Frontiers in Psychology Frontiers Media S.A., 2010 13(2022) (DE-627)631495711 (DE-600)2563826-9 16641078 nnns volume:13 year:2022 https://doi.org/10.3389/fpsyg.2022.904302 kostenfrei https://doaj.org/article/97e761bcd43d4e46a97d28c0c8a16014 kostenfrei https://www.frontiersin.org/articles/10.3389/fpsyg.2022.904302/full kostenfrei https://doaj.org/toc/1664-1078 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 |
allfieldsSound |
10.3389/fpsyg.2022.904302 doi (DE-627)DOAJ028948033 (DE-599)DOAJ97e761bcd43d4e46a97d28c0c8a16014 DE-627 ger DE-627 rakwb eng BF1-990 Yu Zhang verfasserin aut Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In service marketing, AI assistants and self-service technology have become popular. As a result, it is critical to enrich the understanding of whether consumers react differently in the artificial intelligence (AI) service context in comparison with the human service context. This study examines the effect of assistant type (AI vs. human) on consumers’ decision-making. Through three experiments, this research finds that variety seeking will be higher when consumers are making decision in AI (vs. human) service environment. Furthermore, we tested uncertainty as the underlying mechanism. Moreover, we demonstrated that this pattern is moderated by situational involvement. Specifically, in consumption contexts of high involvement, the consumers are less likely to seek variety, and in consumption contexts of low involvement, they prefer more variety (study 3). This research offers service providers new insights by revealing how, why, and when the interaction of AI technology influences consumers’ decision-making in service marketing. artificial intelligence assistant type uncertainty involvement variety seeking Psychology Mengya Yang verfasserin aut Ziling Zhang verfasserin aut In Frontiers in Psychology Frontiers Media S.A., 2010 13(2022) (DE-627)631495711 (DE-600)2563826-9 16641078 nnns volume:13 year:2022 https://doi.org/10.3389/fpsyg.2022.904302 kostenfrei https://doaj.org/article/97e761bcd43d4e46a97d28c0c8a16014 kostenfrei https://www.frontiersin.org/articles/10.3389/fpsyg.2022.904302/full kostenfrei https://doaj.org/toc/1664-1078 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 |
language |
English |
source |
In Frontiers in Psychology 13(2022) volume:13 year:2022 |
sourceStr |
In Frontiers in Psychology 13(2022) volume:13 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
artificial intelligence assistant type uncertainty involvement variety seeking Psychology |
isfreeaccess_bool |
true |
container_title |
Frontiers in Psychology |
authorswithroles_txt_mv |
Yu Zhang @@aut@@ Mengya Yang @@aut@@ Ziling Zhang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
631495711 |
id |
DOAJ028948033 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028948033</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502205934.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fpsyg.2022.904302</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028948033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ97e761bcd43d4e46a97d28c0c8a16014</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">BF1-990</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In service marketing, AI assistants and self-service technology have become popular. As a result, it is critical to enrich the understanding of whether consumers react differently in the artificial intelligence (AI) service context in comparison with the human service context. This study examines the effect of assistant type (AI vs. human) on consumers’ decision-making. Through three experiments, this research finds that variety seeking will be higher when consumers are making decision in AI (vs. human) service environment. Furthermore, we tested uncertainty as the underlying mechanism. Moreover, we demonstrated that this pattern is moderated by situational involvement. Specifically, in consumption contexts of high involvement, the consumers are less likely to seek variety, and in consumption contexts of low involvement, they prefer more variety (study 3). This research offers service providers new insights by revealing how, why, and when the interaction of AI technology influences consumers’ decision-making in service marketing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">assistant type</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">involvement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variety seeking</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Psychology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mengya Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziling Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Psychology</subfield><subfield code="d">Frontiers Media S.A., 2010</subfield><subfield code="g">13(2022)</subfield><subfield code="w">(DE-627)631495711</subfield><subfield code="w">(DE-600)2563826-9</subfield><subfield code="x">16641078</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fpsyg.2022.904302</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/97e761bcd43d4e46a97d28c0c8a16014</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fpsyg.2022.904302/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-1078</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
B - Philosophy, Psychology, Religion |
author |
Yu Zhang |
spellingShingle |
Yu Zhang misc BF1-990 misc artificial intelligence misc assistant type misc uncertainty misc involvement misc variety seeking misc Psychology Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking |
authorStr |
Yu Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)631495711 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
BF1-990 |
illustrated |
Not Illustrated |
issn |
16641078 |
topic_title |
BF1-990 Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking artificial intelligence assistant type uncertainty involvement variety seeking |
topic |
misc BF1-990 misc artificial intelligence misc assistant type misc uncertainty misc involvement misc variety seeking misc Psychology |
topic_unstemmed |
misc BF1-990 misc artificial intelligence misc assistant type misc uncertainty misc involvement misc variety seeking misc Psychology |
topic_browse |
misc BF1-990 misc artificial intelligence misc assistant type misc uncertainty misc involvement misc variety seeking misc Psychology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Psychology |
hierarchy_parent_id |
631495711 |
hierarchy_top_title |
Frontiers in Psychology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)631495711 (DE-600)2563826-9 |
title |
Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking |
ctrlnum |
(DE-627)DOAJ028948033 (DE-599)DOAJ97e761bcd43d4e46a97d28c0c8a16014 |
title_full |
Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking |
author_sort |
Yu Zhang |
journal |
Frontiers in Psychology |
journalStr |
Frontiers in Psychology |
callnumber-first-code |
B |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Yu Zhang Mengya Yang Ziling Zhang |
container_volume |
13 |
class |
BF1-990 |
format_se |
Elektronische Aufsätze |
author-letter |
Yu Zhang |
doi_str_mv |
10.3389/fpsyg.2022.904302 |
author2-role |
verfasserin |
title_sort |
uncertainty of artificial intelligence assistant: the effect of assistant type on variety seeking |
callnumber |
BF1-990 |
title_auth |
Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking |
abstract |
In service marketing, AI assistants and self-service technology have become popular. As a result, it is critical to enrich the understanding of whether consumers react differently in the artificial intelligence (AI) service context in comparison with the human service context. This study examines the effect of assistant type (AI vs. human) on consumers’ decision-making. Through three experiments, this research finds that variety seeking will be higher when consumers are making decision in AI (vs. human) service environment. Furthermore, we tested uncertainty as the underlying mechanism. Moreover, we demonstrated that this pattern is moderated by situational involvement. Specifically, in consumption contexts of high involvement, the consumers are less likely to seek variety, and in consumption contexts of low involvement, they prefer more variety (study 3). This research offers service providers new insights by revealing how, why, and when the interaction of AI technology influences consumers’ decision-making in service marketing. |
abstractGer |
In service marketing, AI assistants and self-service technology have become popular. As a result, it is critical to enrich the understanding of whether consumers react differently in the artificial intelligence (AI) service context in comparison with the human service context. This study examines the effect of assistant type (AI vs. human) on consumers’ decision-making. Through three experiments, this research finds that variety seeking will be higher when consumers are making decision in AI (vs. human) service environment. Furthermore, we tested uncertainty as the underlying mechanism. Moreover, we demonstrated that this pattern is moderated by situational involvement. Specifically, in consumption contexts of high involvement, the consumers are less likely to seek variety, and in consumption contexts of low involvement, they prefer more variety (study 3). This research offers service providers new insights by revealing how, why, and when the interaction of AI technology influences consumers’ decision-making in service marketing. |
abstract_unstemmed |
In service marketing, AI assistants and self-service technology have become popular. As a result, it is critical to enrich the understanding of whether consumers react differently in the artificial intelligence (AI) service context in comparison with the human service context. This study examines the effect of assistant type (AI vs. human) on consumers’ decision-making. Through three experiments, this research finds that variety seeking will be higher when consumers are making decision in AI (vs. human) service environment. Furthermore, we tested uncertainty as the underlying mechanism. Moreover, we demonstrated that this pattern is moderated by situational involvement. Specifically, in consumption contexts of high involvement, the consumers are less likely to seek variety, and in consumption contexts of low involvement, they prefer more variety (study 3). This research offers service providers new insights by revealing how, why, and when the interaction of AI technology influences consumers’ decision-making in service marketing. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2086 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking |
url |
https://doi.org/10.3389/fpsyg.2022.904302 https://doaj.org/article/97e761bcd43d4e46a97d28c0c8a16014 https://www.frontiersin.org/articles/10.3389/fpsyg.2022.904302/full https://doaj.org/toc/1664-1078 |
remote_bool |
true |
author2 |
Mengya Yang Ziling Zhang |
author2Str |
Mengya Yang Ziling Zhang |
ppnlink |
631495711 |
callnumber-subject |
BF - Psychology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fpsyg.2022.904302 |
callnumber-a |
BF1-990 |
up_date |
2024-07-03T20:18:06.820Z |
_version_ |
1803590447212265472 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ028948033</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502205934.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fpsyg.2022.904302</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ028948033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ97e761bcd43d4e46a97d28c0c8a16014</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">BF1-990</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Uncertainty of Artificial Intelligence Assistant: The Effect of Assistant Type on Variety Seeking</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In service marketing, AI assistants and self-service technology have become popular. As a result, it is critical to enrich the understanding of whether consumers react differently in the artificial intelligence (AI) service context in comparison with the human service context. This study examines the effect of assistant type (AI vs. human) on consumers’ decision-making. Through three experiments, this research finds that variety seeking will be higher when consumers are making decision in AI (vs. human) service environment. Furthermore, we tested uncertainty as the underlying mechanism. Moreover, we demonstrated that this pattern is moderated by situational involvement. Specifically, in consumption contexts of high involvement, the consumers are less likely to seek variety, and in consumption contexts of low involvement, they prefer more variety (study 3). This research offers service providers new insights by revealing how, why, and when the interaction of AI technology influences consumers’ decision-making in service marketing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">assistant type</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">uncertainty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">involvement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variety seeking</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Psychology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mengya Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziling Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Psychology</subfield><subfield code="d">Frontiers Media S.A., 2010</subfield><subfield code="g">13(2022)</subfield><subfield code="w">(DE-627)631495711</subfield><subfield code="w">(DE-600)2563826-9</subfield><subfield code="x">16641078</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fpsyg.2022.904302</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/97e761bcd43d4e46a97d28c0c8a16014</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fpsyg.2022.904302/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1664-1078</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.3994036 |